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To develop a population model describing the disease activity (DAS28)
time course in patients with early rheumatoid arthritis (RA) treated with
triple disease-modifying anti-rheumatic drug (DMARD) therapy
(methotrexate, sulfasalazine and hydroxychloroquine).

DAS28 was obtained in 263 patients with early RA from initiation of
therapy until 60 weeks. Using NONMEM®, base models (DAS28 vs. time) and
covariate influences were investigated for the population.

The best model was an exponential model of DAS28 vs. time that was
additive to baseline DAS28, with covariance between parameters, and a
combined residual error model. Age and patient smoking history were
covariates significantly affecting response to therapy. Population estimates
were baseline DAS28 (5.7), extent of change in DAS28 (—2.8) and the
half-life of disease activity (6.2 weeks; time to steady disease state achieved
within approximately 30 weeks). Older individuals exhibited more severe
baseline DAS28, described by a power function centred around 57 years
(baseline DAS28 for 40- and 70-year-old patients were 5.4 vs. 5.8,
respectively) and current smokers took longer to achieve a steady disease
state (approximately 50 weeks). There was considerable within-patient
random variability in DAS28 over time (empirical 90% Cl for DAS28 in a
population typical patient at 60 weeks: 1.8, 4.2 with median value of 2.8).

This is the first report of a disease activity model for early RA treated with

triple DMARD therapy. Smoking and age were identified as covariates.

© 2014 The British Pharmacological Society
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Introduction

Rheumatoid arthritis (RA) is a systemic inflammatory auto-
immune disease that affects approximately 1% of the
population. It is characterized by pain and swelling in mul-
tiple joints and, in the long term, can lead to joint destruc-
tion and reduced quality of life [1, 2]. The cornerstone of
medical management is the disease modifying anti-
rheumatic drugs (DMARDs) which, when initiated soon
after disease onset, reduce synovitis, joint swelling, pain
and systemic inflammation, thus limiting progressive joint
damage [2]. Early treatment employing combinations of
DMARDs, with frequent assessments and dosage adjust-
ments until a pre-defined low disease activity state has
been achieved (the treat-to-target approach) increases the
proportion of patients whose RA enters remission and has
the potential to minimize the proportion of patients pro-
gressing to expensive biological DMARDs [3]. One such
strategy is the use of triple DMARD therapy, a combination
of methotrexate, sulfasalazine and hydroxychloroquine,
which is very effective in reducing short and long term
disease activity [4, 5]. Despite these contemporary treat-
ment strategies, less than half the patients with early RA
who commence pharmacotherapy soon after disease
onset achieve remission, and consequently have ongoing
active disease and develop joint damage [2, 3].

Currently, dose adjustments using a treat-to-target
strategy are based on disease activity, which is commonly
measured by the 28-joint disease activity score (DAS28), a
composite measure that encompasses the 28-swollen
joint count, the 28-tender joint count, the erythrocyte
sedimentation rate (ESR) and the patient global assess-
ment (of disease activity; measured on a 100 mm visual
analogue scale) [6]. DAS28 is a continuous variable, but can
be used to categorize RA disease activity as remission
(DAS28 < 2.6), low (DAS28 2.6-3.2), moderate (DAS28 3.2-
5.1) or high (DAS28 > 5.1) disease activity [7]. Reducing
DAS28 in the short term has been shown to improve long
term outcomes by minimizing joint damage and maintain-
ing physical function [8].

A number of key factors that affect an individual’s
response to DMARD therapy have been identified [9], but
these have tended to be associated with a change in the
empirical assessment of disease activity at discrete time
points. The relationship between these factors and disease
activity over the time period in which the altered response
occurred is more difficult to study. Hence, there is limited
understanding of how disease (e.g. anti-cyclic citrullinated
peptide (anti-CCP) antibodies and rheumatoid factor
[RF]) and patient-related (genetic e.g. shared epitope [SE],
smoking status, body composition and age) factors sys-
tematically alter a patient’s response to DMARD therapy
and their subsequent extent or rate of change of disease
activity.

One approach to integrating the relationships between
triple DMARD therapy, intrinsic patient and disease-
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related factors and RA disease activity is to utilize
pharmacometric analyses [10, 11]. Holford et al. have pre-
viously described the time course of RA disease activity
when treated with a single DMARD that achieved phase Il
of development, and demonstrated how population
analyses can improve clinical understanding of a drug and
its impact on disease activity [12].

Given the relatively low remission rate with current
treatment strategies, it is possible that other triggers for
dose adjustment of DMARDs may result in improved short
and long term outcomes for RA patients. Development of
a population model that describes RA disease trajectory
(including the effect of covariates) is an important first step
in determining if utilizing these models via Bayes forecast-
ing may be valuable in facilitating informed decisions to
optimize pharmacotherapy earlier in RA. Using data col-
lected over 14 years from an inception cohort of patients
with early RA treated with treat-to-target triple therapy,
the aims of this study were to:

1 develop a population model to describe the time course
and between subject variability of RA disease activity (as
measured by DAS28) following initiation of DMARD
therapy,

2 identify patient factors affecting change in DAS28 in
response to this regimen and

3 quantify the influence of random variability on the meas-
urement of disease activity using DAS28.

Using this approach we hypothesized that a structural
model for DAS28 following initiation of triple DMARD
therapy, between-subject variability (BSV) in the DAS28
response and the magnitude of residual unexplained vari-
ability (RUV; comprised of intra-individual variability,
model misspecification, measurement error (of DAS28
components such as 28-tender and swollen joint counts),
etc.) in DAS28 could be constructed.

Methods

Data were obtained from 263 patients who attended the
Early Arthritis Clinic (EAC) at the Royal Adelaide Hospital
(RAH) for a total of 2080 visits between September 1998
and March 2012. Inclusion criteria required an age older
than 18 years, a diagnosis of RA according to the 1987
Revised ACR Criteria [13] and no prior use of DMARDs. The
baseline characteristics of the patient population are sum-
marized in Table 1.

Subjects were treated according to a standardized
DMARD regimen consisting of methotrexate (10 mg
week ™" with folic acid 0.5 mg day ™), sulfasalazine (500 mg
day ' increased by 500 mg day' week™ to 1000 mg twice
daily) and hydroxychloroquine (200 mg twice daily) as
described in Proudman et al. [3]. Intra-articular (i.a.; 40 to
80 mg methylprednisolone acetate) and intramuscular
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Table 1

Baseline summary of the patient population

Characteristic Value* Missing data (%)
DAS28 6 (1.8-8.5) 0
Follow-up 2 (0-60) 0
Age (years) 7 (18-86) 0
Weight (kg) 72 5(40.4-143.5) 22
BMI (kg m2) 27.4 (16.1-60.5) 22
Gender Female 187 (71%) 0
Smoking status Never 123 (47%) 5

Current 8 (18%)

Past 9 (30%)
Corticosteroidt Administration 125 (48%) 0
anti-CCP Positive 143 (55%) 2
Rheumatoid factor Positive 155 (59%) 0
Shared epitope Positive 159 (64%) 6

*Continuous variables are represented as median (minimum-maximum) and cat-
egorical variables are represented as the proportion of individuals with that char-
acteristic when excluding missing data. BMI = body mass index; anti-CCP =
anti-cyclic-citrullinated-peptide antibodies at diagnosis. t'Corticosteroid adminis-
tration’ consists of those individuals who received any dose of i.a., i.m. or oral
corticosteroids throughout the 60 week period. Doses administered were con-
verted to oral prednisolone equivalent doses with a mean of 0.93 mg day™".

(i.m.) corticosteroid injections (80 to 120 mg methyl-
prednisolone acetate) were administered at the physi-
cian’s discretion. Oral corticosteroids and non-steroidal
anti-inflammatory drugs (NSAIDs) were actively discour-
aged, but were used if deemed necessary by the treating
physician. DMARD doses were increased to a maximum of
25 mg week™ for methotrexate and 3000 mg day™' for
sulfasalazine in response to active disease in accordance
with predefined disease activity criteria [3]. Approval was
obtained from the RAH Human Research and Ethics Com-
mittee (RAH Protocol Number: 120618) and all patients
gave informed consent.

Patient data

At the initiation of triple therapy (regarded as ‘baseline’ in
this study), patient age, gender, height, weight, smoking
status, co-morbidities, full blood count, liver function,
serum creatinine, SE status, anti-CCP and RF titre were
recorded. Disease activity was assessed at baseline and at
each follow-up visit until 60 weeks after the initiation
of therapy by assessment of 28-tender joint count,
28-swollen joint count, ESR and patient global assessment,
from which DAS28 was calculated [14]. All corticosteroid
and NSAID use, and the DMARDs administered (and their
doses) were recorded at each clinic visit. Patients were also
questioned about side effects to DMARDs, and full blood
count and liver function were recorded at each visit. Visits
typically occurred every 3 to 6 weeks until disease was
stable, in which case visits occurred every 3 months. Before
the population modelling commenced, missing values for
continuous covariates were imputed with the median and
those for categorical covariates were imputed with the

mode of the available data using the R® Software (Version
2.15.2, 2012). The maximum amount of missing data was
22% for weight and BMI, with many covariates having no
missing data (Table 1).

Base model development

Population modelling was of the dependent variable,
DAS28, against the independent variable time since initia-
tion of DMARD therapy, and used NONMEM® Version VII
Level 2.0 (ICON Dev. Soln., Ellicott City, MD) [15] with
the Wings for NONMEM (Version 720) interface (http://
wfn.sourceforge.net/) and the G95 Fortran complier.
Population parameter estimation used the first order con-
ditional estimation with interaction (FOCE-I) method and
individual parameter estimates were obtained using the
Bayesian POSTHOC functionality of NONMEM®. The disease
activity model was based on DAS28 collected from the
initiation of triple DMARD therapy until 60 weeks of treat-
ment. A logit transform was employed to constrain the
predicted DAS28 values within a plausible range of 0 and
9.2 (corresponding to 28 swollen and tender joint counts,
100 mm on the visual analogue scale for patient global
assessment and 120 mm h™' ESR).

Structural models

To describe RA disease activity, structural models of linear,
quadratic, Ema, sigmoidal Enm., exponential or Weibull
functions of transformed DAS28 (DAS28,) vs. time (t), either
additive or proportionally additive to baseline DAS28
(BASE), were tested (model equations presented in Sup-
plementary Material).

Random effect models

Population parameter variability (PPV) was added to struc-
tural model parameters to account for different time
courses of DAS28 between subjects and was represented
using either a log normal (equation 1) or a normal (equa-
tion 2) distribution as appropriate:

Pj=95~e'” (1)

P, =65 +1; (2)

where P; was the individual value for the parameter in the
" individual, 8s was the population mean and 1; was an
independent random variable describing the variability in
0s among individuals with a mean of 0 and variance, ®°.
Equation 1 was used in candidate models where it was not
biologically or structurally plausible for the parameter to
be less than 0. Models with and without covariance for
random effects were also investigated using a variance-
covariance matrix and the OMEGA BLOCK functionality of
NONMEM®,
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A combined (proportional and additive) residual error
model, as described in equation 3, was tested. Propor-
tional and additive residual error models alone were also
considered.

LGT3=DAS28, - (1+&, ) + &y, 3)

where LGT3 was the observed DAS28 at time, t, in the j®
individual in the logit domain, DAS28; was the model pre-
dicted DAS28, and €gand €;, were normally distributed
error terms with means of 0 and variances of 6,? and &,* for
proportional and additive error terms, respectively.

Model selection

Model selection was based on a composite of goodness-
of-fit criteria including numeric and graphical tests. The
Akaike Information Criterion (AIC) was used to compare
non-nested models and candidate models with lower AIC
values were ranked higher for base model selection. Can-
didate base models were considered for further analysis if
standard errors of 0s were less than 30% and ns were less
than 50%. The validity of inferring individual parameter
estimates was assessed by m-shrinkages, as provided by
NONMEM®, for each of the population parameters. Diag-
nostic plots used to assess model performance included
the distribution density of observed vs. individual pre-
dicted (IPRE) DAS28 at 0, 26, and 52 weeks, observed
vs. population predicted (PRED) or IPRE, conditional
weighted residuals (CWRES) vs. weeks or PRED, distribu-
tion density of residuals and quantile—quantile (QQ) plot
of residuals.

Covariate analyses

Covariates that were highly correlated with weight (e.g.
BSA and BMI), serum creatinine (as a marker of renal func-
tion, e.g. creatinine clearance) or constituents of the
DAS28 (e.g. tender and swollen joint counts, ESR and
patient assessment of disease activity), were judged as
surrogate markers, and therefore were excluded from
covariate analyses. There was also a very low frequency of
ethnicities other than Caucasian (91%). Therefore with a
low power to detect covariate effects, ethnicity was not
tested. Resultant patient characteristics to be investigated
included DMARD doses, use of corticosteroids (i.e. time
points where patients received ia. or im. cortico-
steroids, patients who received no, local or systemic
corticosteroids), use of alternative management (i.e. time
points where patients received leflunomide or gold salts),
gender, presence of RF and anti-CCP antibodies at diagno-
sis, and carriage of the SE, smoking status, weight, height
and age.

The effect of a categorical covariate on a parameter
was represented as a binary relationship. For example, the
effect of gender on baseline disease severity (BASE) was
described as:
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where SEXCOV had a value of 0 for males and 1 for females.
Therefore, BASE; had the value of BASEqce for males and
BASEpop(1 + Bsex) for females, Osex was the estimable
parameter for the effect of female gender on BASE and
BASE was normally distributed across the population.

The effect of a continuous covariate on a parameter
was represented as a power function referenced to the
median of the observed data. For example, the effect of
weight (WT) on maximum change in disease severity (WET)
was described as:

WT,; \ ™

where WET4 was the estimate for the change in disease
severity for the j" individual at time t, WETpop Was the
population mean, WT;; was the weight calculated for the j™
individual at time t, WTS was the median weight value for
the observed data, Ouwr was the estimable parameter for
the effect of weight on WE1 and WE1 was normally distrib-
uted across the population.

The effects of drug doses on a parameter were repre-
sented as a linear function:

WE1tj = WE1pop + GMTX . MTXU + T]J (6)

where WET4 was the estimate for the change in disease
severity for the j™ individual at time t, WETpop Was the
population mean, MTX; was the methotrexate dose for the
j™individual at time t, Ourx was the estimable parameter for
the effect of methotrexate dose on WE1 and WE1 was nor-
mally distributed across the population.

All covariates were empirically tested on all param-
eters. The effect of incorporating an additional covariate
parameter compared with the base model was assessed by
the likelihood ratio test (LRT). The covariate model was
considered to be significantly better than the base model
if the P value of the LRT was less than 0.01. Candidate
covariates also needed to satisfy additional criteria; preci-
sion error of the estimable parameter for the covariate less
than 51.2%, the addition of the covariate on the parameter
reduced the PPV of the parameter, and improved simula-
tion performance of the model as judged by a visual pre-
dictive check (VPC) of 1000 simulations facetted for
covariate values/categories. All covariates shown to be sig-
nificant from univariate analyses were then arranged into
all possible combinations to be tested in multivariate
analyses. The total number of covariate combinations was
limited if significant covariates had a similar influence on
the model. For example, if corticosteroid use represented
as the clinic visit where i.m. corticosteroids were adminis-
tered and corticosteroid use represented as at least one
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dose of systemic corticosteroids (i.m. or oral) within the 60
week period were both found to affect the BASE param-
eter significantly, the combination of these two covariates
was not tested. Of the possible tested combinations and
previous univariate models, the model with the lowest P
value (as well as fulfilling the above described selection
criteria) compared with the base model was the final
model.

Model evaluation

The simulation performance of key models was evaluated
by prediction-corrected VPCs using the final parameter
estimates to simulate 1000 datasets based on the
patient data in the index dataset. An assessment of
autocorrelation of residuals was also performed in order to
examine whether there were systematic changes in DAS28
not captured by the model, for example a non-random
cyclical fluctuation of symptoms.

Simulations

The final model was used to demonstrate the impact of
RUV in the DAS28. A simulation was performed for the
population typical patient to compare the range of possi-
ble DAS28 calculated at a given clinic visit (as nominated
by DV in NONMEM®) with the underlying disease state as
predicted by the model (PRED). To remove the impact of
BSV, PPV terms in the final model were fixed to zero. This
simulation model was then used to simulate the time
course of DAS28 for 2000 population typical patients once
a week for 60 weeks. The population predicted DAS28
(PRED) and empirical 90% Cls of simulated DV DAS28 were
then determined.

Results

Characteristics of the study population

The study population consisted of 263 subjects (Table 1).
The median baseline DAS28 was 5.6, indicating severe
disease activity. On average, the study population experi-
enced a decrease in DAS28 of approximately 2 and steady
disease state was typically achieved after approximately
25 weeks of triple DMARD therapy (Figure 1). The median
number of DAS28 observations collected from each indi-
vidual was 8, ranging from 1 observation at the initiation of
triple therapy to 15 across the 60 week period. The median
age at the initiation of triple therapy was 57 years and the
age range was 18 to 86 years.

Model development

The best structural model obtained the lowest AIC value of
1951 and was an exponential function additive to baseline
DAS28 (equation 7), with covariance between all random
parameters (PPV for BASE, EX1 and EX2) and a combined
residual error model.

DAS28, =BASE +EX1-(1—e ©21) -

where DAS28; represents the DAS28 at time, t, BASE is
baseline DAS28, EX1 is the maximum change in DAS28
and EX2, is the first order rate constant for change in
DAS28.

PPV in BASE and EX1 parameters was normally distrib-
uted, whereas PPV for EX2 was log normally distributed. In
all models tested, the change in DAS28 was best described
as additive to baseline DAS28. The best linear and quad-
ratic structural models provided inferior fits to the data
than the best exponential model and demonstrated
increases in the AIC by 434 and 162 units, respectively. Emax
and sigmoidal Ern.x models were an improvement on linear
and quadratic models. However they still exhibited a
poorer fit compared with the best exponential model (12 <
AAIC < 26). Weibull models were superior to linear, quad-
ratic, Emax and sigmoidal En.x models, but collapsed to an
exponential model as WE3 tended to less than or equal to
1. While Weibull models were able to incorporate a delay
in DMARD effect at the initiation of triple therapy, models
with this structure estimated the WE3 parameter poorly
(precision error of 79%).

For the covariate search, all univariate models were an
improvement over the base model as indicated by lower
minimum objective function values. However, only 18
proved to be significant improvements at the P < 0.01
level, and of those, only seven fulfilled the additional
model selection criteria.

The univariate analyses revealed that the effect of age
and administration of i.m. corticosteroids on the BASE
parameter significantly improved the fit of the model
(P < 0.0001). The addition of systemic corticosteroid use
(patients who received either i.m. or oral corticosteroids at
any time throughout the 60 week period) to the EX1
parameter also showed a significant improvement of the
model to the observed data (P=0.003). It also showed that
smoking status had a substantial effect on two of the
population parameters of the model (BASE represented as
never, current or past smoker [P=0.009] and EX2 as never/
past versus current smoker [P = 0.002]).

The final model (equation 8, Table 2) included age and
i.m. corticosteroid administration on BASE, any systemic
corticosteroid use throughout the 60 week period affect-
ing the maximum change in DAS28 (EX1), and smoking
status affecting the rate (EX2) of this change (AAIC by —53).

04
BASE =0, (%) -(1+CSIM-05) + 1,

EX1=0, - (1+ CSSYS-6)+ 1, )

EX2=0.0001+6; - (1+ SMOKING-6;)-e™
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Table 2

Parameter values for the final model

Parameter Description Estimate (95% Cl) Shrinkage (%)
Population parameter
BASE 01 Baseline DAS28 0.472 (0.392, 0.552)
04 Effect of age 0.672 (0.406, 0.938)
05 Effect of i.m. corticosteroid administration on BASE 0.737 (0.379, 1.095)
EX1 0, ADAS28 -1.28 (-1.17, -1.39)
05 Effect of systemic corticosteroids on EX1 (during 60 week period) —0.237 (-0.079, —0.394)
EX2 03 Rate constant, week™! 0.111 (0.093, 0.129)
67 Effect of currently smoking on EX2 —0.398 (-0.145, —-0.651)
Population parameter variability
BASE (n1) 1 SD 0.492 (0.348, 0.636) 133
EX1 (m2) [0)) SD 0.740 (0.536, 0.945) 14.4
EX2 (m3) 3 % CV 86.1 (42.1, 130) 30.9
Covariance
01, 62 1,2 Covariance between BASE and EX1 -0.376
01, 03 ®13 Covariance between BASE and EX2 -0.137
02, 63 3 Covariance between EX1 and EX2 0.651
Combined residual error
Proportional error o1 % CV 18.4 (0, 37.5)
Additive error [ DAS28 units (SD) 0.327 (0.249, 0.405)

where CSIM = 1 and BASE = 0.820 at times where the
patient received i.m. corticosteroids and CSIM = 0 and
BASE = 0.472 if not (for age 57 years), where CSSYS =1
and EX1 = - 0.977 if the patient received systemic (i.m./
oral) corticosteroids at any time point throughout the 60
week period and CSSYS =0 and EX1 =-1.28 for if they did
not, where SMOKING = 1 and EX2 = 0.067 for current
smokers and SMOKING =0 and EX2 =0.111 for never/past
smokers.

Description of the final model

The mean population estimates of structural para-
meters were a baseline DAS28 of 5.7, extent of response
to DMARD therapy was a decrease in DAS28 of 2.8
from the initiation of therapy up until 60 weeks after,
and the first order rate constant for decline in disease
activity was 0.111 week”. The final model demon-
strated an acceptable description of the data, as
assessed by key diagnostic plots (Figure 2). The final
parameter values for the model are given in Table 2
and were estimated with acceptable precision. In
summary, DAS28 was found to decline exponentially over
time with a typical population half-life of 6.2 weeks (10.4
weeks for current smokers). DAS28 was found to be cor-
related with higher disease activity at observations where
i.m. corticosteroids were administered, such that in a
population typical patient (age 57 years, never smoked)
who received i.m. corticosteroids at baseline, DAS28
was 6.4 compared with 5.7 in a population typical patient
who did not receive i.m. corticosteroids at baseline.
Systemic corticosteroid use was associated with a

782 [ 79:5 / Br] Clin Pharmacol
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Figure 1

Observed data. Blue circles represent the DAS28 observed in the study
population, the red line is a loess-smoothed line and the grey ribbon
shows the 95% confidence intervals of the smoothed line

higher final DAS28 compared with not using systemic
corticosteroids (ADAS28 —2.2 vs. —2.8, respectively). There
was high BSV in all model parameters and RUV was also
very high (Table 2).

Model evaluation

The model showed acceptable predictive performance
when assessed by prediction-corrected visual predictive
checks (Figure 3).
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Diagnostic plots for the final model. (A) Observed DAS28 vs. population predicted DAS28. Data should be evenly distributed about the line of identity,
indicating no major bias in the population component of the model. (B) Observed DAS28 vs. individual predicted DAS28. Data should be evenly distributed
about the line of identity, indicating an appropriate covariate model could be found for each individual. (C) Conditional weighted residuals vs. weeks since
initiation of therapy. Data should be evenly distributed about 0, indicating no major bias in the structural model. (D) Conditional weighted residuals vs. the
population predicted DAS28. Data should be evenly distributed about 0, indicating no major bias in the residual error model. The black line is a line with

slope of 1 or 0, and the red line is a loess-smoothed line for the data

Impact of residual unexplained variability in
measured DAS28

The residuals for the final model showed no evidence of
autocorrelation (Figure 4), suggesting that RUV in DAS28
was not due to a failure of the model to capture a non-
random cyclical fluctuation of disease. The impact of RUV
alone on DAS28 for the population typical patient’s
disease time course is shown in Figure 5. It is most notable
that at any time the empirical 90% Cls of DAS28 typically

span 2 units, allowing for conclusions of ‘remission’ or
‘severe’ disease activity despite the true underlying time
course of improvement in disease status.

Discussion

For the first time, a model has been developed that accu-
rately describes the time course of RA disease activity over

Br ] Clin Pharmacol / 79:5 / 783
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Figure 3

Prediction-corrected visual predictive check of the final model. The
prediction-corrected observed data are represented by blue circles, a red
solid line (median), and the red dashed lines (5" and 95" percentiles). The
prediction-corrected simulated DAS28 are represented by the red shaded
area (empirical 95% confidence interval of median) and the blue shaded
areas (empirical 95% confidence intervals of 5™ and 95" percentiles).
Statistical data were binned into 10 groups to calculate the median and
5% and 95™ percentiles without the lines being influenced by areas of
sparse data. The model predictions overlay the observed data with good
agreement, and show the progressive drop in DAS28 from the baseline
value to a new treated level
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Figure 4

Autocorrelation of residuals. An autocorrelation plot of the conditional
weighted residuals (CWRES) for the final model, where the residuals are
treated as a discrete time series (i.e. consecutive observations). The plot
shows the similarity between CWRES observations as a function of the
time lag between them. The horizontal axis represents the lag between
two observed CWRES values (e.g. a lag of 5 indicates the comparison of
two residuals 5 observations apart in time). The vertical axis is the
autocorrelation for all residuals with a given lag, with 1 and —1 indicating
perfect correlation (a high chance of a repeating pattern) and 0 indicating
no repeating pattern. The autocorrelation was minor for all non-zero lags
(0 lag indicating correlation of an observation with itself)
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Figure 5

Impact of RUV on measured DAS28. Simulation of the time course of
DAS28 for 2000 population typical patients (57 years old, non-smoker,
and did not receive any i.m. or oral corticosteroids during the 60 week
period) for 60 weeks. The PRED DAS28 time course is represented by the
red line and empirical 90% confidence intervals of simulated DAS28 by
the grey shaded area

the first 12 months in a population of patients treated with
triple DMARD therapy. It was found that the DAS28 in a
typical patient declined in an exponential manner to a new
final treated value, but that BSV in baseline disease activity
and the extent and rate of response to triple therapy
was high. Variability in the DAS28 time course was, to
some extent, explained by age, smoking status and
corticosteroid therapy. Development of the model
revealed several important properties of the disease’s
response to triple DMARD therapy.

Relationship of rate of response to

baseline DAS28

It has been proposed that increased RA severity at baseline
results in reduced ability to achieve low disease activity
after 12 months of DMARD therapy [16]. This analysis indi-
cated that models that incorporated baseline DAS28 to
affect the rate and extent of disease activity (so called ‘pro-
portionally additive’) failed to describe adequately base-
line DAS28 when compared with models that did not
consider baseline DAS28 as an influence of disease activity
(‘additive’ models). As such, the extent and rate of change
in disease activity appeared to be independent of baseline
disease severity. Due to the greater decrease required to
achieve low disease activity after 12 months of triple
DMARD therapy, individuals with higher baseline DAS28
were less likely to achieve such a goal.

Influence of covariates
Covariate analyses revealed that age, corticosteroid use
and smoking status were factors that significantly
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improved the fit of the model to the observed data. Older
age has previously been shown to be a significant predic-
tor of failing to achieve remission at 6 months [17]. The
effect of age revealed that individuals older than 57 years
(population median age) had more severe disease activity
at baseline rather than a difference in the rate of
change in disease activity. The effect of receiving i.m.
corticosteroids on BASE was the most significant factor
that improved the fit of the model to the observed data.
l.m. corticosteroids, when added to the BASE parameter,
allowed for a vertical shift in disease activity at times they
were administered, i.e. bouts of higher disease activity,
such as flare-ups, in the disease trajectory. In addition to
effects on BASE, administration of systemic (i.e. i.m.
or oral) corticosteroids on the EX1 parameter further
improved the fit of the model and allowed for the model
to describe the time course of those who obtained an
insufficient response that required concomitant systemic
corticosteroid therapy. Alternatively, corticosteroids are
associated with improved responses in RA [18] and there-
fore it is possible that individuals who received them
obtained a different response to triple DMARD therapy
compared with those who did not. However, within our
cohort, single dose i.m. corticosteroids and low dose oral
corticosteroids were usually given to individuals with
high disease activity, so the improved ability of the model
to describe disease activity may simply be reflecting this
practice.

The covariate analyses also showed that current
smokers had an impaired rate of response to triple DMARD
therapy when compared with non- and past-smokers. The
effects of smoking upon response is consistent with prior
findings, showing that current smokers achieve dimin-
ished responses or are less likely to achieve remission
when compared with current non-smokers [19, 20]. The
model identified that current smokers achieved 60% of the
rate of change in DAS28 of non- and past-smokers (effect
of current smoking on EX2 —0.398).

Whilst age and smoking status were identified as
covariates and were consistent with previous findings,
other documented factors were not identified through this
modelling analysis. The presence of the SE, anti-CCP anti-
bodies, RF and female gender are documented as predic-
tors of poorer response [17, 21, 22]. However, when added
on their own, none was considered to be a significant
contributor to improving the fit of the model. These differ-
ences could be attributable to differences in the conserva-
tive modelling approach used compared with a traditional
statistical approach, or the distribution of characteristics
within the population and different treatment regimen
used. In addition, many of these markers, such as SE,
smoking status and anti-CCP antibodies are highly related
[23].

The treatment regimen utilized a treat-to-target proto-
col where drug doses were increased in response to poor
disease control. As expected, drug doses were not identi-

fied as covariates and their exclusion does not imply that
increasing drug doses is ineffective at reducing disease
activity. Titrating drug doses based on disease severity
could explain why gender and RF and/or anti-CCP positive
disease did not significantly affect disease activity, as their
effects were accounted for by higher doses. In addition,
despite a treat-to-target protocol, it could be considered
that the impact of smoking and age could not be over-
come by dose titration.

Potential clinical implications

Pharmaceutical benefits scheme and progression to bio-
logical agents The potential clinical implications of the
model developed here are illustrated by the current
regimen for public funding of DMARD therapy in Australia.
Given the expense associated with biological DMARDs, the
Australian Pharmaceutical Benefits Scheme (PBS) has strict
criteria that must be fulfilled prior to approving a financial
subsidy to patients using these agents. For example, the
patient must complete an adequate trial of conventional
agents, which is defined as the use of conventional
DMARD:s for at least 6 months, where at least 3 months
must be combination therapy with methotrexate (at a
weekly dose of at least 20mg) and one of either
hydroxychloroquine, sulfasalazine or leflunomide [24].
Currently there is no mechanism to estimate whether an
individual has achieved their maximum response to con-
ventional DMARD therapy and therefore no longer receiv-
ing additional benefit to warrant regimen adjustment at 6
months. In individuals achieving a steady disease state
(where no further benefits of therapy are gained) prior to 6
months, but are experiencing active RA, there is a risk of
under suppression of inflammation and joint erosion
whilst waiting to meet the requirements for the PBS
subsidy of biological agents. Conversely, those who
achieve maximum response later than 6 months may fulfil
the PBS requirements at this time, but since they have not
experienced the full benefit from the conventional agents,
the expense of biological agents may be unnecessary.
Therefore the question arises, is 6 months an adequate
guideline with regards to adding expensive biological
DMARD:s to a patient’s regimen?

Residual unexplained variability of DAS28 Although a
relatively high degree of RUV in DAS28 was observed
(Table 2, Figure 5), this is likely to be characteristic of actual
fluctuations in RA disease activity and the DAS28 itself, as it
includes subjective measurements and non-RA-specific
assessments which can be influenced by different clini-
cians and intercurrent ilinesses at discrete time points [25].
It is important to note that the large residual variability is
not likely to be due to the model failing to capture non-
random cyclical fluctuations of disease activity, as demon-
strated by a lack of autocorrelation of the residuals
(Figure 4). The model developed here, however, may
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provide the basis of a tool with which these issues can be
more formally investigated. Long term outcomes in RA
have been significantly improved by regular measurement
of disease activity scores such as the DAS28, and intensifi-
cation of therapy if pre-defined treatment targets are not
met [26]. As shown in Figure 5, DAS28 decreases between
clinic visits in the population typical patient, but due to the
high residual variability, differences in measured DAS28
between visits can range from remission to significant
worsening, despite only minor changes in the underlying
disease trajectory. These results suggest that, in the
context of this high residual variability, the true underlying
time course of disease activity (and hence any decision to
modify treatment) may be better inferred from multiple
observations of DAS28 rather than a single current DAS28
observation. Whilst a clinician can map the trend of a
patient’s disease status, this requires a degree of clinical
judgement, and the residual variability demonstrated in
this study is sufficiently large to suggest that there is a
potential risk of basing decisions on the ‘noise’ in DAS28
rather than the true changes in disease status. Quantifying
the magnitude of this variability may have important
implications for the interpretation of DAS28 in the clinic,
and it is possible that the use of multiple DAS28 measure-
ments as the basis upon which to make changes to treat-
ment could result in additional benefits over and above
those already achieved by the use of disease activity
scores.

Limitations and future directions

Pharmacometric models and Bayesian forecasting may
potentially provide a method for supporting the decision
making process regarding dose adjustment and com-
bination treatment strategies. This process takes into
account prior information from a model and individual
observed assessments of disease activity to guide new
estimates of the time course of disease activity for the
patient and accounts for the inherent RUV [27]. However, a
limitation of the application of the disease activity model is
its generalizability to other early RA patient populations.
This includes the treatment strategy employed, as the use
of triple DMARD therapy is relatively intense compared
with other regimens such as single agent methotrexate,
and the strict treat-to-target protocol used. The model was
not validated by an external dataset, and this will be
required to determine whether it is representative of a
different early RA patient population or treatment with a
different DMARD protocol.

Furthermore, the model in its present form is not
be suitable for forecasting disease activity. The reasons
are predominantly due to the representation of
corticosteroids not being predictive of response (rather
explanatory) to triple DMARD therapy and the displayed
high RUV would add noise to a forecast. Rather, the model
provides a good description of the time course of DAS28 in
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a cohort of early RA patients treated with triple DMARD
therapy using a treat-to-target strategy.

Understanding the model’s limitations with respect to
direct clinical application has opened investigation to
identifying RA disease activity measures that are associ-
ated with less noise and developing a RA disease activity
model with improved predictive capabilities that can ulti-
mately be used to conduct simulation studies and fore-
cast disease activity in a clinical setting via Bayesian
methods.

In conclusion the population modelling process has
identified patient factors (age and smoking status) corre-
lated with differences in observed response that are con-
sistent with previous literature, whilst other known ones
(such as SE, anti-CCP antibodies and RF) were not. It is
anticipated that informed decisions using a model-based
analysis might eventually allow clinicians to optimize phar-
macotherapy at more appropriate times, which will subse-
quently reduce the risk of joint erosions and increase the
quality of life for RA patients.
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