
NLProt: extracting protein names and sequences
from papers
Sven Mika1,4,* and Burkhard Rost1,2,3

1CUBIC and 2NorthEast Structural Genomics Consortium (NESG), Department of Biochemistry and Molecular
Biophysics, Columbia University, 650 West 168th Street BB217, New York, NY 10032, USA, 3Columbia University
Center for Computational Biology and Bioinformatics (C2B2), Russ Berrie Pavilion, 1150 Saint Nicholas Avenue,
New York, NY 10032, USA and 4Institute of Physical Biochemistry, University Witten/Herdecke,
Stockumer Strasse 10, 58448 Witten, Germany

Received February 12, 2004; Revised March 26, 2004; Accepted April 12, 2004

ABSTRACT

Automatically extracting protein names from the
literature and linking these names to the associated
entries in sequence databases is becoming increas-
ingly important for annotating biological databases.
NLProt is a novel system that combines dictionary-
and rule-based filtering with several support vector
machines (SVMs) to tag protein names in PubMed
abstracts. When considering partially tagged names
as errors, NLProt still reached a precision of 75% at a
recall of 76%. By many criteria our system out-
performed other tagging methods significantly; in
particular, it proved very reliable even for novel
names. Names encountered particularly frequently
in Drosophila, such as white, wing and bizarre, con-
stitute an obvious limitation of NLProt. Our method
is available both as an Internet server and as a pro-
gram for download (http://cubic.bioc.columbia.edu/
services/NLProt/). Input can be PubMed/MEDLINE
identifiers, authors, titles and journals, as well as
collections of abstracts, or entire papers.

INTRODUCTION

Importance of protein name extraction. The amount of bio-
logical information that is produced and stored daily in the form
of scientific articles continues to grow exponentially (1). Auto-
matic text analysis mines this wealth of information quickly.
One crucial task of automatic text mining is the extraction of
named entities such as protein and gene names from natural
language. This seemingly simple task is complicated by the
largely missing nomenclature rules and by names for proteins
and genes that resemble chemical compounds (Caeridin/
Cantharidin), cell cultures (CD4+-cells/CD4 protein) and

even non-scientific English words (white, wing, bizarre). To
make things even more challenging for text miners, protein
and gene names often resemble each other (myc-c gene/myc-c
protein). Previously developed methods were reported to have
reached F-measures (harmonic average between accuracy and
coverage) (Equation 1) �70% (2–6). However, very few of
these methods were tested on large, curated databases, and
very few successfully identify novel names. We developed a
novel method because one of our research problems required
the extraction of protein sequences from over 3 000 PubMed
abstracts. We found only one publicly available method to
solve this task and that one failed for our purposes. We ima-
gine that our novel method may help others as much as it
helped us to automatically create databases of e.g. protein–
protein interactions, gene-regulation patterns, protein function
and protein–disease associations.

Encoding textual information for machine-learning. A con-
secutive stretch of words such as a protein name can be repre-
sented as a vector in which each component codes for certain
words of the name. Given a pre-defined word list with five
words (A B C D E) and the hypothetical protein name ‘B C’,
we can represent this name through a position-unspecific vec-
tor by simply counting the occurrences of each word in the
name (one B and one C) f0,1,1,0,0}. We can also include
information of position and order by reserving the first five
slots (because the word list contains five words) for the first
word in the name (B), and generally the nth five slots for the
nth word. For our example, this position-specific vector is
f0,1,0,0,0, 0,0,1,0,0}. The context of a named entity, i.e.
the words surrounding the name, can be coded similarly.
We encoded contextual information in position-specific vec-
tors and used these to train the support vector machine
(SVM) (7) building blocks of our system. Finally, we linked
the differently trained SVM building blocks to reach maximal
performance (Methods and Results).

Related work. Three basic approaches tag protein names,
namely, rule-based (8–11), dictionary-based (3,4,12,13) and

*To whom correspondence should be addressed. Tel: +1 212 305 4018; Fax: +1 212 305 7932; Email: mika@cubic.bioc.columbia.edu

The online version of this article has been published under an open access model. Users are entitled to use, reproduce, disseminate, or display the open access
version of this article provided that: the original authorship is properly and fully attributed; the Journal and Oxford University Press are attributed as the original
place of publicationwith the correct citation details given; if an article is subsequently reproduced or disseminated not in its entirety but only in part or as a derivative
work this must be clearly indicated.

ª 2004, the authors

Nucleic Acids Research, Vol. 32, Web Server issue ª Oxford University Press 2004; all rights reserved

W634–W637 Nucleic Acids Research, 2004, Vol. 32, Web Server issue
DOI: 10.1093/nar/gkh427

http://cubic.bioc.columbia.edu/


machine-learning methods (5,6,14–16). Fukuda et al. (9)
suggested that even extremely simple rules can yield F� 96%
when tailored to a certain subject, such as 30 SH3-domain-
related articles. One rule-based system is Yapex (10), with an
estimated F = 67%. Krauthammer et al. (3) developed a
dictionary-based system that—after translating the input
text into nucleotide sequences—uses BLAST (a fast sequence
alignment method) (17) to find names in a database of protein
names. The authors considered partial matches as correct
(CD4 instead of CD4 kinase) and reported an F = 75% on
a set of two review articles. Tsuruoka and Tsujii (4) used
dynamic programming instead of BLAST. After additionally
filtering high-scoring examples through a simple Bayesian
classifier, they reported F = 70%. Hanisch et al. (13) used
a semi-automatically generated dictionary in combination
with a linear algorithm and reported an F = 93% without
specifying the dataset used for this estimate. One problem
with dictionary-based systems is the limitation to names
that are present in the dictionary. Collier et al. (6) and Morgan
et al. (5) reported levels of F = 73% and F = 75%, respectively,
by using Hidden Markov Models. The only publicly avail-
able method currently is GAPSCORE (16), which uses a
statistical model for gene and protein names by taking their
appearance, morphology and context into account; it is
reported to reach F = 58%.

METHODS AND RESULTS

We describe the details of the design and performance of
NLProt elsewhere (S. Mika and B. Rost, manuscript sub-
mitted). Here, we summarize those aspects that might help
users to optimally use our system.

Dictionaries. A dictionary with protein names can help in
linking each name to an associated database identifier. UniProt
and their pillars SWISS-PROT (a database of protein
sequences) and TrEMBL (translation of the EMBL nucleotide
database) (18,19) collect over one million protein sequences
along with the most commonly used names of these proteins
(DE field), and the names of related genes (GN field). We
generated a list of all SWISS-PROT + TrEMBL protein
and gene names and refer to this dictionary as the ‘protein
dictionary’. A second, built-in dictionary is our ‘common dic-
tionary’, which contains non-protein names and is based on the
online-version of the Merriam-Webster (MW) dictionary
(http://www.m-w.com). We expanded the common dictionary
through medical terms (http://cancerweb.ncl.ac.uk/omd/), spe-
cies names (http://us.expasy.org/cgi-bin/speclist), tissue types
(http://us.expasy.org/cgi-bin/lists?tisslist.txt) and minerals/
formulas (http://un2sg4.unige.ch/athena/mineral/min_lists. html).
We used this common dictionary for pre-filtering text. We also
derived a list of 130 typical endings (last 4 letters) for chemical
names (http://www.speclab.com). We used this list by remov-
ing all words with identical endings (*hyde and *enyl).

Algorithm. The NLProt algorithm starts by slicing the input
text into all possible samples of 9–13 consecutive tokens. We
consider words, numbers and punctuation characters except
for hyphens (-) and slashes (/) as tokens as long as they are
separated from each other by spaces. A sample is characterized
by holding 1–5 centre tokens (A–E in Figure 1) plus the pre-
ceding 4 tokens (1–4 in Figure 1) and the following 4 tokens

(5–8 in Figure 1). The tokens 1–8 are together referred to as the
‘environment’. Note that the environment always contains
8 tokens, whereas the number of tokens in the centre of a
sample can vary from 1 to 5. Each sample is then passed
through a pre-filtering procedure (a complete list of filtering
rules is on our website). The remaining samples are passed
through three differently specialized SVMs that were trained
on text represented as vectors (Introduction). SVM1 was
trained on the central words, SVM2 on the environments
and SVM3 on the overlap between the two. Each SVM inde-
pendently produces a score. A fourth score results from search-
ing for the central words in our protein name dictionary (= 0 if
not found). The last SVM in our system (SVM4) is trained to
find a ‘good compromise’ between these four initial scores.
We used an off-the-shelf package to implement the SVMs
[‘svm-light’ (20); http://www.joachims.org].

Performance measures. The commonly used measure for
the performance of name-taggers is the harmonic mean of
accuracy and coverage, called the F-measure (Equation 1).
Given the number of true positives (TP), false positives
(FP) and false negatives (FN), the values for accuracy, cover-
age and F-measure are defined through Equation 1:

ACC =
TP

TPþ FP
jCOV ¼ TP

TPþ FN
jF ¼ 2�ACC�COV

ACC + COV
: 1

Sustained high performance for many datasets. We tested
our method on different corpora that were not tagged by us
(data available from our website). Our program reached an
F-measure of 75% on the Yapex corpus, which was tagged by
Franzen et al. (10) for developing their protein name-tagger
(Yapex). The Yapex tagger only reached an F-measure of 67%
on the same corpus. For 10 000 sentences from the BioCreative
competition (http://www.mitre.org/public/biocreative/),
NLProt reached an F-score of 74%.

NLProt without dictionary and without redundancy in the
datasets reached 60%. The necessity of using unbiased,
redundancy-free datasets for evaluating predictors has become
common sense in the field of protein and DNA sequence
analysis. The problem was solved by finding measures for
sequence-similarity, such as percentage sequence-identity
(PIDE), BLAST E-values (17,21) and the HSSP (homology
derived structure of proteins) value (22,23). Here, any protein
name showing up in the training set, as well as in the test set,

Figure 1. Schema for text parsing. Two examples of text from a MEDLINE
abstract; we considered the one on the top as ‘true positive’ and the one at the
bottom as ‘true negative’ (no protein name). Letters and numbers in brackets
label words. A text sample will only count as ‘true positive’ if the centre
contains a complete protein name (no fragment). We divided samples
(continuous words) into two parts: the environment (before the name, words
1–4, and after the name, words 5–8) and the centre (words A–E). Note that the
environment always contains 8 tokens (words), whereas we varied the size of
the centre from 1 to 5.

Nucleic Acids Research, 2004, Vol. 32, Web Server issue W635

http://www.m-w.com
http://cancerweb.ncl.ac.uk/omd/
http://us.expasy.org/cgi-bin/speclist
http://us.expasy.org/cgi-bin/lists?tisslist.txt
http://un2sg4.unige.ch/athena/mineral/min_lists
http://www.speclab.com
http://www.joachims.org
http://www.mitre.org/public/biocreative/


would mislead any evaluation of the results of a machine-
learning-based name-tagger. However, this problem has
never been addressed in any of the papers on named entity
extraction. We reduced bias in the datasets using three rules.
First, we ignored names identical between the testing and
training sets (counted neither as true nor as false). Second,
we ignored multiple occurrences of the same name if correctly
identified (note that the same name may still contribute many
times to our false-negative or false-positive count). Third, in
order to test the success of our machine-learning component,
we removed all names in the test set from our protein dic-
tionary. Our system reached F = 60% on the Yapex corpus
applying these bias-reduction rules. Note that, by definition, all
dictionary-based methods would yield F = 0% on this test!
This lower limit of F = 60% was striking given that it applied
for situations in which all the names correctly identified were
neither in the dictionary nor in the training set; i.e. the system
had learned to correctly discover names it had never encoun-
tered. The only two papers that report results on data entirely
unknown to the system are a Hidden Markov Model (HMM)-
based tagger reaching F = 33% (5) and the system combining
dictionaries with BLAST searches reaching F = 4% for
unknown samples (3).

INPUT, OUTPUT AND OPTIONS

Input. Our server accepts practically any natural language text
in ASCII (American Standard Code for Information Inter-
change) format, i.e. simple text without formatting. For exam-
ple, the user can cut-and-paste from any word document or
web browser into the input field of our server (Figure 2).
NLProt will perform at its best only if the user feeds it
with full sentences from typical scientific publications (text
has to be in English). This is because the building blocks of
NLProt were trained within the context of protein names in
PubMed abstracts. The online version of NLProt accepts at
most 50 000 characters as input text (this corresponds to 2–3
papers or 20–40 abstracts). However, there are no restrictions
on the input size when using the command-line version of
NLProt. Our server can also be queried with a list of
PubMed/MEDLINE identifiers. In such a case, it will retrieve
the corresponding abstracts from PubMed/MEDLINE and
identify the protein names/sequences in these. A third input
option is to use our PubMed/MEDLINE search form from the
NLProt website. The program will then present a list with the
search results so that users can pick from this list those
abstracts in which they want to tag protein names.

Figure 2. Screen-shot of NLProt submission webpage. In the upper part, users choose output and processing options (output formats and databases to search). The
middle part shows a field forASCII text-input (natural language text or PubMed identifiers).As an alternative to these two types of input, the usermay submit requests
directly through a PubMed search form (lower part). NLProt needs to know which part of the input form to use (radio buttons ‘input type’).

W636 Nucleic Acids Research, 2004, Vol. 32, Web Server issue



Options and output. By default, the program shows only the
most likely database identifier (from SWISS-PROT or
TrEMBL) for each name. In this mode, NLProt additionally
scans each name found for surrounding words indicating a
certain organism and gives only the protein identifier that
fits both the protein and the species. However, users can
opt to display alternative, sub-optimal solutions, and they
can also specify a database (currently SWISS-PROT,
TrEMBL or both). A third option is the output format [either
plain text or HTML (Hyper Text Markup Language)-
formatted files]. The output file contains the tagged input
text and a list of all names identified by NLProt. If plain
text is chosen, the hni tag indicates protein names and the
h/ni tag terminates a given name. In HTML-formatted output,
names are indicated in red. For both output formats, a list is
generated which shows all the protein names found sorted by
their position in the text. This list contains information about
the final score (SVM4) of each name identified, the corres-
ponding organism, its exact text position and the database
identifier(s) that could be found in association with this
name. Finally, users can opt to receive a second file that con-
tains all sequences in FASTA format.

Download NLProt to run on your machine. NLProt is avail-
able as a command-line tool for Windows (DOS) and LINUX
machines. The programs are downloadable from our website
as zip files and simply need to be unpacked and installed on a
local machine by following simple steps, which are described
in the included README.txt files. Note that NLProt is rather
fast: tagging one PubMed abstract required �1–2 s, on aver-
age, when applying the system to 380 000 PubMed abstracts.

CONCLUSIONS

NLProt constitutes very novel territory for the research activ-
ities in our group. The features of the web server are heavily
biased by what we would have liked to do with such a method
when we looked for it. Our experience with this web server
will determine how future versions will look.

ACKNOWLEDGEMENTS

Thanks to Jinfeng Liu and Megan Restuccia (Columbia) for
computer assistance. Thanks to Amos Bairoch (SIB, Geneva),
Rolf Apweiler (EBI, Hinxton), Phil Bourne (San Diego
University) and their crews for maintaining excellent databases
and to all experimentalists who enabled this tool by making
their data publicly available. This work was supported by the
grants R01-GM63029-01 and R01-GM64633-01 from the
National Institute of Health (NIH) and 1-R01-LM07329-01
from the National Library of Medicine (NLM).

REFERENCES

1. Wheeler,D.L., Church,D.M., Edgar,R., Federhen,S., Helmberg,W.,
Madden,T.L., Pontius,J.U., Schuler,G.D., Schriml,L.M., Sequeira,E.

et al. (2004)Database resources of theNationalCenter forBiotechnology
Information: update. Nucleic Acids Res., 32, D35–D40.

2. Hou,W. and Chen,H. (2003) Enhancing performance of protein name
recognizers using collocation. ACL-03 Workshop on Natural Language
Processing in Biomedicine, Sapparo, Japan, pp. 25–32.

3. Krauthammer,M., Rzhetsky,A., Morozov,P. and Friedman,C. (2000)
Using BLAST for identifying gene and protein names in journal articles.
Gene, 259, 245–252.

4. Tsuruoka,Y. and Tsujii,J. (2003) Boosting precision and recall of
dictionary-based protein name recognition. ACL-03 Workshop on
Natural Language Processing in Biomedicine, Sapparo, Japan,
pp. 41–48.

5. Morgan,A., Hirschman,L., Yeh,A. and Colosimo,M. (2003) Gene
name extraction using FlyBase resources. ACL-03 Workshop on
Natural Language Processing in Biomedicine, Sapparo, Japan,
pp. 1–8.

6. Collier,N., Nobata,C. and Tsujii,J. (2000) Extracting the names of genes
and gene products with a Hidden Markov Model. Proc. COLING 2000,
201–207.

7. Cortes,C. andVapnik,V. (1995)SupportVectorNetworks.Mach. Learn.,
20, 273–297.

8. Proux,D., Rechenmann,F., Julliard,L., Pillet,V.V. and Jacq,B. (1998)
Detecting gene symbols and names in biological texts: A first step toward
pertinent information extraction. Genome Inform. Ser. Workshop
Genome Inform., 9, 72–80.

9. Fukuda,K., Tsunoda,T., Tamura,A. and Takagi,T. (1998) Toward
informationextraction: identifying proteinnames frombiological papers.
Pac. Symp. Biocomput., 707–718.

10. Franzen,K., Eriksson,G., Olsson,F., Asker,L., Liden,P. and Cöster,J.
(2002) Protein names and how to find them. Int. J. Med. Inf., 67, 49–61.

11. Narayanaswamy,M., Ravikumar,K.E. and Vijay-Shanker,K. (2003) A
biological named entity recognizer. Pac. Symp. Biocomput., 427–438.

12. Rindflesch,T.C., Bean,C.A. and Sneiderman,C.A. (2000) Argument
identification for arterial branching predications asserted in cardiac
catheterization reports. Proc. AMIA Symp., 704–708.

13. Hanisch,D., Fluck,J., Mevissen,H. and Zimmer,R. (2003) Playing
biology’s name game: identifying protein names in scientific text.
Pac. Symp. Biocomput., 403–414.

14. Tanabe,L. and Wilbur,W.J. (2002) Tagging gene and protein names in
biomedical text. Bioinformatics, 18, 1124–1132.

15. Weinstein,J.N., Scherf,U., Lee,J.K., Nishizuka,S., Gwadry,F.,
Bussey,A.K., Kim,S., Smith,L.H., Tanabe,L., Richman,S. et al. (2002)
The bioinformatics of microarray gene expression profiling. Cytometry,
47, 46–49.

16. Chang,J., Schutze,H. and Altman,R. (2004) GAPSCORE: finding
gene and protein names one word at a time. Bioinformatics, 20,
216–225.

17. Altschul,S., Madden,T., Shaffer,A., Zhang,J., Zhang,Z., Miller,W. and
Lipman,D. (1997) Gapped Blast and PSI-Blast: a new generation of
protein database search programs. Nucleic Acids Res., 25, 3389–3402.

18. Bairoch,A. and Apweiler,R. (2000) The Swiss-Prot protein sequence
database and its supplement TrEMBL in 2000. Nucleic Acids Res.,
28, 45–48.

19. Apweiler,R., Bairoch,A., Wu,C.H., Barker,W.C., Boeckmann,B.,
Ferro,S., Gasteiger,E., Huang,H., Lopez,R., Magrane,M. et al. (2004)
UniProt: the Universal Protein knowledgebase. Nucleic Acids Res., 32,
D115–D119.

20. Joachims,T. (1999)Making large-scaleSupportVectorMachine learning
practical. In Schoelkopf,B., Burges,C.J.C. and Smola,A.J. (eds),
Advances in Kernel Methods—Support Vector Learning. MIT-Press,
Cambridge MA, pp. 169–184.

21. Altschul,S. and Gish,W. (1996) Local alignment statistics. Methods
Enzymol., 266, 460–480.

22. Sander,C. and Schneider,R. (1991) Database of homology-derived
structures and the structural meaning of sequence alignments. Proteins,
9, 56–68.

23. Mika,S. and Rost,B. (2003) UniqueProt: creating representative protein
sequence sets. Nucleic Acids Res., 31, 3789–3791.

Nucleic Acids Research, 2004, Vol. 32, Web Server issue W637


