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ABSTRACT

SA-Search is a web tool that can be used to mine for
protein structures and extract structural similarities. It
is based on a hidden Markov model derived Structural
Alphabet (SA) that allows the compression of three-
dimensional (3D) protein conformations into a
one-dimensional (1D) representation using a limited
number of prototype conformations. Using such a
representation, classical methods developed for
amino acid sequences can be employed. Currently,
SA-Search permits the performance of fast 3D simi-
larity searches such as the extraction of exact words
using a suffix tree approach, and the search for fuzzy
words viewed as a simple 1D sequence alignment pro-
blem. SA-Search is available at http://bioserv.rpbs.
jussieu.fr/cgi-bin/SA-Search.

INTRODUCTION

The detection and analysis of structural similarities among
proteins can provide important insights into their functional
mechanisms or their functional relationships and offer the
basis for classifications of protein folds. The detection of
structural similarities in proteins is complex, and several
approaches have been proposed based on the direct consid-
eration of protein alpha-carbon coordinates (1-8). As our
knowledge of protein structure increases, it is becoming
more and more obvious that recurrent structural motifs
occur in protein structures at all levels of their organization.
Tools developed to search for similarities at the level of
complete proteins are confronted with the large number of
comparisons to perform, for example, at the super-secondary
structure level.

To search for similarities, we transpose the three-dimensional
(3D) structure of proteins into a one-dimensional (1D)
sequence of letters marking up a Structural Alphabet (SA).
The identification of the letters and the encoding of the
structures within the SA space can be achieved using hidden

Markov model (HMM) techniques (9). A facility coming with
the use of hidden markov models is that it is possible to quantify,
during the SA encoding of proteins of known structure, the prob-
ability of substituting one letter for another. This allows us to
quantify the similarity of protein fragments encoded as different
series of letters. Moreover, this offers the possibility of being able
to work with a 1D representation of 3D structures using the clas-
sical 1D amino acid alignment methods.

SA-Search is a fast and simple method to search within the
1D SA space for structural similarities of a protein to a bank of
non-redundant protein chains.

ENCODING OF STRUCTURES IN THE 1D
STRUCTURAL ALPHABET SPACE

Hidden Markov model approach

We describe protein structures as series of overlapping frag-
ments of four-residue length. Only the alpha-carbons are
used. A hidden Markov model was used to identify a set
of letters representative of all protein structures, called the
Structural Alphabet. The Markovian approach learns simul-
taneously the geometry of the letters and the local rules that
govern their assembly process (9). Currently, we use an
alphabet size of 27, which provides the most accurate
description of protein structures, with no overfitting of the
model parameters (10). From such an SA space, the struc-
tural approximation induced by the discretization of struc-
tures remains minimal. Protein structures can be
reconstructed with a reasonable accuracy of <1.1 A RMSD.

Encoding of structures

Given HMM parameters, and given the alpha-carbon coor-
dinates of a protein, the Viterbi algorithm (11) can determine
the optimal series of letters among all the possible paths
usign a dynamic programming algorithm that takes into
account the Markovian dependence between consecutive let-
ters. This results in the compression of protein 3D coordi-
nates into a 1D SA sequence. Encoding can be performed
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only for fragments that have no missing alpha-carbon
coordinates.

APPLICATION TO MINING FOR PROTEIN
STRUCTURES

To search for structural similarities, we use well-known
algorithms for string comparison (suffix trees and alignment
methods).

Exact matches

A suffix tree is a very efficient structure for finding all the
matches between two or more strings (12). It can be con-
structed in linear time, using a linear space that is
proportional to the sum of the lengths of the strings. We
use this data structure to find all exact maximal matches
between two proteins or between a protein and a bank of
proteins. The deviation between structures described by iden-
tical series of letters is low, even for matches of length >15 in
non-helical regions. This can be checked using SA-Search to
run, for example, a query for 110q against a non-redundant
collection of proteins of <30% sequence identity, which leads
to 10 matches of length >15, with an RMSD <I1A.

Structural alignment

Dynamic programming algorithms (13) with linear gaps, and
a faster version of such algorithms where gaps are not
allowed, have been considered to search for fuzzy matches.
Such methods require that one quantify the equivalence

between letters of the SA. The scoring matrix defining
the similarity between the letters was extracted during the
encoding of 1429 proteins. The probabilities of observing
each letter but the optimal letter at each position were built
up. These probabilities are totally different from those of the
transition matrix of the Markovian process. Their signifi-
cances are directly related to the probability, derived from
the model, of substituting one letter for another. Substitution
scores are based on a log-odds ratio obtained by computing
the probabilities of the different letters observed in a bank of
encoded structures.

During the alignment of the SA sequences, we use these
scores to guide the algorithm. Having identified the align-
ments, we normalize the scores by dividing the value by the
score obtained for identical series of letters. This score is
used as a parameter of SA-Search. As shown in Figure 1,
obtained on a set of >14000 matches, there is a significant
correlation (p < 0.0001) between the normalized score of the
alignment and the RMSD for the matching fragments.
Large scores (>0.6) correspond to matches having RMSD
<5 A. Scores <0.3 correspond to matches having RMSD
>4 A. One difficulty of this approach occurs for the medium
score values, which can be associated with both good and
poor structural similarity. This leads to a search for structural
similarities using a two-step procedure. First, use the
alignment as a means of mining for candidate matches,
and then perform the three-dimensional best-fit superposition
to assess the quality of the match. In such a procedure, the
minimum score becomes a means of adjusting the depth of
the search.
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Figure 1. RMSD of the matches as a function of the normalized alignment score. Over 14 000 comparisons are plotted.
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IMPLEMENTATION

The web server can currently be used to perform a comparison
using one of the three approaches: search for exact matches,
search for fuzzy matches with or without gap. The search can
be performed for a protein against a single protein or against a
collection of proteins. Different sets of proteins have been
defined using an approach similar to that of the culled PDB
(Protein Data Bank) (14). These sets of structures are pre-
encoded into the Structural Alphabet.

Query proteins can be specified as PDB identifiers or as
PDB-format files to be uploaded. The search criteria are

(i) a minimum match length expressed as a fraction of the
query length;

(i) a minimum score value expressed as a value between
0 and 1, 1 corresponding to the ratio of the maximum
possible score to the actual alignment score;

(iii)) an RMSD threshold (RMSD between aligned fragments
must be less than the specified threshold);

(iv) the maximum number of matches accepted;

(v) finally, since we use algorithms designed for protein
amino acid sequence similarity searches, we also suggest
running the search using the amino acid sequence instead
of the SA sequence. Hence, the user can mine the data
using both types of information.

Other parameters describe the formatting of the results.

OUTPUT

The program returns information characterizing the candidate
fragments (Table 1) and sends it back in NBRF/PIR format
(for subsequent analysis) or in a row/column format. The
information returned by the program for each of the selected
fragments is the PDB identifier, the matching positions, the
normalized score, the RMSD and the two matching fragments
aligned in terms of the the amino acid or Structural Alphabet
sequence.

DISCUSSION AND FUTURE WORK

The performance of SA-Search suggests that it is an
efficient approach to mining for protein structures in large

Table 1. Comparison of amino acid similarity search (AA) with Structural
Alphabet similarity search (SA) using the Smith and Waterman algorithm
based on precision—recall with a minimum alignment length of 20 and
maximum RMSD of 5 A

PDB Id SCOP fold  SArecall  SA prec.  AArecall  AA prec.
1dlwA a.l 0.72 0.04 0.33 0.09
1kr7A a.l 0.69 0.04 0.56 0.17
IbwwA  b.l 0.95 0.58 0.73 1.00
ImlsA b.1 0.66 0.47 0.06 0.22
[timA c.l 0.83 0.1 0.20 0.19
lej7L c.l 0.66 0.09 0.10 0.11
la2pA d.1 0.78 0.04 0.44 0.08
1531 d2 0.75 0.01 0.25 0.03

Recall is the ratio of matches identified in the query fold class to the total number
of similar protein structures in the data bank; precision (prec.) is the ratio of
matches belonging to the query fold class to the total number of matches.
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collections of protein structures. The inherent limitation
in the impossibility of searching for similarities for proteins
with residues missing can be partially overcome by succes-
sive searches for each fragment. This is implemented in the
current version of SA-Search. It remains the case that some
protein structures of poor quality cannot be encoded properly
into the SA space.

An important requirement for any structure comparison
method is its ability to detect weak structural similarities.
The different algorithms implemented in SA-Search
meet this requirement. Overall, our results show that SA-
Search is able to identify matches for proteins having various
folds.

Compared with DALI (2), we observe that, overall, the aver-
age size of the matches obtained using SA-Search is shorter.
For some of the difficult examples proposed in the literature
(7) the difference can be even larger. For example, for 1tie
versus 4fgf, SA-Search identifies a match of only 46 amino
acids versus >100 using DALI. Similarly, the match of lubq
against 1fxiA results in a match of length 26 versus close to
55 for DALI. Finally, in the particularly difficult case of
1d7c versus 1i8a, with two proteins sharing a common core
of strands but having very different loop conformations, SA-
Search will only identify similarities at the strand level. This
can be related to a theoretical limit inherent in SA-Search
due to the fact that the SA describes the protein conforma-
tion locally, which poses the problem of the significance of
gaps. In this respect, the performance of the Smith and
Waterman algorithm, which is able to detect significant
structural alignments including gaps, can certainly be
improved (Figure 2). Once proteins have been encoded,
any sequence comparison methods can be used on them.
Thus, we expect to increase the average size of matches
by implementing techniques such as successive match
assembly and BLAST search.

In Table 1 we compare our results with amino acid simi-
larity searches using the Smith and Waterman algorithm. In
order to obtain some representativity in the comparison, we
present results for a series of proteins with different folds, as
described by the SCOP (version 1.65) structural classifica-
tion (15). Users can easily check the results on other proteins
since SA-Search offers the option of both 3D searches and
amino acid searches. Compared with searches based on
amino acid sequence, we observe that the performances
of SA-Search are much better. Using the Smith and
Waterman local alignment with the SA-sequence, we obtain
a sensitivity (the ratio of matches identified in the query fold
class to the total number of similar protein structures in the
data bank) more than twice that obtained using the amino
acid sequence. In addition, the precision of the search (the
ratio of matches belonging to the query fold class to the total
number of matches) is lower, which means that SA-Search
is better able to identify matches in proteins belonging
to unrelated fold classes. This is promising from the
perspective of applying this approach to SA sequences pre-
dicted from the amino acid sequence to perform structural
prediction.

One strong point of SA-Search is that it allows the
fast mining of protein structures, a typical run being
on the order of a few seconds. Future directions are
to make available bank-against-bank searches, and to
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Figure 2. Example of a structural match detected using the Smith and Waterman algorithm with gaps. Light: 1aam; Dark: 1c7nA. The two proteins have 10.2% SA
sequence identity. The alignment length is 280 residues.

offer the possibility of searching against a user bank of

proteins.
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