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ABSTRACT

Transcription factors can either activate or repress
target genes by binding onto short nucleotide
sequence motifs in the promoter regions of these
genes.Here,wepresentPOBO, apromoter bootstrap-
pingprogram, for geneexpressiondata. POBOcanbe
used to detect, compare and verify predetermined
transcription factor binding site motifs in the promo-
ters of one or two clusters of co-regulated genes. The
program calculates the frequencies of themotif in the
input promoter sets. Abootstrap analysis detects sig-
nificantly over- or underrepresented motifs. The out-
put of the program presents bootstrapped results in
picture and text formats. The programwas testedwith
published data from transgenic WRKY70 microarray
experiments. Intriguingly, motifs recognized by the
WRKY transcription factors of plant defense path-
ways are similarly enriched in both up- and down-
regulated clusters. POBO analysis suggests slightly
modified hypothetical motifs that discriminate
between up- and downregulated clusters. In conclu-
sion,POBOallowseasy, fast andaccurateverification
of putative regulatory motifs. The statistical tests
implemented in POBO can be useful in eliminating
false positives from the results of pattern discovery
programs and increasing the reliability of true posit-
ives. POBO is freely available from http://ekhidna.
biocenter.helsinki.fi:9801/pobo.

INTRODUCTION

Current high-throughput functional genomic techniques allow
for the production of massive amounts of gene expression data
(1,2). These include large gene expression screens using in situ
synthesized oligo-arrays and two-color microarray techni-
ques. These techniques have been used to address a variety

of biological questions including expression profiling, com-
parative genomics and transcriptome analysis.

One of the questions arising from these genomic experi-
ments is how gene regulation is controlled. The two major
phenomena that are assumed to be responsible for gene reg-
ulation are chromatin remodeling (3,4) and transcription fac-
tors (5). Transcription factors can either activate or repress
target genes by binding onto short and often specific nucleo-
tide sequences, transcription factor elements or motifs, found
in the promoter regions of these genes (5). The binding of
transcription factor proteins to DNA and the consequent
genome-wide effects on gene regulation are still not well
understood. However, transcription factors have been identi-
fied to be specific for genes or gene families and typically
couple transcription to the physiological needs of the cell (6),
which leads to the assumption that co-regulated genes might
share a similar control mechanism (5).

Working from the assumption that the cell possesses a com-
mon control mechanism for genes of similar function, one
would expect to find common control sequences in co-
expressed genes. This would allow the cell to initiate the
expression of a whole range of genes that are required for a
particular function, such as enzymes in a common metabolic
pathway, and permit gene expression to be regulated in an
efficient, concerted fashion (7). A corollary of the above
assumption is that if common control sequences are found
in one co-expressed cluster, then these control sequences
should be underrepresented in other gene expression clusters.
Furthermore, if the complete set of control elements is known,
it is not possible that an exactly identical combination of
control elements causes upregulation in one set of genes
and, at the same time, downregulation in another if all
genes are located in a region where the chromatin structure
is open.

There are numerous programs available for motif discovery
in the promoters of a set of co-expressed genes (8–13).
Whereas some programs use probabilistic sequence models
(AlignAce, MEME, MotifSampler), others use regular
expression pattern matching (PROSPECT, SPEXS and oligo-
analysis) (14). The aim of these motif discovery programs

*To whom correspondence should be addressed. Tel: +358 9 19159115; Fax: +358 9 19159079; Email: liisa.holm@helsinki.fi

The online version of this article has been published under an open access model. Users are entitled to use, reproduce, disseminate, or display the open access
version of this article provided that: the original authorship is properly and fully attributed; the Journal and Oxford University Press are attributed as the original
place of publicationwith the correct citation details given; if an article is subsequently reproduced or disseminated not in its entirety but only in part or as a derivative
work this must be clearly indicated.

ª 2004, the authors

Nucleic Acids Research, Vol. 32, Web Server issue ª Oxford University Press 2004; all rights reserved

W222–W229 Nucleic Acids Research, 2004, Vol. 32, Web Server issue
DOI: 10.1093/nar/gkh463

http://ekhidna


is to report motifs that are either overrepresented in the input
set or found more often in it than in the background. A motif
that exceeds the cutoff limit is reported to the user, while
others are not. Problems can arise when searches of every
motif use the same background model, because the frequency
of motifs in the background cannot always be approximated by
probabilistic models (14). This also influences the comparison
of motif frequencies, which is the key event in the analysis.

In this paper, we introduce an accurate, fast and easy-to-
use application program aimed at biologists. The program,
POBO, can be used to validate results from motif discovery
programs and to test preliminary hypotheses about motifs
that might be responsible for the co-regulation of a given
set of genes. In POBO, the frequency of the motif in either
one or two clusters of genes is compared with the frequency
of the motif in the background data. The background con-
tains the promoter regions of all known genes from a chosen
genome. The empirical background model guarantees higher
accuracy than approximations derived from nucleotide com-
position. The search motifs can be arbitrarily complex reg-
ular expressions or matrices, and the background model is
generated specifically for the search motif in every run.
POBO also provides statistical confidence levels for the find-
ings. A microarray experiment typically yields a cluster of
upregulated genes and another cluster of downregulated
genes, which can be used as input to a novel three-way
comparison by POBO. The idea is that the control elements
recognized by a repressor or an activator should be more
depleted in one cluster than in the background data and, at
the same time, more enriched in the other cluster than in the
background data. The relative frequencies of the motif in the
up- and downregulated sets compared with the background
are easily checked in the graphical output of POBO. To
summarize, we believe that our background model allows
an accurate determination of valid and informative motifs,
and second, that the ability to compare two clusters at the
same time can be used to increase the explanatory power of
the motifs found.

MATERIALS AND METHODS

Principles of the program

The program analyses whether a particular motif is enriched in
the user’s cluster(s) or not. The user can input either one or two
promoter sets, which are then compared against the back-
ground data. If there are two input sets, these are also com-
pared with each other.

Currently, there are six different background data sets:
Arabidopsis thaliana, Homo sapiens, Mus musculus, Droso-
phila melanogaster, Caenorhabditis elegans and Saccharo-
myces cerevisiae. These data sets contain all promoter
regions from the currently known genes of each organism.
The user’s input sets are compared with a background sample,
referred to as the ‘background model’, which is generated on
the fly from a chosen background data set. The program com-
pares statistics on promoter sequences of the same length both
in the background sample and in the user’s input sets.

The statistical tests in POBO are based on comparing the
total occurrences of the motif in clusters rather than comparing
average occurrences of motifs in genes. In the first step, POBO

counts the frequency of the motif in each of the promoters in
the input sets and in the background data set. In the second
step, the significance of the differences between the sets is
analyzed using a bootstrap method (15). The bootstrap method
generates a number of artificial promoter sets (pseudoclusters)
where each pseudocluster is generated by random sampling
with replacement. This step is performed for each original
input and background data set. For example, if the occurrences
of a motif in 10 genes are 0, 1, 1, 1, 2, 2, 2, 3, 4 and 5, then
possible values for the occurrences per pseudocluster can vary
from 0 to 50 if the size of a pseudocluster is 10. The most
frequent value is near the average, which in this case is 21. The
number of pseudoclusters and the number of promoters in each
pseudocluster are set by the user. The bootstrap method
enables a reliable comparison of original data sets of different
sizes. The pseudoclusters have equal size and the counts of
occurrences are normally distributed. Bootstrapping is fol-
lowed by an analysis of variances (ANOVA) and an indepen-
dent t-test, which are performed by using pseudocluster values.
Also basic statistical features such as mean, mode, median and
standard deviation are calculated.

ANOVA is a technique for dividing the total variation
in a response into a number of components attributable
to different sources, and analyzing those components
(Equations 1–5) (16).
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Here, the total variation is measured by the sum of squares
total (SSTO), which is divided into two components. One of
these is the sum of squares error (SSE) and the second is the
sum of squares model (SSM). In Equations 1–5 i refers to data
sets (input sets 1, 2 or background), k is total number of data
sets, ni is the total number of artificial promoter clusters
(pseudoclusters) of the i-th data set and j is an index of pseu-
doclusters. Therefore, Uij refers to the number of motif occur-
rences in the j-th pseudocluster in the i-th data set. �UU.. is the
mean of all observations and �UUi. is the mean of all observations
in the i-th data set (16). For example, if there is one pseudo-
cluster with 23 motif occurrences, five pseudoclusters each
with 33 occurrences, ten pseudoclusters each with 45 occur-
rences and so on in the data set, the values ofUij are 23, 33, 33,
33, 33, 33, 45, 45, 45 and so on. The F-value, which is SSM
divided by SSE, indicates differences between samples. The
larger the F-value, the better the search motif discriminates
between the input sets and the background.
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To enable direct comparison of any two data sets alone,
POBO calculates the t-test value for this purpose. This can be
useful when users want to compare the upregulated cluster
only with the downregulated cluster to find out whether the
difference in means is significant or not. t-tests can also be
used when POBO is run with one input set to determine the
difference between this input set and the background data set.
The statistical test used here is the t-test for independent popu-
lations with unknown variances (Equations 6 and 7). In the
equations, �UU is the mean of the data set, ŝs is the estimated
standard error, S2 is the variance of the data set and n is the size
of data set (16):

Z =
�UU1 � �UU2

ŝs �UU1 � �UU2ð Þ , 6
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s
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Background models

Our background data sets contain every known promoter in the
genome of six representative organisms. A.thaliana promoters
were downloaded from TAIR (the Arabidopsis information
resource) (http://www.arabidopsis.org/); the length of the pro-
moters was 3000 bp (17). S.cerevisiae promoters were down-
loaded from the rsa-tools web page (http://rsat.ulb.ac.be/rsat/ );
the length of the promoters was 800 bp (18). H.sapiens,
M.musculus, D.melanogaster and C.elegans promoters were
downloaded from Ensmart (http://www.ensembl.org/Ens
Mart/ ) (19) using the following parameters: known genes, one
output per gene, 50 upstream only and 50 Flank 3000 bp. There
were 19 599 genes for H.sapiens, 16 515 for M.musculus,
13 525 for D.melanogaster and 19 873 for C.elegans that
passed these criteria.

To achieve the best accuracy, a new background model is
generated on the fly depending on the chosen length of the
promoters and the motif itself. This guarantees that the fre-
quency of the motif in the input sets is always compared with
an appropriate background model. For example, we examined
the mean frequencies of all 6mers in the A.thaliana back-
ground data (parameters were: length either 1500 or 3000 bp,
1000 pseudoclusters and 50 promoters). In some cases, the
average frequencies of 6mers varied with the length of the
promoters. Motifs that had approximately the same mean in
the 1500 bp run had completely different means in the 3000 bp
run. For example, cluster means at 1500 and 3000 bp, respect-
ively, for the CCCTGGmotif were 4.96 and 12.32 (ratio 2.48);
for CGGCCC, 5.14 and 8.71 (ratio 1.69); and for CGGACG,
5.06 and 10.28 (ratio 2.03). A probabilistic model assuming a
uniform distribution of motif occurrences over the whole pro-
moter region yields an expected ratio of 2, and would be
inaccurate in some cases. Moreover, the distributions of motifs
in the promoter region are non-linear. The real cluster means
of the previously described motifs in 2250 bp long promoters
are 8.51, 8.21 and 7.55, whereas linear interpolation between
the data at 1500 and 3000 bp would have given the following
means: 8.63, 6.97 and 7.72. For the above-mentioned motifs, it
is impossible to create probabilistic models without severe

approximations. In our view, the empirical background
model yields the best possible reference for assessing the
significance of results.

Inputs and outputs

There are only a few input parameters to set before running
POBO. First, the user has to provide the sequences of the
promoter set or sets (upstream sequences of co-regulated
genes) in FASTA format. The complementary strand will
be generated automatically by the program. Other parameters
that have to be selected are the length of promoters to include
in the analysis, the number of pseudoclusters to be generated,
the number of promoters in a pseudocluster and the query
motif to be searched for as a consensus string or in matrix
form.When using thematrix form, a threshold score for accept-
able hits must be provided also (Figure 1). Consensus strings
can be selected from a list of known motifs. The web server
includes a list of known motifs from TRANSFAC public
version 6.0 (all matrix consensus sequences) and the plant
database PLACE (20,21). It is also possible to search for
the user’s own consensus string or matrix-form motifs using
POBO. The syntax for specifying a consensus string motif uses
‘[]’ to indicate alternative nucleotides and ‘{}’ to mark the
number of repeats. For example, AG[CT]GA corresponds to
AGCGA or AGTGA, AG[CT]f2}GA corresponds to AGCC-
GA, AGCTGA, AGTCGA or AGTTGA, and AG[ACGT]-
f0,2}GA corresponds to AGGA, AGNGA or AGNNGA.
The search is performed using Perl regular expression match-
ing with linear reading of the sequence. The syntax for spe-
cifying matrix presentations of motifs uses five rows, where
the first row stands for the name of matrix and each of the
remaining four rows for one nucleotide. Matrices can have a
variable number of columns, presenting the positions of each
nucleotide. Motifs input as matrices are searched for by sum-
ming the score value from the matrix for each nucleotide
position in the data sets and by comparing this score value
with the threshold value (22). In both cases, overlapping
motifs are counted only once. For example, the motif
TATA is found once in the sequence CCCTATATACCC.
This makes sense biologically, since a transcription factor
recognizing the TATA motif could only bind to the above
segment one at a time.

As output, POBO draws a PNG-formatted picture of the
distributions of the motifs and writes the results of statistical
analyses into the web pages. A random motif should yield
overlapping distributions (Figure 2A), while a ‘good’ motif
separates up- and downregulated clusters from the background
(Figure 2B). POBO also writes a tab-delimited file from the
results that can, for example, be uploaded into Excel. This file
contains the bootstrap results (clusters sum and occurrence)
and positions where each motif was found in the input sets.

Availability and running the program

POBO is written in the Perl language. A MySQL (http://
www.mysql.com/) database is used to store the background
promoters. The output graph is drawn with the GNUPLOT
program (http://www.gnuplot.info/ ). POBO runs successfully
on the LINUX operating system. The server has been tested
with the Microsoft Explorer (6.0), Netscape (7.1) and Opera
(7.11) browsers without problems. For the server version, the
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maximum input size for clusters is limited to 62 000 characters
in each set. Currently two 60 000-character promoter sets
(20 promoters, length 3000 bp) can be analyzed, when
using consensus string motifs, in �30 s (parameters: length
3000, pseudoclusters 1000 and number of promoters in a
pseudocluster 20). With matrix presentations, the performance
time depends on the size of the matrix. The web server, a
tutorial and source codes of the web version and a standalone
program are available from the group’s web site (http://ekhidna.
biocenter.helsinki.fi:9801/pobo).

RESULTS

We illustrate the functionality of POBO by reanalyzing
data sets from the literature. WRKY is a transcription factor

superfamily in A.thaliana that binds to Tf0,2}TGAC[CT] or
TTGACA-motifs (23,24). WRKY factors have been impli-
cated in plant defense, where they trigger the expression of
defense-related genes. WRKY factors are also involved in
plant senescence and response to various environmental stres-
ses (25). It was reported that when the WRKY70 transcription
factor, a member of theWRKY superfamily, was continuously
overexpressed in the plant, a set of defense-related genes was
either up- or downregulated (25). We performed POBO
analysis for different motifs for the genes in group 1, which
contains 24 upregulated genes, and in group 4, which contains
10 downregulated genes (25). The results are summarized in
Table 1. The motif TTGAC[CT] was enriched in the upregu-
lated cluster, but this motif was also enriched in the down-
regulated cluster. If we assume that WRKY70 has equal

Figure 1. POBO input interface.
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affinity for the TTGAC[CT] motif in either set and acts alone,
we cannot explain its frequent occurrence in the promoters of
downregulated genes. The second motif, TTGACA, was
depleted in the downregulated cluster but found in the back-
ground almost as often as in the upregulated cluster. Thus, this

motif alone cannot be responsible for upregulation. We con-
clude that neither of the previously determined motifs is able
to explain the expression pattern by itself. Using POBO, we
discovered two hypothetical motifs that suggest a possible
solution to this puzzle. These motifs fulfilled our criteria
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for ‘good’ motifs: their frequencies in the up- and downregu-
lated clusters peak on opposite sides of the background, and
they are present in most promoters of the target genes of either
activation or repression. The TTGAC[AC]A motif is enriched
in the downregulated cluster, and TTGAC[AC][CGT] is

enriched in the upregulated cluster. The latter motif has the
largest F-value (Table 1). It might be possible that the adenine
at the last position of the TTGAC[AC]A motif is able to block
the binding or working of WRKY70, or that there is competi-
tion between other unknown transcription factors and

Figure 2. POBO output interface. (A) With a ‘bad’ motif, when the sample distribution is uniform. (B) With a ‘good’ motif, when the sample distribution is spread.
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WRKY70 on this side. The ‘functional’ motif TTGAC[AC]
[CGT] does not contain this additional adenine. It is also
possible that other, unknown repressors or activators bind
into promoters elsewhere and thus produce the repression or
activation of the target genes. In this case, however, these
motifs should be found enriched in only one of the clusters.

DISCUSSION

The principal aim was to create an easy-to-use computer pro-
gram that would aid in the quantification and confirmation of
predetermined motifs in co-regulated gene clusters.

POBO offers flexible pattern matching. Unlike most current
programs, POBO can also find and quantify motifs with
a variable number of wildcards in the middle—for exam-
ple, TGANf1,2}TGA corresponding to TGANTGA or
TGANNTGA—or find motifs combined using wildcards,
for example the SP1 motif followed by 0–100 wildcards fol-
lowed by the TATA box.

POBO can also be used to jointly analyze two user-
determined promoter sets. This comparison allows users to
analyze whether a search motif discriminates up- and down-
regulated clusters from each other and the background model.
Our idea is that control elements should not be found in two
oppositely regulated promoter sets as strongly if the expression
is caused by these elements. To the best of our knowledge, the
ability to perform these three-way comparisons is unique to
POBO. The input promoter sets are not restricted to the up- and
downregulated genes from a single microarray experiment.
The three-way comparison can be applied, for example, to
test whether functionally related gene clusters from two spe-
cies respond to the same motif.

The empirical background model is as accurate and reliable
as the current gene prediction programs are. It is free from the
approximation errors of probabilistic models, because it is not
approximated, and it works optimally for every motif that is
searched for. The current background data sets were selected
for versatile use. For example, we believe that most plant
researchers are able to use A.thaliana background data, and
M.musculus can also be generalized for other species such as
Rattus norvigus. In the future, new and more specific back-
ground data can be added to the web server. Users of the

standalone version can create their own background data
sets. For example, chromatin structure might be involved in
tissue-specific gene expression clusters and the background
model should ideally include only that subset of the genome
which is open for transcription.

Currently, POBO is limited to lists of known transcription
factor binding sites or user-specified motifs. We are working
on combining the statistical tests used by POBO with a sys-
tematic screening of motif space in order to discover and
evaluate new and putative motifs.

We believe that POBO will prove particularly valuable for
biologists who wish to examine sets of co-expressed or func-
tionally related genes easily without the need to optimize
numerous parameters, and for those who wish quickly to
test their preliminary hypothesis about motifs. It also provides
flexible pattern matching and a ‘three-way comparison’
enabling the comparison of up- and downregulated clusters
at the same time.

SUPPLEMENTARY MATERIAL

Supplementary Material is available at NAR Online.
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