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Abstract
The topological organization underlying brain networks has been extensively investigated

using resting-state fMRI, focusing on the low frequency band from 0.01 to 0.1 Hz. However,

the frequency specificities regarding the corresponding brain networks remain largely un-

clear. In the current study, a data-driven method named complementary ensemble empirical

mode decomposition (CEEMD) was introduced to separate the time series of each voxel

into several intrinsic oscillation rhythms with distinct frequency bands. Our data indicated

that the whole brain BOLD signals could be automatically divided into five specific frequen-

cy bands. After applying the CEEMDmethod, the topological patterns of these five tempo-

rally correlated networks were analyzed. The results showed that global topological

properties, including the network weighted degree, network efficiency, mean characteristic

path length and clustering coefficient, were observed to be most prominent in the ultra-low

frequency bands from 0 to 0.015 Hz. Moreover, the saliency of small-world architecture

demonstrated frequency-density dependency. Compared to the empirical mode decompo-

sition method (EMD), CEEMD could effectively eliminate the mode-mixing effects. Addition-

ally, the robustness of CEEMD was validated by the similar results derived from a split-half

analysis and a conventional frequency division method using the rectangular window band-

pass filter. Our findings suggest that CEEMD is a more effective method for extracting the

intrinsic oscillation rhythms embedded in the BOLD signals than EMD. The application of

CEEMD in fMRI data analysis will provide in-depth insight in investigations of frequency

specific topological patterns of the dynamic brain networks.

Introduction
Human brain is considered as a large-scale complex network endowed with a small-world ar-
chitecture which is characterized by a high-level local connectedness and an exceedingly short
path length linking individual network nodes [1]. A quantitative analysis of the complex brain
networks, largely based on graph theory analysis, is typically achieved through all major mag-
netic resonance imaging (MRI) modalities and neurophysiological data from both functional
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and structural perspectives [2]. Under this framework, resting-state functional MRI (fMRI), a
non-invasive way of measuring the spontaneous neural activities in the human brain, has been
widely applied to investigate the fundamental topological organization of brain networks [3].
In addition, recent studies based on resting-state fMRI [4–8] have revealed the associations be-
tween the topological organization of brain networks and cognitive performance or psychiatric
brain disorders respectively, which suggest that resting-state fMRI may provide new ap-
proaches to assess brain network properties in both healthy and diseased brains.

Notably, most previous studies related to brain networks [1, 3] have concentrated on the
conventional frequency band (0.01–0.1 Hz) derived from resting-state fMRI. It is demonstrated
that frequency specificities of functional connectivity (FC) [9, 10], regional homogeneity
(ReHo) [11], amplitude of low frequency fluctuations (ALFF) [12] or energy [13, 14] existed
extensively within the fluctuations of blood oxygenation level-dependent (BOLD) signals.
Lacking the physiological explanation and definition of various frequency bands in BOLD sig-
nals, however, the distinct spatial distribution of fluctuations in various frequency ranges still
indicate the non-trivial potential application of mapping the human brain from the perspective
of frequency based on resting-state fMRI.

Accompanied by increasing attention of frequency specificities in BOLD signals, partial re-
sults in previous studies [15–18] have suggested that the distinct or invariant topological pat-
terns are distributed in various frequency intervals. The frequency specificities in small world
networks have been delineated in the previous studies [15–18], however, the detailed frequency
dependent topological patterns remain concealed. Particularly, the global but not regional to-
pological patterns are investigated across different frequency bands (Salvador et al. [18],
Achard et al.[15] and Supekar et al.[17]); and the maximal frequency band applied is no more
than 0.073 Hz (Liang et al.[16]).

In the past decade, a number of studies have attempted to delineate the frequency specifici-
ties of BOLD signals using Wavelet or Fourier transformation or simple ordinary band-pass fil-
ter [10, 13, 15]. However, the inherent assumptions of linearity in a Wavelet analysis or
linearity and stationarity in a Fourier analysis may impose limitations on the findings, since
the assumptions have not been verified in the BOLD time series [19]. Moreover, the full band
width has been decomposed into small bands arbitrarily and without rigorous justifications
[11]. On the other hand, we have previously [11] introduced a data driven method named em-
pirical mode decomposition (EMD) (Huang et al. [20]) to adaptively decompose the whole
brain BOLD time series into several intrinsic mode functions (IMFs). A distinctive frequency
range is occupied by each IMF component: the highest frequency range is occupied by the first
IMF, and the lowest frequency interval by the last IMF, with the remaining ones in between re-
spectively. EMD can overcome the limitations of the Wavelet or Fourier transformation, since
it implies no assumption of linearity, stationarity, or recourse to any prior rigid chosen band-
pass filter [20]. However, the phenomenon of mode-mixing induced by intermittence signals is
a troublesome issue in EMD [21]. To overcome such deficit, the improved data driven method
named complementary ensemble empirical mode decomposition (CEEMD) was proposed in
the current study [22]. CEEMD is modified from a noise-assisted ensemble empirical mode de-
composition (EEMD) [21], which can resolve the mode-mixing problem and effectively elimi-
nate the residue noise in each IMF [21, 22].

To investigate the frequency characteristics of resting state brain networks, CEEMD was ap-
plied in a voxel-wise fashion to adaptively decompose the time series of each voxel into several
IMFs. It is hypothesized that CEEMDmay perform better in the elimination of the mode-mix-
ing effect emerged in EMD algorithm. Thereafter, both the global and nodal topological con-
nectivity properties were investigated to reveal the organization of frequency specific brain
networks. Furthermore, the reliability of CEEMD was verified using a split-half analysis to test
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the reproducibility of the results; and a conventional ideal rectangular window band-pass filter
was applied to divide the BOLD oscillations into the same frequency bins defined by CEEMD.
Comparison was performed between the two methods.

Materials and Methods

MRI Data Acquisition
The current research was approved by the Institutional Review Board of Peking University.
MRI data was obtained from an open source website (http://fcon_1000.projects.nitrc.org/
fcpClassic/FcpTable.html) provided by the ‘1000 Functional Connectomes’ Project. Data (122
females, 76 males, age range: 18–26 years old) was collected by Beijing Normal University and
analyzed in the current study. All of the subjects had no history of psychiatric disorders, or any
neurological illness. Informed written consent forms were obtained from each participant prior
to scanning in accordance with Institutional Review Board guidelines of Beijing Normal Uni-
versity and in compliance with the Declaration of Helsinki.

All data were acquired on a 3.0Tesla MR system (Siemens 3T Trio). All subjects were re-
quired to rest with their eyes closed, with no particular thoughts during the scan and they were
asked not to fall asleep. A gradient echo T2�-weighted EPI sequence was applied to acquire
resting state functional images with the following parameters: TR = 2000 ms, TE = 30 ms, flip
angle = 80°; matrix size = 64 × 64, FOV = 240 × 240 mm2, which gave an in-plane resolution of
3.75 mm × 3.75 mm, 51 axial slices (3.5 mm thickness with a gap of 1.2 mm). The scan of rest-
ing state fMRI lasted 450 seconds, covering 225 brain volumes. In addition, a T1-weighted
three-dimensional magnetization prepared rapid gradient echo (MPRAGE) sequence was ac-
quired that covered the entire brain, with the following parameters: 128 slices, TR = 2530 ms,
TE = 3.39 ms, flip angle = 7°, inversion time = 1100 ms, FOV = 256 × 256 mm and in-plane
resolution = 256 × 256.

Image Preprocessing
Images were analyzed by using both the FMRIB Software Library (FSL: http://www.fmrib.ox.
ac.uk/fsl, version 5.0) and Analysis of Functional NeuroImaging (AFNI: http://afni.nimh.nih.
gov/afni, version 2011_12_21_1014). The main preprocessing included the following steps: (1)
the removal of the first 10 time points for the signal steady state and for the adaptation of the
participants to the environment (AFNI: 3dcalc); (2) the correction for the difference in image
acquisition time among the slices (AFNI: 3dTshift) and head motion during data acquisition
(AFNI: 3dvolreg) on the remaining 215 volumes of the functional BOLD images. Hence, the
mean image was acquired by averaging the volumes of each subject (AFNI: 3dTstat). Subjects
with translational or rotational parameters exceeding ± 1 mm or ± 1° in their data were exclud-
ed, therefore, 161 subjects were eventually included in the analysis; (3) the co-registration of
the individual structural image to the mean functional image by using a linear transformation
(FSL: flirt) and the estimation of a nonlinear transformation from individual space of the co-
registered structural image into MNI152 space (FSL: flirt and fnirt); (4) spatial normalization
of the functional image to a standard template (Montreal Neurological Institute) by using the
normalization parameters estimated in the last procedure (FSL: applywarp), resulting in a func-
tional image series of 61×73×61 voxels (3-mm isotropic voxels). (5) the performance of a re-
gression of nuisance variables (including white matter, ventricular signals, global signals and
the six motion parameters determined in the realignment procedure) from the data to reduce
the influence of motion and unspecific physiological effects (AFNI: 3dDeconvolve), but not
spatially smoothed as previously suggested [11]; and (6) the regression of the linear trend from
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the time course of each voxel to remove signal drifts caused by scanner instability or other
sources (AFNI: 3dTcat).

Complementary ensemble empirical mode decomposition
CEEMD originates from EMD invented by Huang [20] and extended from ensemble empirical
mode decomposition (EEMD) by Wu [21]. The detailed description of EMD was presented in
the supplementary materials. The EEMD generates an ensemble of data sets by adding different
realizations of a white noise with finite amplitude ε0 to the original data. EMD analysis is then
applied to each data series of the ensemble; ultimately, the IMFs are achieved by averaging the
respective components in each realization over the ensemble [21]. The averaging effect of the
assisted white noise εf decreases as:

εf ¼ ε=
ffiffiffiffiffiffiffi

NE
p

ð1Þ

In Eq 1, ε = ε0std(y0) and ε0 is the input noise level, where y0 represents the input signal
and NE is the ensemble number. Theoretically, NE approaches infinity in order to smooth out
the assisted white noise. In practice, ε0 is selected in the interval of 0.1–0.4; NE of the order of
100 will generally produce satisfactory results and render the residual noise less than a fraction
of 1% of the error [21].

To further reduce the white noise residue in each IMF component and time consumption,
CEEMD was applied here, where white noise was particularly included in pairs to the original
data (i.e. one positive and one negative) to generate two sets of ensemble IMFs [22]. Additional-
ly, to visualize the frequency distribution of each IMF component, Hilbert weighted frequency
(HWF) of each IMF [23] was applied to reflect the mean oscillation frequency of the IMF [11].

Graph Analysis
Network Construction. In the current study, the automated anatomical labeling (AAL)

template image was applied for regional parcellation approach as previously validated by
Tzourio-Mazoyer [24]. Thus, each hemisphere was divided into 45 anatomical regions of inter-
est (ROIs), which are listed in Table 1 together with the abbreviated regional labels. Regional
mean time series were estimated for each subject across five IMFs by averaging the fMRI time
series over all voxels in each of the 90 regions. Pearson correlation coefficient was performed to
estimate the IMF dependent correlations between each of the 4005 possible pairs of the 90 cor-
tical and subcortical (90 ROI from the common AAL atlas) BOLD signals derived from each
individual set. A set of five (90×90) inter-regional Pearson correlation matrices were then ob-
tained for each subject. False discovery rate (FDR) correction was applied to regulate the ex-
pected FDR at the statistical significance threshold as 0.05 in individual level. Thus, five
frequency dependent population-based functional connectivity networks were constructed by
capturing the underlying common connectivity pattern of the brain.

Network Analysis. Global topological parameters: Previous studies [25, 26] have demon-
strated two key metrics applied to describe the complex networks in human brain: clustering
coefficient (Cp) and characteristic path length (Lp). In order to investigate the small-world
properties, Cp and Lp should be compared to the corresponding random networks [27]. In
general, a small-world network should have significantly higher clustering coefficient value
than that of random network (γ = Cp(real)/Cp(rand)>1) while the characteristic path length
being approximately equivalent compared with random networks (λ = Lp(real)/Lp(rand)*1)
[28]. These two measurements can be summarized into simple quantitative metric, small-
worldness, σ = γ/λ, which is typically greater than 1 for small-world networks [25, 26]. In the
current study, weighted degree, Sw(G), global efficiency, Eglob(G), and local efficiency, Eloc(G),
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of a network G were investigated as well. The weighted degree of a network refers to the average
of the edge weights linking to a specific node across all of the nodes [29]. The Eglob(G) measures
the global efficiency of the parallel information transfer in the network, while Eloc(G) reveals
the fault tolerance of the network. It indicates the efficiency of the communication between the
first neighbors of i, if i is removed [26]. In order to observe these frequency specificities of
small world networks, the graph characteristics were calculated at multi-sparsity (or density),
which represented the fraction of present connections to all possible connections [30]. Notably,
in the current study, the estimation of all the parameters were under consideration of weighted
coefficient, which was consistent with the previous study [31]. The estimation of all parameters
were calculated using the code provided by Brain Connectivity Toolbox (BCT) [32].

Regional nodal characteristics: Three nodal topological characteristics were applied, includ-
ing nodal weighted degree ðSwi Þ, nodal global efficiency ðEw

i;globÞ and nodal betweenness ðBw
i Þ.

Nodal weighted degree is computed as the sum of the weight of all the connections of node i,
which quantifies the extent to which a node is relevant to the graph [32]. The nodal efficiency
of a given node Ew

i;glob is defined as the inverse of the mean harmonic shortest path length be-

tween the node of interest and all the remaining nodes in the network [33], which quantifies
the importance of the nodes for the communication within the network [33]. The betweenness
centrality of a node i considers the fraction of all shortest paths in the network that pass
through the node [34], which captures the influence of a node over information flow between

Table 1. Cortical and subcortical regions of interest defined in study.

Index Region Abbr. Index Region Abbr.

(1,2) Precental gyrus PreCG (47,48) Lingual gyrus LING

(3,4) Superior frontal gyrus, dorsolateral SFGdor (49,50) Superior occipital gyrus SOG

(5,6) Superior frontal gyrus, orbital part ORBsup (51,52) Middle occipital gyrus MOG

(7,8) Middle frontal gyrus MFG (53,54) Inferior occipital gyrus IOG

(9,10) Middle frontal gyrus, orbital part ORBmid (55,56) Fusiform gyrus FFG

(11,12) Inferior frontal gyrus, opercular part IFGoperc (57,58) Postcentral gyrus PoCG

(13,14) Inferior frontal gyrus, triangular part IFGtriang (59,60) Superior parietal gyrus SPG

(15,16) Inferior frontal gyrus, orbital part ORBinf (61,62) Inferior parietal, but supramarginal and angular gyri IPL

(17,18) Rolandic operculum ROL (63,64) Supramarginal gyrus SMG

(19,20) Supplementary motor area SMA (65,66) Angular gyrus ANG

(21,22) Olfactory cortex OLF (67,68) Precuneus PCUN

(23,24) Superior frontal gyrus, medial SFGmed (69,70) Paracentral lobule PCL

(25,26) Superior frontal gyrus, medial orbital ORBsupmed (71,72) Caudate nucleus CAU

(27,28) Gyrus rectus REC (73,74) Lenticular nucleus, putamen PUT

(29,30) Insula INS (75,76) Lenticular nucleus, pallidum PAL

(31,32) Anterior cingulate and paracingulate gyri ACG (77,78) Thalamus THA

(33,34) Median cingulate and paracingulate gyri DCG (79,80) Heschl gyrus HES

(35,36) Posterior cingulate gyrus PCG (81,82) Superior temporal gyrus STG

(37,38) Hippocampus HIP (83,84) Temporal pole: superior temporal gyrus TPOsup

(39,40) Parahippocampal gyrus PHG (85,86) Middle temporal gyrus MTG

(41,42) Amygdala AMYG (87,88) Temporal pole: middle temporal gyrus TPOmid

(43,44) Calcarine fissure and surrounding cortex CAL (89,90) Inferior temporal gyrus ITG

(45,46) Cuneus CUN

The regions are listed according to a prior template obtained from an AAL atlas. Odd numbers represent the corresponding brain regions in the left

hemisphere, and even numbers denote the specific brain regions in the right hemisphere.

doi:10.1371/journal.pone.0124681.t001
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other nodes in the network. To investigate the frequency specificities of hub distribution, AUC
of each nodal measure ðSwi ; Ew

i;glob;B
w
i Þ was selected across a range of interested densities in all

IMF components as the estimation for each node, denoted as Sðw;aucÞi ; Eðw;aucÞ
i;glob ; Bðw;aucÞ

i respective-

ly. Due to the absence of a formal consensus regarding selection of thresholds, here we selected
a range of sparsity threshold (Smin(0.14)� sparsity�0.40) for functional connectivity networks,
where Smin represented a minimum network sparsity in which all nodes would become fully
connected in the five IMF-dependent brain networks [30]. The nodes representing the high

Sðw;aucÞi ; Eðw;aucÞ
i;glob ; Bðw;aucÞ

i were considered as the hubs (no less than one standard deviation (SD)

larger than the average nodal AUC values of the network) [30].

Reproducibility Analysis
To investigate the reproducibility of the results, a split-half analysis was performed [31]. Two
independent age- and gender-matched subgroups were created (80 and 81 participants). For
each subgroup, the frequency specific brain networks were separately constructed and analyzed
respectively using the same methods as the aforementioned whole-group analysis. The results
of the two subgroups were compared to evaluate the reproducibility. In addition, to further ver-
ify the reliability of CEEMD and the accuracy of frequency intervals defined by CEEMD and
HWF, the BOLD signals were filtered to the same five specific frequency bands, which were de-
fined by CEEMD and HWF, by using filter functions provided in the REST toolbox [35]. For
convenience, this comparison method was denoted as “REST”.

Results

Frequency distribution and IMF dependency of FC
The histograms of the HWF distributions were presented in Fig 1, demonstrating the first five
IMFs of the voxels in the whole-brain gray matter at different input noise level ε0 using the
CEEMDmethod (Fig 1a–1d) or EMD (Fig 1e) approach across all the subjects. Each of the five
histograms in Fig 1a–1e represents the statistic of the whole-brain gray matter voxels within
distinct frequency bands, respectively. Considering the very similarity of the frequency content
of different voxels at different sites of the brain (and subjects), the same IMF (IMFs, s = 1, 2, 3,
4 or 5) from all of the voxels approximately fell into the same frequency band. Consistent with
a previous study [11], these five IMF components were derived to cover a frequency range
from 0 to 0.22 Hz, with each interval range.

Referring to Fig 1a–1d, a high noise level was associated with relatively better concentrated
intra-frequency bands and separated inter-frequency bins. Thus, the observed best performance
in dividing the BOLD signals into five IMF components was demonstrated in Fig 1d. The pre-
sented results were acquired with an input noise level ε0 = 0.4. In addition, the consequences of
other conditions (ε0 = 0.1, 0.2, 0.3) were provided as the supplementary materials (S1 Fig). As
shown in Fig 1d, the frequency of each IMF fell into a unique frequency band, with the first IMF
(IMF1) indicating the highest frequencies from 0.11to 0.22 Hz, IMF2 for 0.05 to 0.11 Hz, IMF3
for 0.025 to 0.05 Hz, IMF4 for 0.01 to 0.025 Hz, and IMF5 for the lowest frequency band from 0
to 0.015 Hz. Meanwhile, the histograms of HWF distributions derived from the EMDmethod
was presented in Fig 1e to demonstrate the frequency bands or mode mixing effects. The FC
matrices of each IMF component were displayed in Fig 2b–2f to represent the inter-regional FC
subtended by time series components in the frequency bands defined by IMF 1–5. The results
suggest that CEEMD can adaptively decompose the original time series into different intrinsic
oscillatory modes that can be classified into distinctive frequency bands. Thus, CEEMD can be
applied as a non-stationary and non-linear neurological signal processing method.
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Frequency dependent small world networks
Previous studies have demonstrated that the small-world topology exists in large-scale brain
functional and structural networks in humans [1, 32], in which the shortest path length be-
tween any pair of nodes is approximately equivalent to a comparable random network, but

Fig 1. Histogram of frequency distribution using CEEMD and EMD, respectively. From Fig 1a to Fig 1e,
each figure represents the HWF distribution histogram determined from gray matter voxels in whole brain
across the entire group of subjects (n = 161), with an input noise level ε0 of 0.1, 0.2, 0.3 and 0.4 using
CEEMD as well as EMD respectively. The histograms of HWF of IMF1 to IMF5 were colored by red, green,
blue, magenta and cyan respectively. The heights of the histograms represent the number of voxels whose
HWF equals to the frequency on the horizontal axis.

doi:10.1371/journal.pone.0124681.g001

Fig 2. Schematic of frequency distribution and specificity of functional connectivity networks. Fig 2a
represents the histograms of HWF of IMF1 to IMF5 using CEEMD (n = 161, ε0 = 0.04), which is the same as
Fig 1d. These IMFs occupy different frequency bands in a descending order (IMF1: 0.11–0.22 Hz; IMF2:
0.05–0.11 Hz; IMF3: 0.025–0.05 Hz; IMF4: 0.01–0.025 Hz; IMF5: 0–0.015 Hz, respectively). Fig 2b–2f
denote the group-mean inter-regional correlation matrices of each IMF component (AAL template, 90×90
correlation matrix, only the positive value was presented), and the number from 1 to 90 represents the
corresponding ROI in AAL template, for details, refer to Table 1.

doi:10.1371/journal.pone.0124681.g002
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with greater local interconnectivity than a random network [28]. In the current study, the
small world properties were investigated in each frequency specific brain networks. As shown
in Fig 3, all five FCNs showed small-world architecture with more locally clustered (γ>1, Fig
3f) but almost identical path length (λ�1, Fig 3g) over a wide range of densities. Inconsistent
with Achard’s study [15], the small-worldness of these five FCNs was compared at multi-densi-
ty and identified to be frequency-sparsity dependent. The saliency of small-worldness mainly
covered three frequency bands at distinct density intervals. Specifically, small world architec-
ture was prominent in the IMF1, IMF3and IMF5 components (Fig 3h). The mean clustering
coefficient increased from IMF1 to IMF5 across most density intervals (Fig 3d), while the char-
acteristic path length exhibited an opposite variation (Fig 3e). Additionally, network weighted
degree or efficiency analysis demonstrated that lower frequency bands were associated with
higher weighted degree or global or local network efficiency (Fig 3a–3c). The results also sug-
gested that high-frequency band IMF1 exhibited small world properties, which may be dis-
carded in conventional FC analysis.

Spatial distribution of hub regions in distinct frequency bands
The difference was observed extensively in the frequency dependent global topological patterns
in brain networks, therefore, it is hypothesized that the nodal characteristics may vary in the
frequency specific brain networks. Nevertheless the spatial distribution of hubs defined by
nodal betweenness, weighted degree or nodal efficiency was similar across different frequency
bands (Fig 4). Consistent with previous studies [15, 25, 31, 36–38], all the hubs are mainly con-
centrated on association, primary and paralimbic cortex. Remarkably, low frequency interval,
particularly smaller than 0.1 Hz, is under investigation in previous FC studies [4, 5, 39]. On the
contrary, in the present study, consistent spatial distribution of hub regions was observed in
both low frequency (< 0.1 Hz) bands and higher frequency bands (IMF1> 0.1 Hz). Fig 4 pro-
vided the 3D representations of the hub distributions to visualize these hubs in distinct fre-
quency intervals. In addition, the detailed value of nodal topological characteristics in each
frequency specific brain networks were listed in S1, S2, S3 Tables.

Fig 3. Small world properties in the frequency specific FCNs. From Fig 3a to Fig 3e, each figure shows
the plot of global topological patterns of distinct frequency intervals (y-axis) versus sparsity (x-axis), including
the weighted degree, local network efficiency (locE), global network efficiency (gE), mean clustering
coefficient (Cp) and shortest path length (Lp) respectively. The ratio Gamma (Fig 3f) and Lambda (Fig 3g) of
five frequency specific FCNs showed a much higher Cp and identical Lp value, compared with closely
matched random networks across much sparsity. The saliency of small-worldness, Sigma, dynamically
covered different frequency bands at various density intervals. Specifically, small world architecture is
prominent in the IMF1, IMF3 and IMF5 component at a range of density threshold from 0.05 to 0.12, 0.12 to
0.18, and 0.24 to 0.4, respectively.

doi:10.1371/journal.pone.0124681.g003
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Reproducibility of the findings
To test the stability of brain FCNs construction and the corresponding topological properties,
split-half reliability was performed by dividing all participants into two independent sub-
groups. Visual examination indicated that the FC patterns of each IMF were similar between
the two datasets (Fig 5A & 5B) and in the aforementioned whole group (Fig 2). Further statisti-
cal analyses (IMF1: r = 0.98, P< 0.0001; IMF2: r = 0.99, P< 0.0001; IMF3, r = 0.99,
P< 0.0001; IMF4, r = 0.97, P< 0.0001; IMF5, r = 0.96, P< 0.0001) revealed a significant
inter-group correlation between the mean FCNs of each IMF (Fig 5C). In addition, the global
topological patterns of each frequency band were calculated in both subgroups (Fig 6) to dem-
onstrate similar patterns with whole group analysis (Fig 3). The comparison between CEEMD
and REST also indicated the effectiveness of CEEMD and the rational specific frequency bands
in each IMF component. Visual inspections indicated that the FC patterns of each specific fre-
quency band were similar within either CEEMD or REST (Fig 7A & 7B). Further statistical
analyses (0.11–0.22 Hz, r = 0.97, P< 0.0001; 0.05 to 0.11 Hz, r = 0.98, P< 0.0001; 0.025 to
0.05Hz, r = 0.97, P< 0.0001; 0.01 to 0.025 Hz, r = 0.97, P< 0.0001; 0–0.015 Hz, r = 0.95,
P< 0.0001) revealed a significant correlation in the mean FCNs of each frequency bin between
the two methods (Fig 7C). In addition, the global topological patterns of frequency specific
FCNs were calculated by using a rectangular window to perform band-pass filtering (Fig 8).

Discussion
Previous studies [40, 41] have suggested that numerous brain oscillations are well organized
into several brain rhythms in support of complex brain activities within distinct frequency
bands. These rhythms could temporally coexist in the same or different brain areas and may in-
teract with each other with specific properties and physiological functions [40, 41]. In the

Fig 4. The spatial distribution of hub regions. Three dimensional rendering maps show hub regions
defined by nodal betweenness (A), nodal weighted degree (B), and nodal efficiency (C) in five IMFs. The hub
nodes shown in red, green, cyan and magenta color donate Associations, Primary, Paralimibic and
Subcortical regions respectively as described by Achard et al. (2006) The size of the node represents their
nodal topological characteristics. Hub regions are visualized using the BrainNet viewer (NKLCNL, Beijing
Normal University). For the abbreviations of the regions, refer to Table 1.

doi:10.1371/journal.pone.0124681.g004
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Fig 5. Split-half reproducibility of the frequency dependent functional connectivity weighted
networks. (A) and (B) represent the group-mean frequency specific FC weighted networks of two specific
subgroups in each IMF component. (C) denotes the corresponding correlation maps between each pair of
frequency specific FCNs in the two subgroups.

doi:10.1371/journal.pone.0124681.g005
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current study, a data driven method CEEMD was applied to separate these inherent brain oscil-
lations embedded in BOLD signals. Combined with graph theory, our investigation revealed
three main findings: (i) CEEMD is a more efficient method in separating the intrinsic coexist-
ing rhythms within distinct frequency bands than EMD [11] due to its capability in eliminating
mode-mixing effects. Results indicate that the five frequency bins defined by our methods may
be justifiable division of the full frequency band of BOLD signals that are distinct from the sub-
frequency intervals derived from the scale-free dynamics of brain activities by Buzsaki et al
[40]; (ii) at the global topological level, results revealed that several global topological proper-
ties, including network weighted degree, network efficiency, Cp and Lp, are prominent in the
ultra-low frequency bands from 0 to 0.015 Hz, while the saliency of small-worldness is frequen-
cy-sparsity dependent; and (iii) at the nodal topological level, the spatial distribution of hubs
defined by nodal betweenness, weighted degree or nodal efficiency was similar across the five
brain oscillations.

Fig 6. Split-half reproducibility of global topological patterns in both subgroups. From top to bottom, subgroup1 and subgroup2 were presented
respectively. Both subgroups had the similar patterns with the whole group results (Fig 3), showing that ultra-low frequency bands (IMF5) have both salient
local and global connectivity patterns. The saliency of small-worldness dynamically covered different frequency bands at various density intervals.

doi:10.1371/journal.pone.0124681.g006
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Fig 7. Comparison between the CEEMD and RESTmethods. (A) and (B) represent the group-mean
frequency specific FC weighted networks of these two methods, namely CEEMD in current study and
conventional rectangular window band-pass filter (REST), in each IMF component. (C) denotes the
corresponding correlation maps between each pair of frequency specific FCNs using the two methods.

doi:10.1371/journal.pone.0124681.g007
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By using graph theory analysis, the results of global topological patterns in distinct frequen-
cy bands (Fig 3) indicate that a higher FC is associated with lower frequency bands. The results
are consistent with previous studies [9, 10, 42], suggesting that the frequency characteristics of
FC are tightly associated with the corresponding inter-regional physical distance. Specifically,
the correlations in long-distance brain regions are concentrated within ultra-low frequencies
(0.01–0.06 Hz), but over a wider frequency range (0.01–0.14 Hz) within short-distance brain
regions [10]. Thus, these results further highlight the efficacy of the CEEMDmethod in isolat-
ing the frequency bands of BOLD signals.

With regard to the sigma measure, results suggest that the saliency of small world networks
is frequency-sparsity dependent (Fig 3h). Particularly, it is emphasized that to compare the
sigma across different frequency bands by calculating the AUC for the sigma measure is not ac-
ceptable due to the determination of the interest sparsity interval. Considering the selection of
the sparsity intervals from 0.05 to 0.15 or from 0.05 to 0.25 or from 0.05 to 0.4 to estimate the
value of AUC, the small-worldness of IMF1, IMF3 and IMF5 will be salient respectively. More-
over, these results were tested-retested in the current study (Figs 6 and 8, S1, S2, S3 Figs). In ad-
dition, a previous study (Achard et al.[15]) indicate that the small-world network is most
salient in the 0.03–0.06 Hz interval, corresponding to the frequency band of IMF3 in the cur-
rent study. Inconsistent with Achard et al.[15], the small-worldness was calculated at multi-
density in the current study, while it was estimated at only one threshold value previously.[15].
Since there currently is no formal consensus in regard to the selection of thresholds, the phe-
nomenon of the frequency-sparsity dependent small-worldness was observed in our data. It is
conjectured that all five frequency bands may possess significance to understand our brain
function in the context of specific conditions (e.g., sparsity). Salient small world properties
demonstrated by fMRI in the high frequency band (IMF1, 0.11–0.22) seem to be caused by sus-
ceptibility artifacts, since the frequency band such as IMF1 is covered by respiratory frequency
interval from 0.1 to 0.5 Hz [43]. However, previous studies have suggested that the spectral
range of BOLD signals greater than 0.1 Hz demonstrate consistent patterns with low-frequency
fluctuations (< 0.1 Hz) [19, 44]. In addition, high-frequency FC is concentrated in local brain
regions, which may lead to a prominent value of γ = Cp(real)/Cp(rand) in IMF1 than other IMF
in the context of relatively sparse FCN [9, 10, 42]. Conclusively, the findings in the current
study, on one hand, indicate that different sub-frequency bands require more attention other
than single frequency intervals; on the other hand, challenge the notion that FCNs of resting
state fMRI are simple “low frequency” spontaneous signal fluctuations.

Fig 8. Small world properties in the frequency specific FCNs using REST. Fig 8 show the plot of global
topological patterns of distinct frequency intervals (y-axis) separated by a conventional ideal rectangular
window band-pass filter versus sparsity (x-axis). The meaning of these figures is the same as in Fig 3.

doi:10.1371/journal.pone.0124681.g008
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Considering the spatial patterns of hub regions, the results of similar distribution of hubs in
five frequency intervals indicate that these five sub-bands may possess approximately the same
long-range spatial connectivity patterns. Combined with the results of binary FCNs (S2 Fig), it
may be speculated that distinct frequency bands mainly influence the weighted coefficients but
slightly effect the spatial long-range connectivity attributes. Future studies are required to vali-
date the hypothesis and to discuss the difference of short-range connectivity patterns in distinct
frequency bins (e.g., modularity and network motifs) [45]. Remarkably, similar hubs in higher
frequency intervals IMF1 further suggest that the FCN of resting state fMRI in this specific fre-
quency band may carry some useful physiological information.

Methodology consideration
In the FC analysis in BOLD fMRI, there is no consensus on the necessity to correct global sig-
nals in fMRI time courses [46]. One previous study [46] suggested that without global signal
correction, nodes along the inter-hemispheric fissure would be highly connected while some
nodes and subgraphs around white-matter tracts would become disconnected from the rest of
the network. In the present study, on one hand, the discussion of regression with or without
global signal is out of our scope; on the other hand, the consequences of topological patterns
without regressing out the global signal were provided in supplementary materials (S3 and S4
Figs, S4, S5, S6 Tables). Results showed that the variation trends of topological patterns among
five specific frequencies were not influenced by the regression of global signals. In addition,
typical graph analyses of weighted networks ignored negative ties while recent studies proposed
to incorporate negative weights into analyses of subgraph detection. Here, we followed the
traditional approach.

Limitations
The present study should be considered as a preliminary study to investigate the frequency
specificities of brain networks and has a few limitations. The influence of head motion on the
frequency specificities in the small world network was not discussed, because a number of re-
cent studies [47, 48] have reported decreased long range connectivity and increased local con-
nectivity due to head motion. Thus, head motion is required to be concerned in our further
study. In addition, the analysis of the node definition was limited to AAL template-based brain
networks. A previous study suggest that the topological organization of brain networks may be
affected according to the different parcellation strategies applied [49]. Future studies will be
needed to clarify the difference resulting from various node definitions. Moreover, short-range
connectivity patterns such as modularity or motif were not considered in the current study, and
future efforts integrating the findings from other network parameters will provide valuable ad-
ditions to our observations. Last but not least, the highest frequency in this study is smaller than
0.25 Hz, however, higher frequency fMRI data can be generated by using the most recently de-
veloped technology multiband echo planar imaging [50]. Future efforts are required to investi-
gate the potential applications of combining CEEMD with multiband echo planar imaging.

Conclusion
In the current study, we have introduced a novel method CEEMD to divide the resting state
fMRI signals into five specific oscillations within distinct frequency bands, and have shown
how these can be used to explore the frequency characteristics in resting state brain networks
for the first time. Our results showed evidence that several global topological properties, in-
cluding the network weighted degree, network efficiency, Cp and Lp, are prominent in the
ultra-low frequency bands from 0 to 0.015 Hz, while the saliency of small-worldness is
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frequency-sparsity dependent. The divergent frequency-specific topological connectivity char-
acteristics are associated with distinct frequency-dependent FC, which may reflect the assorted
cytoarchitecture of different brain areas or anatomical distance. Moreover, CEEMDmay offer
a novel approach to investigate the frequency specificities existing extensively within the
BOLD signals. Combined with graph theory analysis, the frequency specific topological organi-
zations of brain networks are well investigated. Most importantly, future direction toward the
frequency specific brain networks may focus on elucidating the relationship between the fre-
quency specific topological profiles and cognitive performance or psychiatric brain disorders,
opening up new avenues to better understanding the human brain.

Supporting Information
S1 Fig. Results of global topological patterns using the CEEMDmethod at different input
noise levels. From top to bottom, figures showed the global topological patterns with the input
noise level ε0 equals to 0.1, 0.2 and 0.3, respectively. The global topological patterns shown
here were similar with these in the condition of ε0 = 0.4.
(TIF)

S2 Fig. Small world properties of frequency specific functional connectivity binary net-
works. a,Network degree increases as the sparsity is increased, and five IMFs are equal at each
sparsity. b and c, The mean clustering coefficient (Cp) and shortest path length of these binary
FCNs appear to lost the regular variation tendency compared with frequency specific weighted
FCNs. d, e and f, here, the ratio γ and small-worldness σ in binary FCNs tend to have similar
results with weighted FCNs, which demonstrated the small-worldness to be salient in frequen-
cy bins of IMF1, IMF3 and IMF5.
(TIF)

S3 Fig. Small world properties of frequency specific brain networks without regression of
global signal. The global topological patterns were similar with these regressed out the global
signals, demonstrating that small-worldness σ is salient in IMF1, IMF3, and IMF5 components
at different densities. This results are inconsistent with that described by Achard et al. (2006)
and Xia Liang et al. (2012).
(TIF)

S4 Fig. The spatial distribution of hub regions without regression of the global signal.
Three dimensional rendering maps show hub regions defined by nodal betweenness (A), nodal
weighted degree (B), and nodal efficiency (C) in five IMFs. The hub nodes shown in red, green,
cyan and magenta color refer to Associations, Primary, Paralimibic and Subcortical regions re-
spectively as described by Achard et al. (2006), and the size of the nodes represents their nodal
topological characteristics. Hub regions were visualized using the BrainNet viewer (NKLCNL,
Beijing Normal University). For the abbreviations of the regions, refer to Table 1.
(TIF)

S1 File. Empirical mode decomposition.
(PDF)

S1 Table. Betweenness-based hub regions with global signal regression. The frequency-spe-
cific brain networks for each participants were constructed using an AAL template. The hub re-

gions based on regional betweenness were identified if Bðw;aucÞ
i was at least 1 SD greater than the

mean Bðw;aucÞ
i of the network. The hubs were then sorted by the corresponding AUC values in

each IMF. The cortical regions were classified as primary, association, and paralimbic.
(DOCX)
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S2 Table. Degree-based hub regions with global signal regression. The frequency-specific
brain networks for each participants were constructed using an AAL template. The hub regions

based on regional weighted degree were identified if Sðw;aucÞi was at least 1 SD greater than the

mean Sðw;aucÞi of the network. The hubs were then sorted by the corresponding AUC values in
each IMF. The cortical regions were classified as primary, association, and paralimbic.
(DOCX)

S3 Table. Efficiency-based hub regions with global signal regression. The frequency-specific
brain networks for each participants were constructed using an AAL template. The hub regions

based on regional efficiency were identified if Eðw;aucÞ
i;glob was at least 1 SD greater than the mean

Eðw;aucÞ
i;glob of the network. The hubs were then sorted by the corresponding AUC values in each

IMF. The cortical regions were classified as primary, association, and paralimbic.
(DOCX)

S4 Table. Betweenness-based hub regions without global signal regression. The frequency-
specific brain networks for each participants were constructed using an AAL template. The

hub regions based on regional betweenness were identified if Bðw;aucÞ
i was at least 1 SD greater

than the mean Bðw;aucÞ
i of the network. The hubs were then sorted by the corresponding AUC

values in each IMF. The cortical regions were classified as primary, association,
and paralimbic.
(DOCX)

S5 Table. Degree-based hub regions without global signal regression. The frequency-specific
brain networks for each participants were constructed using an AAL template. The hub regions

based on regional weighted degree were identified if Sðw;aucÞi was at least 1 SD greater than the

mean Sðw;aucÞi of the network. The hubs were then sorted by the corresponding AUC values in
each IMF. The cortical regions were classified as primary, association, and paralimbic.
(DOCX)

S6 Table. Efficiency-based hub regions without global signal regression. The frequency-spe-
cific brain networks for each participants were constructed using an AAL template. The hub re-

gions based on regional efficiency were identified if Eðw;aucÞ
i;glob was at least 1 SD greater than the

mean Eðw;aucÞ
i;glob of the network. The hubs were then sorted by the corresponding AUC values in

each IMF. The cortical regions were classified as primary, association, and paralimbic.
(DOCX)
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