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Abstract

The theory of multilevel selection (MLS) is beset with conceptual difficulties.

Although it is widely agreed that covariance between group trait and group

fitness may arise in the natural world and drive a response to ‘group selec-

tion’, ambiguity exists over the precise meaning of group trait and group fit-

ness and as to whether group selection should be defined according to

changes in frequencies of different types of individual or different types of

group. Moreover, the theory of MLS has failed to properly engage with the

problem of class structure, which greatly limits its empirical application to,

for example, social insects whose colonies are structured into separate age,

sex, caste and ploidy classes. Here, I develop a genetical theory of MLS, to

address these problems. I show that taking a genetical approach facilitates a

decomposition of group-level traits – including reproductive success – into

the separate contributions made by each constituent individual, even in the

context of so-called emergence. However, I uncover a novel problem with

the group-oriented approach: in many scenarios, it may not be possible to

express a meaningful covariance between trait and fitness at the level of the

social group, because the group’s constituents belong to separate, irreconcil-

able classes.

Introduction

Recent years have seen a resurgence of interest in the

theory of multilevel selection (MLS: Price, 1972a; Ham-

ilton, 1975; Sober & Wilson, 1998; Keller, 1999; Okasha,

2006; Wilson & Wilson, 2007; West et al., 2008; Gardner

& Grafen, 2009; Leigh, 2010; Nowak et al., 2010; Lion

et al., 2011; Marshall, 2011; Frank, 2012a, 2013).

Having moved on from the controversy as to whether or

not selection can operate at multiple levels – which was,

in part, fuelled by confusing the weak notion of selec-

tion at the group level with the much stronger notion of

adaptation at the group level (reviewed by Gardner &

Grafen, 2009) – social evolution theorists now widely

agree that a covariance between group trait and group

fitness may arise in the natural world, resulting in a

response to group selection.

However, MLS theory continues to be beset by con-

ceptual difficulties (Okasha, 2006 provides an excellent

review). Firstly, ambiguity exists over the precise mean-

ing of group trait. The typical approach taken by MLS

theorists is to treat this as a simple ‘aggregate’ of the

traits of the group’s constituent individuals, but some

researchers have considered that group traits are often

‘emergent’ and may even be undefined at the individ-

ual level (Salt, 1979; Lloyd, 1988; Grantham, 1995;

Okasha, 2006). Secondly, a similar ambiguity arises

over the precise meaning of group fitness. Here, the

typical approach is to define the group’s fitness in terms

of number of daughter individuals, but an alternative

approach instead counts the number of daughter

groups, and these approaches clearly disagree in the

context of variable group size (Arnold & Fristrup, 1982;

Damuth & Heisler, 1988; Sober, 1993; Okasha, 2006;

Rainey & Kerr, 2011). Thirdly, there is ambiguity as to

the focal level in a MLS analysis, with so-called multi-

level selection 1 (MLS-1) describing change in the fre-

quencies of different types of individual and multilevel

selection 2 (MLS-2) describing change in the frequen-

cies of different types of groups (Arnold & Fristrup,

1982; Mayo & Gilinsky, 1987; Damuth & Heisler, 1988;

Okasha, 2001, 2006; Michod, 2011; Rainey & Kerr,

2011).

Moreover, MLS theory has not properly engaged

with the problem of class structure; that is, when

different individuals (or groups) differ in quality for
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nongenetic reasons (West et al., 2008; Gardner & Gra-

fen, 2009; Frank, 2013; West & Gardner, 2013). The

key issues that arise here are the following: first, that

not all offspring are necessarily equal, so a simple count

of offspring number may not adequately capture the

notion of fitness; and, second, that chance associations

between allele and class may drive evolutionary change

that should not be confused with the action of natural

selection and should be carefully separated out of any

theoretical or empirical measure of MLS. All real-world

biological populations exhibit class structure, and

although neglecting such differences in quality may be

reasonable for some taxa (e.g. bacteria; but see Gardner

& K€ummerli, 2008), such complexity is fundamental to

the biology of many organisms of social evolutionary

importance. For example, within colonies of eusocial

insects – the classic ‘superorganisms’ – individuals may

be structured into separate age, sex, caste and ploidy

classes (Gardner & Grafen, 2009). And, indeed, class

structure is central to social evolutionary topics such as

sex allocation (West, 2009), in which parents are

judged according to the sex rather than simply the

number of their offspring. Accordingly, failure to

engage with class structure greatly limits the current

empirical reach of MLS theory.

Here, I develop a genetical theory of MLS to address

these problems. First, I describe the general theory of

selection as it occurs in any medium, captured by Price’s

(1972a) covariance equation, and I discuss the key con-

ceptual elements of the selection covariance. Second, I

provide an overview of Fisher’s (1918, 1930) genetical

theory of natural selection, including the fundamental

theorem of natural selection (Fisher, 1930, 1941), and I

describe the action of natural selection in the context of

class structure. Third, I develop an analogous genetical

theory of MLS, including a fundamental theorem of

MLS and a description of the action of MLS in class-

structured populations. Fourth, I apply the genetical

theory of MLS to resolve the definition of group trait

and group reproductive success, abolish the distinction

between MLS-1 and MLS-2, clarify the relationship

between MLS and ‘Simpson’s paradox’ (Simpson, 1951;

Blyth, 1972), and identify scenarios in which the group

may validly be considered a unit of selection.

A general theory of selection

A general theory of selection is provided by Price’s

(1970, 1972a, 1995) theorem. In general terms, Price’s

theorem describes a difference between two assem-

blages in the average of some numerical quantity of

interest. In evolutionary applications, the two assem-

blages are typically two generations of the same biologi-

cal population and the difference between these two

generations defines an evolutionary change. But Price’s

theorem also has applications beyond evolutionary biol-

ogy (Gardner, 2008).

Price’s theorem emerges from a mapping of ‘parents’

to ‘offspring’ between the two assemblages, and it

decomposes the change in the average of the focal

quantity into two parts: (i) ‘selection’, being the change

that is due to different parents having different num-

bers of offspring; and (ii) ‘transmission’, being the

change that is due to offspring not perfectly resembling

their parents (Frank, 1995, 1998, 2012b; Price, 1995).

In particular, Price’s theorem captures the action of

selection in a covariance form:

DsEi2IðziÞ ¼ covi2Iðvi; ziÞ; (1)

where vi denotes the ith parent’s relative contribution

to the offspring assemblage (i.e. its number of offspring

divided by the average number of offspring per parent)

and zi denotes this parent’s character value (see Appen-

dix 1 for details).

Price’s covariance expression highlights four key con-

ceptual elements of selection. First, the entity upon

which selection acts, identified here as the holder of

the index i, defines the ‘unit of selection’. Second, the

assemblage within which selection acts, identified here

by the index set I, defines the ‘arena of selection’.

Third, the numerical property of the units, identified

here as the variable z, whose aggregate change may be

driven by selection, defines the ‘character under selec-

tion’. Fourth, the numerical property of the units, iden-

tified here as the variable v, which provides the

measure of a unit’s success, defines the ‘target of selec-

tion’. Bringing these elements together, the action of

selection is given by the covariance, taken over all units

within the arena, between the character and the target

of selection (Appendix 1).

The genetical theory of natural selection

Natural selection

Natural selection is a particular kind of selection,

defined by the conjunction of a particular unit, arena,

character and target. Conventionally, the unit of natu-

ral selection is the individual organism, and the arena

of natural selection is a biological population (Darwin,

1859). The character under selection is the heritable

portion of the individual’s phenotypic trait, g; that is, a

weighted sum of the frequencies of the alleles that the

individual carries, the weights being decided by linear

regression analysis (Fisher, 1918; Price, 1970). This

quantity is also known as the individual’s ‘breeding

value’ (Falconer, 1981). And the target of natural selec-

tion is the individual’s ‘fitness’, v; that is an expectation

over future uncertainty of number of offspring

expressed relative to the population average (Grafen,

2000; Appendix 1). Here, I am assuming that there is

no class structure, so that all offspring can be consid-

ered of equal value, but I will relax this assumption in

a later section.
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Making this choice of arena, unit, character and tar-

get of selection explicit in eqn (1) yields a mathematical

statement of natural selection:

DNSEi2IðgiÞ ¼ covi2Iðvi; giÞ: (2)

That is, the action of natural selection is given by the

covariance, taken over all individuals within the popu-

lation, between the individual’s heritable trait and her

fitness. Equation (2) has been termed the ‘secondary

theorem of natural selection’ (Robertson, 1968), and I

will use this term to distinguish the result specific to

the action of natural selection from Price’s (1972a)

more general selection covariance, described in eqn (1),

which has much wider application.

The fundamental theorem of natural selection

The secondary theorem describes the action of natural

selection with respect to any genetical character of

interest. Perhaps the most interesting genetical charac-

ter is the heritable component of fitness itself (Fisher,

1941). Fitness may be decomposed into its genetical

and environmental components, that is vi = gi + ei,

where ei captures nonadditive genotypic effects (such as

dominance, epistasis, synergy and frequency depen-

dence) as well as other more obviously environmental

effects. Making this substitution into eqn (2) yields

DNSEi2IðgiÞ ¼ covi2Iðgi; giÞ þ covi2Iðei; giÞ: And, as

covi2Iðgi; giÞ ¼ vari2IðgiÞ and covi2Iðei; giÞ ¼ 0; this

obtains the ‘fundamental theorem of natural selection’:

DNSEi2IðgiÞ ¼ vari2IðgiÞ: (3)

That is, the change in average fitness ascribed to the

action of natural selection is equal to the (additive)

genetic variance in fitness (Fisher, 1930, 1941). The

importance of this result is that, because variances are

nonnegative, natural selection can only have an

improving effect on fitness. Fisher (1930) used the fun-

damental theorem as justification for the idea that indi-

viduals will appear designed to maximize their fitness

(see Grafen, 2002, 2003 for more on this optimization

view).

Importantly, the fundamental theorem is not con-

cerned with total evolutionary change in fitness, but

only the action of natural selection (Price, 1972b). Non-

selective change in fitness owing to mutation and

changing associations between genes and fitness – col-

lectively termed ‘deterioration of the environment’ by

Fisher (1930) – tends to reduce average fitness (Frank

& Slatkin, 1992). In the past, this subtlety has been lost

on many evolutionary theorists who, considering the

fundamental theorem to be a statement about total

evolutionary change in fitness, asserted that it is incor-

rect or only applies under very special conditions

(reviewed by Edwards, 1994). This conceptual confu-

sion illustrates the importance of being able to mathe-

matically separate the selective versus nonselective

components of evolutionary change (Appendix 1).

Today, disagreement still persists as to the correct

interpretation of the fundamental theorem. For exam-

ple, whereas Okasha (2008) and Ewens (2011) both

regard the theorem as concerning the selection of

genes, I regard it as concerning the selection of individ-

uals. Although the fundamental theorem describes

change in a genetical character, this change is driven

by the differential fitness of individuals. Moreover, the

genetical character represents information – carried by

genes – about the fitness of individuals. That is, the

fundamental theorem emerges from a selection covari-

ance in which the unit of selection is the individual,

the target of selection is the individual’s fitness, and the

character under selection is the heritable portion of the

individual’s fitness. Here, genes merely provide a mate-

rial basis for the inheritance of the individual’s charac-

ter. Indeed, as the above derivation applies equally well

to blending inheritance, genes cannot play a key role in

the theorem’s logic (cf. Gardner, 2011). These points

illustrate the importance of being able to conceptually

separate the unit, arena, character and target of

selection.

Natural selection in class-structured populations

If individuals vary in their propensity to achieve repro-

ductive success, for reasons other than the genes that

they carry (e.g. owing to differences in age, sex, caste

and/or local habitat; Grafen, 2006), then natural selec-

tion cannot be described as a simple covariance of

genetic value with fitness, taken across all individuals

in the population. Firstly, spurious correlations between

heritable traits and nongenetic aspects of individual

quality may drive genetic changes that should not be

conflated with the action of natural selection (Taylor,

1990). Secondly, if offspring vary systematically in their

propensity to achieve reproductive success, then a sim-

ple count of offspring number need not capture an

individual’s genetic legacy across multiple generations

(Price & Smith, 1972). A solution to this problem is to:

(i) separate individuals into classes, such that the only

differences within classes are genetical in nature; (ii)

describe the action of natural selection separately for

each class; and (iii) compute the overall action of natu-

ral selection as a sum across all classes, giving each class

a weight according to the neutral expectation of its

long-term genetic contribution to future generations

(i.e. its ‘reproductive value’; Fisher, 1930; Price, 1970;

Price & Smith, 1972; Taylor, 1990). This yields:

DNSEi2IðgiÞ ¼
X
k2K

ckcovi2Ik ðvi; giÞ; (4)

where Ik denotes the subset of the index set I pertain-

ing to the kth class, ck is the reproductive value of the

kth class, and relative fitness vi is expected offspring
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number divided by the average for all individuals of

that class (see Appendix 2 for details).

The basic idea here is that, in a class-structured popu-

lation, an allele’s frequency may undergo systematic

change even if that allele is entirely neutral. Accord-

ingly, even if natural selection is playing some role in

driving allele frequency change, it may not be responsi-

ble for all of this change. And so, to properly describe

the action of natural selection in terms of genetical

change, it is important to: consider a counterfactual sce-

nario in which alleles are neutral and remain that way

until the end of time; determine the corresponding

change in their frequencies under neutrality; and then

subtract this from the actual allele frequency change

that occurs in the real-world scenario in which natural

selection is operating. The class reproductive values

describe the expected genetic contribution that each

class makes to the distant future in the neutral counter-

factual scenario. Hence, they are calculated under the

assumption of neutrality, even though the wider context

is one in which the action of natural selection is being

described (see the ‘Class effects and Simpson’s paradox’

section, below, for more discussion).

In the context of class structure, natural selection is

given by the class-reproductive-value-weighted sum

(taken over all classes) of the covariance (taken over all

individuals within a class) between the individual’s her-

itable trait and her fitness. Accordingly, the arena of

each selection covariance is the subpopulation of indi-

viduals belonging to a particular class. This is the

approach taken by Price (1970), and my eqn (4) can be

seen as a generalization of his eqn (5), which focused

specifically upon populations structured into female

versus male classes and X-linked genes.

The genetical theory of MLS

Multilevel selection

In the context of social evolution, in which social interac-

tion between individuals mediates the covariance of fit-

ness and genetic values, it is often helpful to decompose

the overall response to natural selection into separate

parts, to aid conceptualization (Gardner et al., 2007). The

MLS approach separates natural selection into its within-

group versus between-group components (Price, 1972a;

Hamilton, 1975; Okasha, 2006). Assuming the absence of

class structure, assigning every group a unique index

j 2 J, assigning each individual to a single group and

denoting the subset of the population that comprises the

jth group by Ij, eqn (2) may be rewritten as follows:

DNSEi2IðgiÞ ¼ covj2J Ei2IjðviÞ;Ei2IjðgiÞ
� �

þ Ej2J covi2Ijðvi; giÞ
� �

: (5)

The right-hand side of eqn (5) expresses the action of

natural selection as the sum of two terms. The first of

these terms is a selection covariance, in which the unit

of selection is the group (indicated by the index j), the

arena of selection is the population of groups (indicated

by the index set J), the character under selection is the

average genetic value among the individuals in the

group (denoted Ei2IjðgiÞ), and the target of selection is

the average fitness among the individuals in the group

(denoted Ei2IjðviÞ). This selection covariance describes

selection that is operating at the between-group level,

and provides a formal definition of ‘group selection’

(Price, 1972a; Hamilton, 1975). Here, the target of

group selection – that is the average fitness among the

individuals in the group – provides an operational defi-

nition for ‘group fitness’.

The second term is an expectation of selection covari-

ances, in which the unit of selection is the individual

(indicated by the index i), the arena of selection is the set

of individuals within a particular group (indicated by the

index set Ij), the character under selection is the individ-

ual’s genetic value (denoted gi), and the target of selec-

tion is the individual’s relative fitness (denoted vi). This

selection covariance describes selection operating at the

within-group level, and its expectation across all the

groups in the population defines ‘within-group selection’

(Price, 1972a; Hamilton, 1975). Note that, as the unit of

selection here is the individual, within-group selection

has some conceptual claim on the term ‘individual selec-

tion’. However, the same logic would lead to the RHS of

eqn (2) also being termed ‘individual selection’. To avoid

such ambiguous language, I instead use ‘within-group

selection’ to describe the term in eqn (5) and ‘natural

selection’ to describe the term in eqn (2).

The fundamental theorem of MLS

Equation (5) might be termed the ‘secondary theorem

of MLS’, in analogy with eqn (2). This suggests the pos-

sibility for a ‘fundamental theorem of MLS’. Taking

group fitness Vj ¼ Ei2IjðviÞ as the character of interest,

and assigning this a genetic component Gj ¼ Ei2IjðgiÞ
and an environmental component Ej in the usual way,

yields covj2J Ei2IjðviÞ;Ei2IjðgiÞ
� � ¼ varj2JðGjÞ: Noting that

DNSEi2I(gj) = DNSEj2J(Gj); then, from eqn (5):

DNSEj2JðGjÞ ¼ varj2JðGjÞ iff Ej2J covi2Ijðvi; giÞ
� � ¼ 0:

(6)

That is, the change in average group fitness owing to

the action of natural selection is equal to the genetic

variance in group fitness if and only if there is no selec-

tion within groups. This provides an informal proof of

the idea that groups will only appear designed to maxi-

mize their fitness if there are mechanisms – such as

clonality or repression of competition – that more-or-

less totally abolish selection within groups; otherwise,

natural selection may favour traits that decrease group

fitness and disfavour traits that increase group fitness
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(see Gardner & Grafen, 2009; Gardner, 2013 for more

on this optimization view).

MLS in class-structured populations

Equation (4) provides an expression for the action of

natural selection in a class-structured population.

Assigning individuals to groups j 2 J, and applying the

MLS partition

covi2Ikðvi; giÞ ¼ covj2J Ei2IkjðviÞ;Ei2IkjðgiÞ
� �

þ Ej2J covi2Ikjðvi; giÞ
� �

;

separately for each class obtains:

DNSEi2IðgiÞ ¼
X
k2K

ckcovj2J Ei2IkjðviÞ;Ei2IkjðgiÞ
� �

þ
X
k2K

ckEj2J covi2Ikjðvi; giÞ
� �

(7)

which separates the action of natural selection into

between-group and within-group components. Note

that the between-group selection covariances have, as

their unit of selection, not a whole social group, but

rather the subgroup of individuals in each social group

that belong to the same class. Correspondingly, the tar-

get of between-group selection is the average fitness of

individuals within the pure-class subgroup, the charac-

ter under between-group selection is the average heri-

table trait of the individuals within the pure-class

subgroup, and the arena of between-group selection is

the population of pure-class subgroups belonging to the

same class. Similarly, the within-group selection covari-

ances have the individual as the unit of within-group

selection, the individual’s heritable trait as the character

under within-group selection, the individual’s fitness as

the target of within-group selection and the pure-class

subgroup as the arena of within-group selection.

Class effects and Simpson’s paradox

In eqn (7), I have described the action of MLS in a class-

structured population, controlling for spurious correla-

tions between heritable traits and fitness that may arise

when individuals vary in quality for other reasons, and

that should not be mistaken for the action of MLS itself.

The idea here is that calculating a covariance is mathe-

matically analogous to performing a least-squares regres-

sion analysis (Gardner et al., 2011) and so, by calculating

selection covariances separately for each class, the effects

of any confounding variables – that collectively define

class membership – are removed. Moreover, weighting

each selection covariance by the reproductive value of

the corresponding class describes its long-term genetic

impact upon the population, and the sum of the weighted

selection covariances describes the overall action of MLS.

For example, consider a neutral or weakly deleterious

allele that is lucky enough to find itself overrepresented

among high-quality individuals. The overall correlation

between gene and fitness may be positive, because car-

riers of the allele tend to be fitter than noncarriers for

reasons that have nothing to do with them carrying the

allele. Accordingly, in the absence of other evolutionary

forces, the allele will increase in frequency, in an

apparent contradiction of Darwin’s (1859) remark: ‘This

preservation of favourable variations and the rejection

of injurious variations, I call Natural Selection. Varia-

tions neither useful nor injurious would not be affected

by natural selection’. The apparent contradiction is

resolved by noting that this change in allele frequency

is not natural selection, but rather a distinct ‘class

effect’. To be clear, the class effect is not particular to

MLS and may also arise in the context of kin selection

analysis: na€ıve application of covariance (or least-

squares regression or differentiation) methodology is

liable to give nonsensical results in the context of class

structure (Allen et al., 2013). Taylor (1990) and Taylor

& Frank (1996) give excellent accounts of kin selection

analysis for class-structured populations.

The class effect relates to a statistical phenomenon

known as ‘Simpson’s paradox’ (Simpson, 1951; Blyth

1972), in which the association between two variables

disappears or even reverses when a third, confounding,

variable is controlled for. The paradox arises when cor-

relation is interpreted as straightforward causation, such

that the same dataset yields two mutually incompatible

causal interpretations (Pearl, 2009, 2014). A classic

example relates to a case of apparent sex discrimination

in the admission of graduate students to the University

of California at Berkeley: female applicants were much

less likely to be admitted than their male counterparts,

suggesting discrimination against women, when all

admissions were considered as a whole; yet, this pattern

vanished when admissions to each department were

considered individually, suggesting no such discrimina-

tion was occurring (Bickel et al., 1975). Further analysis

revealed that female applicants tended to apply to

departments where overall rates of admission were

lower, which explained the apparent sex bias, and the

University was exonerated (Bickel et al., 1975).

Simpson’s paradox has previously been discussed in

the MLS literature, although not in relation to the con-

founding effects of class. In fact, it has been used to

describe the action of MLS itself. Sober & Wilson

(1998) have drawn an analogy between a group-struc-

tured population, in which altruism is associated with

reduced fitness within every group but higher fitness

within the population as a whole, on the one hand,

and the Berkeley sex discrimination case, on the other.

However, I believe that this is a poor analogy. Altruism,

in Sober & Wilson’s (1998) model, is associated with

higher fitness overall, not because of any confounding

variable, but rather because of the causal action of

altruism itself: groups of altruists are fitter because they

are groups of altruists. This is very different from the
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Berkeley case, in which the low rates of admission to

certain departments were – supposedly – not due to

their attracting mainly female applicants. Indeed, if

Berkeley had been deliberately allocating fewer gradu-

ate student positions to these departments because they

were popular with women, then this would clearly

have been sex discrimination.

Collective fitness1 versus collective
fitness2

A much-discussed problem with the theory of MLS is

that it has not been clear whether a group’s reproductive

success should be defined in terms of its number of

daughter individuals or its number of daughter groups

(Arnold & Fristrup, 1982; Damuth & Heisler, 1988;

Sober, 1993; Okasha, 2006; Rainey & Kerr, 2011). This

clearly matters when there is variation in group size.

Okasha (2006) provides an illustrative example, in which

group A produces twelve daughter individuals organized

into four groups of three and group B produces twelve

daughter individuals organized into three groups of four.

By what he terms ‘collective fitness1’, which counts the

number of daughter individuals, groups A and B are

equally successful. But, by what he terms ‘collective fit-

ness2’, which counts the number of daughter groups,

group A is more successful than group B.

The genetical theory of MLS provides a solution to

this problem, by defining the reproductive success of

any unit in terms of its expected long-term genetic con-

tribution to future generations. Because the reproduc-

tive value of any group is a simple sum of the

reproductive values of its constituent individuals, the

reproductive value of the mother group can be calcu-

lated either as the sum of the reproductive values of its

daughter individuals or as the sum of the reproductive

values of its daughter groups, and these two calcula-

tions will always yield the same answer.

In an empirical context, simply counting the number

of daughter individuals – that is the collective fitness1
approach – is appropriate when there is negligible class

structuring of individuals. Such a scenario is unlikely

when groups vary in size and individuals engage in

social interactions within their groups, as individuals in

differently sized groups will experience rather different

social environments, even in a genetically homogenous

population. Conversely, simply counting the number of

daughter groups – that is the collective fitness2
approach – is appropriate when there is negligible class

structuring of groups. Such a scenario is also unlikely

when groups vary in size, unless there is extreme den-

sity regulation such that small groups achieve the same

overall productivity as large groups. More generally,

even though the collective fitness1 and collective

fitness2 approaches will converge upon the same mea-

sure of reproductive success in the absence of variation

in group size, this measure may nevertheless be inade-

quate if individuals and groups are class structured in

other ways. Daughter individuals or groups of low

quality should not be given the same weight as daugh-

ter individuals or groups of high quality in computing

the reproductive success of the parent group but,

instead, each daughter individual or group should be

weighted in proportion to its reproductive value.

Viewing reproductive value as a proper measure of

an entity’s evolutionary success clarifies the relation-

ship between cancer and MLS. Cancer is often concep-

tualized as involving a tension between different levels

of selection, with cancerous tissues achieving higher

reproductive success at a within-organism level and

cancerous individuals suffering lower reproductive suc-

cess at a between-organism level (Okasha, 2006;

Clarke, 2011; Foster, 2011; Goodnight, 2013). However,

somatic tissues – including cancerous ones – do not

generally contribute genes to distant future generations,

on account of the demise of their lineages upon the

death of the organism (Clarke, 2011; Goodnight, 2013).

Consequently, cancerous tissues do not have reproduc-

tive value, and so their proliferation within the organ-

ism cannot correspond to selection in the strict sense of

the genetical theory. The exception is transmissible can-

cer – such as that causing devil facial tumour disease in

Tasmanian devils, and transmitted by biting (Pearse &

Swift, 2006) – which has the potential to survive indef-

initely and hence achieve reproductive value. In such

cases, the cancer represents a separate, parasitic individ-

ual – perhaps even belonging to a distinct species (cf

Vincent, 2010) – rather than a rebellion of the host

individual’s own tissues.

Aggregate characters versus emergent
characters

Analogous to the apparent problems that have been

posed in the literature concerning group fitness, there

has been much discussion of how best to conceptualize

group-level traits (Salt, 1979; Lloyd, 1988; Grantham,

1995; Okasha, 2006). Adopting Okasha’s (2006) termi-

nology: the majority of MLS models have considered

‘aggregate’ traits, where the group trait value is a sim-

ple average of the trait values of its constituent individ-

uals; but this approach has been regarded as incapable

of capturing the action of MLS when group traits are

‘emergent’ and perhaps even undefined at the individ-

ual level. Okasha (2006) discusses the example of the

group’s sex ratio, which is a property of the group

rather than of any of its constituent individuals

(although he notes that each individual in the group

does have the individual-level property of being in a

group with that sex ratio).

The genetical theory of MLS resolves this problem by

considering that natural selection acts only upon the

heritable portion of the phenotype; that is, the charac-

ter under selection is strictly genetical. Importantly, any
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biological entity that contains genes may be ascribed a

trait value that is a simple weighted sum of the

frequencies of the various alleles that it carries, irre-

spective of whether that entity is an individual or a

group. And the genetical character may relate to a phe-

notype that is expressed at any level of biological orga-

nization, not necessarily the one occupied by the focal

entity.

The genetical approach is entirely consistent with the

‘aggregate’ view of group-level traits, in that the

group’s genetical trait value is a simple weighted sum

of the genetical trait values of its constituent individu-

als. But it is also entirely consistent with the ‘emergent’

view of group-level phenotypes, which do not need to

be defined at an individual level in order for individuals

to be assigned genetical scores for them. This is analo-

gous to how a bull may be assigned a breeding value

for milk yield, as a function of his genotype, even

though he does not have udders. Such assignment is

neither arbitrary nor anomalous, but rather plays an

important role in the practice of artificial selection,

because bulls carry genes for milk yield and pass them

on to their daughters, who do express them. Similarly,

in a social evolutionary context, natural selection for

the phenotypes of sterile insect workers is driven by

the differential fitness of reproductive individuals who

have heritable predispositions for, but do not actually

exhibit, those phenotypes (Darwin, 1859).

MLS-1 versus MLS-2

In addition to the difficulties associated with group-

level fitness and group-level traits, the literature on

MLS has been much concerned with the question of

how to describe the evolutionary change associated

with group selection. Building upon the ideas of Da-

muth & Heisler (1988), Okasha (2006) distinguishes

‘MLS-1’, which describes change in the frequencies of

different types of individual (or, more generally, differ-

ent types of ‘particle’), versus ‘MLS-2’, which describes

change in the frequencies of different types of group

(or, more generally, different types of ‘collective’; see

also Arnold & Fristrup, 1982; Mayo & Gilinsky, 1987;

Okasha, 2001). Michod (2011) and Rainey & Kerr

(2011) discuss the MLS-1 versus MLS-2 distinction in

the context of major transitions in evolution (Maynard

Smith & Szathm�ary, 1995).
The genetical theory of MLS adopts neither of these

two approaches and, instead, describes the action of

group selection in terms of change in a genetical char-

acter. As discussed in the previous section, a genetical

score may be assigned to any biological entity that con-

tains genes – such as an entire population – and change

in this genetical score can be computed, irrespective of

how that population is subdivided into groups and indi-

viduals, or the biological level of organization at which

the corresponding phenotype actually manifests.

One might argue that this genetical approach is merely

an extended MLS view that considers a lower tier of par-

ticles – the genes – and that this is therefore a form of

MLS-1. However, this is incorrect, for two reasons.

Firstly, describing change in the average value of a genet-

ical character is not equivalent to describing change in

the frequencies genetic types. Rather, the genetical char-

acter describes an arbitrarily weighted sum of potentially

multiple allele frequencies, and although these frequen-

cies determine the value of the genetical character, the

reverse need not be true. Secondly, the basic selection

covariance logic can also be applied to heritable charac-

ters that do not have a particulate basis (i.e. blending

inheritance; Gardner, 2011). This clarifies the sense in

which the theory of natural selection is ‘genetical’: this

adjective pertains to the medium by which characters are

inherited, rather than to the unit of selection itself.

Are social groups units of selection?

In eqn (7), I decomposed the action of natural selection

in a class-structured population into separate between-

group and within-group components. Here, the compo-

nent of natural selection that is occurring between

groups is given by:

DBGSEi2IðgiÞ ¼
X
k2K

ckcovj2J Ei2IkjðviÞ;Ei2IkjðgiÞ
� �

: (8)

In contrast to the corresponding term appearing in

eqn (5), which described the MLS partition in the

absence of class structure, this quantity is not readily

interpretable as a selection covariance in which the

whole group acts as a unit of selection. Instead, it is a

reproductive-value-weighted sum of selection covari-

ances, each taken over different pure-class subgroups of

individuals rather than over entire social groups.

Accordingly, it is the pure-class subgroup, not the

entire social group, that acts as the unit of selection.

This raises the question of whether and when a

whole social group can be considered a viable unit of

selection, with some measure of group fitness providing

the target of group selection, and some measure of

group genetic value providing the character under

group selection. This can be shown to obtain in some

special scenarios. First, if every social group is homoge-

neous with respect to class, then the pure-class sub-

group is synonymous with the social group itself, and

hence, from eqn (8), the social group is a unit of selec-

tion, its fitness Ei2IkjðviÞ is the target of group selection,

and its genetic value Ei2IkjðgiÞ is the character under

group selection. A trivial example of when this scenario

will apply is when the whole population lacks class

structure, as assumed, for example, by the models of

Gardner & Grafen (2009). However, the scenario will

also apply to class-structured populations so long as all

class differences are between rather than within groups,

as assumed, for example, by the models of Rodrigues &
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Gardner (2012), that consider variation in resource

availability among different groups.

Second, if the pure-class subgroups of a social group

are constrained to have the same average genetic

values (i.e. Ei2IkjðgiÞ ¼ Ei2I:jðgiÞ for all j 2 J and all

k 2 K, where I•j is the set of all individuals within the

jth group), then eqn (8) may be re-expressed as

DBGSEi2IðgiÞ ¼ covj2J
P

k2K ckEi2IkjðviÞ;Ei2I:jðgiÞ
� �

: This

recovers the interpretation of the entire social group as

a unit of selection, with a reproductive-value-weighted

average of the fitnesses of its constituent pure-class sub-

groups
P

k2K ckEi2IkjðviÞ providing the target of group

selection and its genetic value Ei2I:jðgiÞ providing the

character under group selection. One example of when

this scenario will apply is when all of a group’s constit-

uent individuals are genetically identical (i.e.

gi ¼ El2I:jðglÞ for all i 2 I.j). Biologically, such group clo-

nality appears to be the most plausible mechanism for

ensuring that the pure-class subgroups have the same

genetic values, but the former is not strictly required

for the latter to obtain.

Third, if the fitnesses of all of a social group’s pure-

class subgroups are equal (i.e. Ei2IkjðviÞ ¼ Ei2I:jðviÞ for all

j 2 J and all k 2 K), then eqn (8) may be re-expressed

as DBGSEi2IðgiÞ ¼ covj2J Ei2I:jðviÞ;
P

k2K ckEi2IkjðgiÞ
� �

: This

recovers the interpretation of the entire social group as

a unit of selection, with the fitness of the social group

Ei2I:jðviÞ providing the target of group selection and a

reproductive-value-weighted average of the genetic

values of its pure-class subgroups
P

k2K ckEi2IkjðgiÞ pro-

viding the character under group selection. Note that

this scenario does not require that all pure-class sub-

groups have equal absolute reproductive success, but

rather that their relative reproductive success (i.e. abso-

lute offspring number divided by the average for their

class) is equal for all subgroups within the social group.

Moreover, it also allows for fitness variation within the

pure-class subgroups.

The issue of whether a group can be considered a

unit of selection is distinct from that of whether a

group can be considered a unit of adaptation, that is

a fitness-maximizing entity. The former requires that a

nonzero portion of natural selection can be expressed

as a selection covariance in which the social group

plays the role of unit of selection and may be assigned

a meaningful measure of fitness. The latter has the

additional requirement that there is also zero selection

within groups – as shown in expression (6) and by

Gardner & Grafen (2009) – such that the necessary and

sufficient criterion for any heritable trait to be favoured

by natural selection is that it improves group fitness.

The importance of being able to describe a selection

covariance that identifies the whole social group – and

not simply the pure-class subgroup – as a unit of selec-

tion is made vivid by considering scenarios in which no

two individuals in the same social group belong to the

same class and in which neither the genetic uniformity

nor the relative fitness uniformity criteria are satisfied.

For example, a parasitoid wasp might oviposit a single

unfertilized (i.e. male) egg and a single fertilized (i.e.

female) egg into a caterpillar, within which these sib-

lings develop and compete for resources, and this yields

both a clearly defined social group of more than one

individual and also ample scope for kin selection. Yet, it

is unclear whether group selection can occur, except in

the trivial sense that a single individual can be consid-

ered a group of size 1, owing to difficulties in bringing

the separate selection covariances for male subgroups

and for female subgroups together into a single selec-

tion covariance.

From a conceptual perspective, this point may help

to illustrate the more general point that, although kin

selection and MLS methodologies are equivalent (they

both describe the action of natural selection, and simply

carve it up in different ways), kin selection is not a spe-

cial kind of group selection that operates between kin

groups (contra Wilson, 1975). Indeed, there can be kin

selection in the absence of group selection, as defined

above, even in populations that are structured into

clearly defined kin groups. From an empirical perspec-

tive, this point highlights that the total reproductive

success of a heterogeneous group may be a meaningless

quantity and that scientific resources might be more

profitably invested into measuring other things.

Conclusion

A genetical approach to MLS addresses several of the dif-

ficulties that have beset this theory of social evolution.

Here, I have resolved the meaning of group trait and

group fitness, highlighted that MLS is defined by change

in a genetical character driven by its covariance with

fitness at individual and group levels and clarified the

connection between MLS and Simpson’s paradox. More-

over, by integrating the theories of class structure and

reproductive value, I have extended the empirical reach

of MLS theory. However, these developments have

shown that it may not always possible to treat whole

social groups as units of selection and that often separate

gene-fitness covariances must be taken over pure-class

subgroups instead. For many empirical scenarios in

which social groups comprise individuals of more than

one class, it may not be possible to bring together the

between-group components of within-class selection

into a single conception of ‘group selection‘, even in the

context of kin selection and social evolution.
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Appendix 1
The Price equation
Price’s (1970, 1972a) theorem emerges from a mapping

between two assemblages of entities – a ‘parent’ assem-

blage and an ‘offspring’ assemblage – which need not

be of a biological nature (Figure A1.1). Each of the

entities in the parent assemblage is assigned a unique

index i 2 I, and its absolute number of descendants in

the offspring assemblage is denoted by wi. The arithme-

tic average of wi among all the entities in the parent

assemblage is Ei2I(wi) = ∑i2Iqiwi, where equal weight-

ing is given to each parent, that is qi = q for all i 2 I

and ∑i2Iqi = 1. Thus, each parent’s success may be

expressed in a relative way, as vi = wi/El2I(wl). The par-

ents may be scored for any property of interest, and

accordingly, each is assigned a numerical trait score zi,

and the average trait value in the parent assemblage is

Ei2I(zi) = ∑i2Iqizi. Finally, a parent’s descendants are col-

lectively assigned an average trait value z0i ¼ zi þ Dzi;
where Dzi captures the difference between parent and

offspring trait values, and the average trait value in the

entire offspring assemblage is Ei2Iðviz0iÞ ¼
P

i2I qiviz
0
i :

Hence, the total change in the average trait value

between parent and offspring assemblages is

DEi2IðziÞ ¼ Ei2Iðviz0iÞ � Ei2IðziÞ; or:
DEi2IðziÞ ¼ covi2Iðvi; ziÞ þ Ei2IðviDziÞ (A1.1)

where E denotes an arithmetic average or expectation

and cov denotes a covariance, each taken over the indi-

cated set (Price, 1972a). The left-hand side of

eqn (A1.1) denotes the change in the population aver-

age of the character. The right-hand side of eqn (A1.1)

expresses this change as the sum of two terms. The first

term is the change ascribed to selection and is equal to

the covariance of relative success and character value,

across all entities in the parent population. The second

term is the change ascribed to transmission and is equal

to the average (relative-success-weighted) difference

between the character values of a parent and its off-

spring.

In some applications of Price’s theorem, there is not

one offspring assemblage, but rather a set of possible

offspring assemblages, each having some probability of

realization. Assigning each possible offspring assemblage

a unique index x 2 Ω and denoting parent i’s relative

contribution of offspring under realization x by

vxi ¼ wx
i =El2Iðwx

l Þ; where wx
i is parent i’s absolute con-

tribution of offspring under realization x, eqn (A1.1)

may be rewritten as follows:

DEi2IðziÞx ¼ covi2Iðvxi ; ziÞ þ Ei2Iðvxi Dzxi Þ (A1.2)

which describes the character transformation in the

event of realization of offspring assemblage x. In such

applications of Price’s theorem, it is often appropriate to

Parents Offspring

Figure A1.1 The mapping that forms the basis of Price’s equation.

Differences in shading represent differences in character value, and

the Price equation describes change in the average character value

between parent and offspring populations.
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describe the expected change, averaging over uncer-

tainty as to which of the offspring assemblages will be

realized. This is given by:

DEx2X DEi2IðziÞxð Þ ¼ covi2I Ex2Xðvxi Þ; zi
� �

þ Ex2X Ei2Iðvxi Dzxi Þ
� �

: (A1.3)

However, this notation is a bit cumbersome, and it is

often more convenient to leave the expectation over

uncertainty implicit. See Grafen (2000) and Gardner &

Grafen (2009) for more on expectations over uncer-

tainty in the context of Price’s theorem.

Price’s theorem is a mathematical tautology, arising

from simple notational definitions rather than from

mechanistic assumptions. Consequently, it is not very

useful for making concrete predictions about evolution-

ary change. Instead, its usefulness lies in how it

provides general definitions for components of evolu-

tionary change. In particular, Price’s theorem provides

a general, formal definition of selection: isolating the

first term from the right-hand side of eqn (A1.1) recov-

ers eqn (1) of the main text.

Moreover, Price’s theorem highlights four key con-

ceptual elements of selection: selection is defined in

terms of change in the expectation of a random vari-

able z, and this variable formally defines the ‘character

under selection’; selective change in the character is

equal to its covariance with a second random variable

v, and this variable formally defines the ‘target of selec-

tion’; these random variables are themselves formally

defined by drawing entities at random from an aggre-

gate and noting their associated character and target

values (Gardner et al., 2011, box 1), the entities being

drawn formally defining the ‘unit of selection’ and the

aggregate from which they are drawn formally defining

the ‘arena of selection’.

Appendix 2
Natural selection in class-structured
populations
The action of natural selection in the absence of class

structure is given by eqn (2) of the main text. Here, I

derive an expression for the action of natural selection

in the presence of class structure, namely eqn (4) of

the main text. Accordingly, I assign individuals to clas-

ses, such that all the individuals in the same class have

the same nongenetic quality. Specifically, in addition to

assigning every individual a unique index i 2 I, I assign

every class a unique index k 2 K. The subset of individ-

uals belonging to class k is denoted Ik (Figure A2.1).

Equation (2) of the main text was derived from a

mapping between consecutive parent and offspring

generations, and this is appropriate in the absence of

class structure because all offspring have equal value,

and hence, expected relative contribution of offspring

to the next generation provides a proper measure of

each parent’s evolutionary success. However, in the

context of class structure, offspring may vary in their

value, and it is necessary to instead consider each indi-

vidual’s expected long-term genetic contribution to

future generations; that is, her ‘reproductive value’

(Figure A2.1). I denote individual i’s reproductive value

as fi and, following Taylor (1990), I scale this such that

the average reproductive value among all the parent

individuals is Ei2I(fi) = 1. Note that other scalings are

equally valid: for example, figure 2 of Fisher (1930)

employed a scaling such that a female’s reproductive

value at birth is 2.

The selection covariance emerging from this mapping

between the parent generation and a distant future

generation is covi2Iðfi; giÞ: Note that this is analogous to

the selection covariance on the RHS of eqn (2) of the

main text, except that the target of selection is the indi-

vidual’s expected long-term genetic contribution to the

future (reproductive value, fi) rather than the individ-

ual’s expected relative offspring number (fitness, vi).

However, covi2Iðfi; giÞ does not provide a proper

account of the action of natural selection acting in the

parental generation, because it includes effects of class

membership (i.e. because individuals vary in quality for

nongenetic reasons, covi2Iðfi; giÞ may be nonzero even

in a neutral population in which natural selection can-

not be acting), and because it includes the effects of

natural selection in all generations from the present

into the distant future. These separate effects may be

isolated by writing fi ¼ ~fi þ
P1

t¼1 Dt fi; where ~fi is the

reproductive value that the ith individual would enjoy

under neutrality and Dtfi is the deviation from this neu-

tral expectation owing to gene effects in the tth genera-

tion, starting with her own generation at t = 1.

Parents Offspring

Figure A2.1 The Price equation mapping for a class-structured population. When individuals differ both in their genetical characters

(shading) and in their class (hats), number of offspring does not provide an adequate measure of evolutionary success, i.e. long-term

contribution of genes to future generations.
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That is, if, in addition to considering the real-world

scenario in which selection is operating, one considers

a counterfactual scenario in which all genes are neutral,

fi describes the individual’s expected long-term genetic

contribution in the selection scenario, ~fi describes her

expected long-term genetic contribution in the neutral

counterfactual scenario, and the difference between

these two quantities
P1

t¼1 Dt fi describes the cumulative

action of natural selection acting in every generation

from the present to the distant future. Thus, there are

three ways for individuals to achieve high reproductive

value: they may be born with high reproductive value,

on account of their class (high ~f ); they may achieve high

reproductive value, on account of the action of their

superior genes (high D1f); and they may have high repro-

ductive value thrust upon them on account of the

genetic superiority of their descendants (high
P1

t¼2 Dt f ).

To make this decomposition of reproductive value

more concrete, I write fi ¼ vif
0
i , where vi is the individ-

ual’s expected number of offspring relative to the aver-

age for her class and f 0i ¼ fi=vi is the average

reproductive value she gains for each of these standar-

dized offspring units, in the selection scenario. Expected

relative number of offspring may be written as

vi ¼ evi þ Dvi; where evi ¼ 1 is the expectation under the

neutral counterfactual scenario and Dvi is the deviation

in expected relative number of offspring owing to natu-

ral selection. Likewise, average reproductive value per

standardized offspring unit may be written as

f 0i ¼ ~f 0i þ Df 0i ; where ~f 0i is the expectation under the neu-

tral counterfactual scenario and Df 0i is the deviation due

to natural selection. It follows that ~fi ¼ ~f 0i ;D1fi ¼ Dvi~f 0i
and

P1
t¼2 Dt fi ¼ viDf 0i :

Substituting the components of reproductive value

into the selection covariance covi2Iðfi; giÞ yields:
covi2Iðfi; giÞ ¼ covi2Ið~fi; giÞ þ covi2IðD1fi; giÞ

þ covi2I
X1
t¼2

Dt fi; gi

 !
: (A2.1)

The first term on the RHS of eqn (A2.1) describes the

portion of the expected long-term genetic change that

would occur even if the genes were entirely neutral in

their effects, which I term the class effect. The second

term describes the portion of the expected long-term

change that occurs because of the impact of genes on

fitness in the focal generation, which defines the imme-

diate action of natural selection. And the third compo-

nent describes the portion of the expected long-term

change that occurs because of the impact of genes on

fitness in future generations. An illustrative example of

this partition of class and selective effects is given in

Appendix 3.

Hence, a proper statement of the immediate action of

natural selection, acting in the present generation, but

having a long-term impact upon the genetic composi-

tion of the population, is given by the second term on

the RHS of eqn (A2.1):

DNSEi2IðgiÞ ¼ covi2IðD1fi; giÞ: (A2.2)

Here, the target of natural selection is not the entirety

of the individual’s reproductive value, but rather the

portion that owes to the impact of genes on fitness. It is

defined for any strength of selection, but its conceptual-

ization has involved making a comparison with a neu-

trality counterfactual scenario in which selection is

absent. Note, the LHS of eqn (A2.2) describes a portion

of the actual expected long-term genetic change, and

not a reproductive-value-weighted expected short-term

genetic change (see below for more discussion).

Typically, the action of natural selection in the con-

text of class structure is written as a weighted sum of

covariances that are taken separately over individuals

of each class: for example, eqn (5) of Price (1970). To

express eqn (A2.2) in this form, I first separate its RHS

into its within-class versus between-class effects:

DNSEi2IðgiÞ ¼ covk2K Ei2IkðD1fiÞ;Ei2IkðgiÞð Þ
þ Ek2K covi2IkðD1fi; giÞð Þ: (A2.3)

Note that, by virtue of the definition of class, all indi-

viduals belonging to the same class have offspring with

the same neutral reproductive value (which entails
~f 0i ¼ eF 0

k for all i 2 Ik and all k 2 K). Accordingly,

Ei2IkðD1fiÞ ¼ Ei2IkðDviÞeF 0
k ¼ 0, so that eqn (A2.3) may be

rewritten as follows:

DNSEi2IðgiÞ ¼
X
k2K

Qk
eF 0
kcovi2Ik vi; gið Þ; (A2.4)

where Qk ¼
P

i2Ik qi is the proportion of parental individ-

uals that belong to the kth class. Finally, making the

substitution ck ¼ Qk
eF 0
k recovers eqn (4) of the main text.

Here, ck is the reproductive value of class k, being the

probability that a gene drawn at random from the dis-

tant future would originate from class k in the present

generation, were there to be no natural selection operat-

ing in the present – or any future – generation. For the

special case in which all individuals belong to the same

class – that is there is only one element k 2 K, such that

Ik = I and ck = 1 – eqn (4) reduces to eqn (2).

Note that the above treatment of natural selection in

class-structured populations makes no assumption of

weak selection or vanishingly rare mutant alleles and,

accordingly, it differs in various details from some pre-

vious treatments (Taylor, 1990, 1996). Indeed, whereas

the apparent contradiction of defining the action of nat-

ural selection in terms of class reproductive values that

are calculated under neutrality has typically been

resolved by assuming vanishingly weak selection, my

resolution instead involves a contrast between a natural

selection scenario and a neutral counterfactual scenario,

whereby the class reproductive values emerge from

consideration of the latter and are used to ascertain
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how much of the expected genetic change occurring in

the former would have occurred even in the absence of

natural selection.

Also, I have described the individual’s reproductive

value as the expectation over uncertainty of her genetic

contribution to the distant future, and this differs from

some previous uses of the term, to describe either her

realized long-term contribution or her expected contri-

bution conditional upon a given pedigree (i.e. her

descendants are specified but uncertainty remains as to

the genes that they carry; Barton & Etheridge, 2011).

In addition, I have conceptualized natural selection as

being driven by fitness differences – that is differences

in expected relative offspring number – within classes.

Selection for traits that alter offspring class rather than

offspring number, such as sex allocation, may be con-

ceptualized as acting upon the offspring themselves and

driven by differences in their fitness, as was done by

Taylor & Frank (1996). That is, such effects contribute

to the action of natural selection in the subsequent,

rather than the present, generation.

Finally, I have conceptualized the action of natural

selection in the context of class structure as a portion of

the expected long-term genetic change of the popula-

tion, as opposed to the immediate genetical change

occurring from one generation to the next (or a portion

thereof). This differs from previous treatments, begin-

ning with Fisher (1930), that have conceptualized the

action of natural selection in terms of the immediate

change in the class-reproductive-value-weighted aver-

age of the frequencies of alleles across the different clas-

ses in the population. My approach directly relates to

the idea that natural selection has long-term conse-

quences for biological populations that may not be fully

captured by considering only a single generation of

actual genetic change. Fisher’s (1930) approach provides

a convenient means of bringing those long-term effects

into the focal generation, by incorporating information

about the future prospects of alleles into their present

population frequencies. Although conceptually distinct,

these two approaches yield exactly the same mathemat-

ical result, and their numerical equivalence is illustrated

in Appendix 3. A mathematical and historical overview

of the theory of reproductive value, generalizing beyond

discrete classes, is provided by Grafen (2006).

Appendix 3
Allele frequency change in a haplodiploid
population
Many animal species exhibit haplodiploid inheritance,

whereby daughters are produced in the usual way, by

fusion of a female’s egg with a male’s sperm, but males

develop from unfertilized eggs. Consequently, males are

haploid and females are diploid. Males draw all their

genes from their mother, whereas females draw half of

their genes from each parent.

This bizarre form of inheritance may lead to compli-

cated gene frequency dynamics, comprising both class

effects and truly naturally selective effects. For exam-

ple, consider a haplodiploid population in which there

is a strongly female biased sex ratio that remains con-

stant over generations, so that the ‘per capita’ frequency

of any gene at any time is approximately equal to its

frequency in females (this may be unrealistic if male

fecundity is limiting; Gardner, 2014). If all of the males

are initially hemizygous for a neutral allele A and all of

the females are initially homozygous for a neutral allele

a at the same locus then, initially, the frequency of the

A allele will be approximately zero (because males are

rare). However, in the next generation the frequency

of this allele will leap to approximately 0.5, because

every female will inherit this allele from her father and

will inherit the other allele from her mother. Moreover,

none of the males in this generation will carry the A

allele. Consequently, in the second generation, the fre-

quency of the A allele will be approximately 0.25,

because only half of the females will inherit it from

their mother and none of them will inherit it from their

father. Table A3.1 records the allele frequencies over

multiple generations.

The per capita frequencies are plotted in Figure A3.1

panel (a). Note that the frequency of the A allele in

females asymptotes to p = 1/3 (the same is true of its

frequency in males). Thus, there is an apparent long-

term increase in allele A’s frequency of (1/3) – 0 = 1/3.

Both alleles are neutral, so this is not the work of natu-

ral selection. Rather, it is a class effect. The class repro-

ductive value of males is cm = 1/3 under haplodiploidy,

which means that 1/3 of genes in the distant future

trace back to males and cf = 2/3 trace back to females,

under neutrality. Awarding each of the nm males in the

population, an equal share of their class’s reproductive

value yields a male’s reproductive value of fm = 1/

(3nm). Similarly, the reproductive value of each female

is ff = 2/(3nf), where nf is the number of females in the

Table A3.1 Dynamics of a neutral allele’s frequency in a

haplodiploid population.

Generation

Frequency

in females

(pf)

Frequency

in males

(pm)

‘Per capita’

frequency

(p � pf)

RV-weighted

frequency

(p* = cfpf + cmpm)

1 0.0000 1.0000 0.0000 0.3333

2 0.5000 0.0000 0.5000 0.3333

3 0.2500 0.5000 0.2500 0.3333

4 0.3750 0.2500 0.3750 0.3333

5 0.3125 0.3750 0.3125 0.3333

6 0.3438 0.3125 0.3438 0.3333

7 0.3281 0.3438 0.3281 0.3333

8 0.3359 0.3281 0.3359 0.3333

9 0.3320 0.3359 0.3320 0.3333

10 0.3340 0.3320 0.3340 0.3333
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population. Because nf ≫ nm, then fm ≫ ff; that is, an

individual male has higher reproductive value than an

individual female, and so the A allele – which is over-

represented in males – enjoys an increase in frequency

owing to the class effect.

Panel (b) reveals the fate of the A allele if it enjoys a

selective advantage of 100% in generation 1 (solid line)

and thereafter behaves neutrally (broken line). This

makes no difference to its course over the generations.

This is because there is no genetic variance within

either class in generation 1 and, hence, there is no

selection operating within either class in this genera-

tion. Panel (c) reveals the fate of the allele if it enjoys

its selective advantage in generations 1 and 2 (solid

line) and thereafter behaves neutrally (broken line). In

generation 2, there is genetic variation among females,

and consequently, the A allele is favoured by natural

selection in this generation. Note that its actual fre-

quency decreases from generation 2 to generation 3,

but less sharply than it would have done under neu-

trality (grey broken line). This is reflected in its asymp-

totic frequency being > 1/3, and this disparity D2 in its

asymptotic frequency defines the selective progress it

made on the account of the fitness superiority of its

bearers in generation 2. Panel (d) reveals the fate of

the A allele if it enjoys a selective advantage over 10

generations: it rises towards fixation. Its selective pro-

gress in each generation can be measured by contrast-

ing with counterfactuals in which it was neutral in this

and every subsequent generation (grey broken lines).

The selective progress attained in generations 2, 3, 4

and 5 is indicated by arrows.

(a) 

(c)

(b)

(d)

Figure A3.1 Dynamics of allele

frequency change under haplodiploidy.

Here, Δt describes the portion of the

expected long-term genetic change that

owes to the action of natural selection

in generation t.

(a) (b)

(c) (d) Figure A3.2 Dynamics of class-

reproductive-value-weighted allele

frequency change under haplodiploidy.

Here, Δt describes the reproductive-

value-weighted expected short-term

genetic change that owes to the action

of natural selection in generation t, and

which is conceptually different – but

numerically equivalent – to how

natural selection is captured in

Figure A3.1.
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Also included in Table A3.1 are reproductive-value-

weighted allele frequencies, p* = cfpf + cmpm. These

describe the average frequency in males and females,

weighting each sex’s allele frequency by its reproduc-

tive value. The calculation for generation 1 is (2/

3) 9 0 + (1/3) 9 1 = 1/3; in generation 2, the calcula-

tion is (2/3) 9 (1/2) + (1/3) 9 0 = 1/3; and the fre-

quency remains at p* = 1/3 for every subsequent

generation. Thus, weighting each class’s allele fre-

quency by its reproductive value when calculating the

population frequency of the allele provides an alterna-

tive – but equivalent – means for removing the class

effect from allele frequency change (Fisher, 1930; Leh-

mann & Rousset, 2014), as discussed in Appendix 2.

This neutrality scenario is plotted in Figure A3.2 panel

(a). And panel (b) again reveals the fate of the A allele if

it enjoys a selective advantage of 100% in generation 1

(solid line) and thereafter behaves neutrally (broken

line): there is no change in the allele’s frequency,

because there is no response to natural selection (as

there is no genetic variation within either class) in gener-

ation 1. Panel (c) again reveals the fate of the allele if it

enjoys its selective advantage in generations 1 and 2

(solid line) and thereafter behaves neutrally (broken

line). In generation 2, there is genetic variation among

females, and consequently, the A allele is favoured by

selection. It increases in frequency in this generation

only and thereafter remains at its new frequency. Note

that this increase in frequency D2 is exactly equal to the

asymptotic progress made by the allele in Figure A3.1

panel (c). Thus, the reproductive value weighting recov-

ers the asymptotic fate of the allele, but describes this

effect immediately in the generation in which selection

has operated. That is, natural selection acting in the pres-

ent generation has gene frequency consequences for the

long-term future, and reproductive value weightings

provide a means for describing these future conse-

quences immediately in the present. Panel (d) illustrates

this principle for multiple generations of selection.
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