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ABSTRACT

ADVICE (Automated Detection and Validation of
Interaction by Co-Evolution) is a web tool for predict-
ing and validating protein-protein interactions using
the observed co-evolution between interacting pro-
teins. Interacting proteins are known to share similar
evolutionary histories since they undergo coordi-
nated evolutionary changes to preserve interactions
and functionalities. The web tool automates a com-
monly adopted methodology to quantify the similari-
ties in proteins’ evolutionary histories for postulating
potential protein–protein interactions. ADVICE can
also be used to validate experimental data against
spurious protein interactions by identifying those
that have few similarities in their evolutionary
histories. The web tool accepts a list of protein
sequences or sequence pairs as input and retrieves
orthologous sequences to compute the similarities
in the proteins’ evolutionary histories. To facilitate
hypothesis generation, detected co-evolved proteins
can be visualized as a network at thewebsite. ADVICE
is available at http://advice.i2r.a-star.edu.sg.

INTRODUCTION

Co-evolution is a process whereby two or more species inter-
act and influence genetic changes in one another. The process
is also evident at the molecular level, where interacting pro-
teins exhibit coordinated mutations to evolve at a similar rate
(1). Mutation—a mechanism of evolution—disrupts protein
interactions when residue changes occur within inter-protein
contact sites or at regions implicated in the structural integrity
of proteins. When a disrupted interaction leads to reduced
fitness, the mutated sequence will be selected against and
removed by natural selection. However, the mutated sequence
will be retained if compensatory mutations that preserve the

interaction occur in its interacting partners. As a result, inter-
acting proteins will seem to evolve at the same rate and have
similar evolutionary histories. This is a phenomenon that has
been well characterized in various receptor–ligand systems
(2–4) such as two-component signal transduction (5).

Observed co-evolution between interacting proteins has
been used previously to predict protein interaction sites (6)
and to improve docking algorithms (7,8). Recently, Goh et al.
(9) adopted a statistical method to quantify the similarities in
the evolutionary histories of proteins to predict the interactions
of chemokines with their receptors based on the high correla-
tion in the distance matrices constructed from multiple
sequence alignments. Pazos and Valencia (10) extended the
idea to genome-wide prediction of protein–protein interactions
in Escherichia coli. The co-evolution approach was later
further exploited to successfully pinpoint a family of ligands
to its specific receptors (11). In these works, the methodology
adopted to detect co-evolved interacting proteins consisted
of the following sequential steps: (i) searching and retrieving
pairs of orthologous sequences from databases, (ii) construct-
ing distance matrices from the multiple sequence alignments
of the retrieved orthologous sequences and (iii) measuring
similarities in evolutionary histories of proteins by comparing
the distance matrices constructed.

We have implemented ADVICE (Automated Detection and
Validation of Interaction by Co-Evolution)—a web-based
tool—that automates the steps needed to compute the similar-
ities between proteins’ evolutionary histories. The web tool
can aid biologists in postulating potential protein–protein
interactions using co-evolution. We also propose to use
co-evolution between interacting proteins to rapidly validate
experimentally derived protein–protein interactions against
artificial interactions. It is possible that non-biological inter-
actions that do not occur in nature may be detected under
experimental conditions. However, these artificial interactions
will not be subject to natural selection to exhibit co-evolution.
As a consequence, ADVICE can be used to identify such
spurious experimental interactions by finding interacting
pairs that have little or no similarities in their evolutionary
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histories. ADVICE can be useful for rapidly assessing
the quality of large volumes of interaction data from
high-throughput detection methods such as yeast-two
hybrid (12,13), affinity purification (14,15) and protein chip
experiments (16).

INPUTS

ADVICE allows both interactive and batch modes for proces-
sing. In the interactive mode, a user submits a pair of protein
sequences in raw or FASTA format, or a list of protein
sequences where all possible pairwise combinations
of sequences will be permuted automatically by ADVICE
for processing. When more than one pair of protein sequences
is provided as input, ADVICE allows the detected co-evolved
protein pairs to be visualized as a network. In the batch mode,
the web tool accepts a list of sequence pairs for processing.
The computed results will be sent to an email address provided
by the user.

METHODOLOGY

Identifying orthologous sequences

The pair of sequences submitted by the user is used to search
sequence databases for orthologous sequences based on

sequence similarities. Identified orthologous sequences will
be used to compute each input protein’s evolutionary history.
ADVICE allows users the option to search for orthologous
sequences either from one of the four kingdoms of life
(Eukaryota, Prokaryota, Archaebacteria and Viridae) or
from the Swiss-Prot (release 42.9) and/or TrEMBL (release
25.9) databases (17). BLAST v2.2.4 (18) is used to search
these databases and the user can control the sensitivity of
the search by setting an E-value threshold for the BLAST hits.

Constructing distance matrices

To detect co-evolved proteins from their evolutionary his-
tories, we use only pairs of orthologous sequences occurring
together in the same species for constructing the distance
matrices. By default, ADVICE uses sequence pairs from
the top 10 species (based on highest average E-value of the
BLAST hits) to construct the respective distance matrices
from multiple sequence alignments, excluding those species
where more than one orthologous sequence of the input
sequences is found (since it would be difficult to determine
which is the actual ortholog). In the interactive mode, the user
can manually inspect annotations of the sequences and
remove/add orthologous sequence pairs (Figure 1). ClustalW
v1.84 (19) is used to construct the two distance matrices from
respective multiple sequence alignments of the pairs of ortho-
logous sequences.

Figure 1. Pairs of orthologous sequences identified in different species using protein sequences input by users (sequence A and sequence B). Users can select the
desired set of orthologous pairs to compute the similarity in the proteins’ evolutionary histories.
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Measuring similarities in evolutionary distances

The correlation coefficient (r) between two distance matrices
is computed using Pearson’s correlation coefficient equation:

r =
PN�1

i¼1

PN
j¼iþ1 Xij � �XX

� �
Yij � �YY
� �
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where X and Y are two N · N distance matrices and N is equal
to the number of orthologous sequence pairs retrieved (here,
N is equal to the number of species as we allow only one
sequence pair per species). Xij refer to the pairwise distance
between sequences xi and xj from species Si and Sj,
respectively. Similarly, Yij refers to the pairwise distance
between sequences yi and yj from species Si and Sj
respectively. This statistical approach is the same method
used by Goh et al. (9) to quantify the correlation between
two distance matrices for measuring the similarities in
proteins’ evolutionary histories.

OUTPUT

ADVICE outputs the computed correlation coefficient (r),
ranging from �1 to 1, on the web page for each pair of
input sequences. The distance matrices used to compute the
correlation coefficient are also presented on the web page.

In batch processing, the output data will be sent to an email
address provided by the user.

When more than one pair of proteins is provided as input, in
addition to computing the correlation coefficient score
between proteins’ evolutionary histories, ADVICE also pro-
vides the facility to visualize the computed co-evolved
associations between proteins as a non-directional weighted
graphical network (Figure 2). Each node on the network cor-
responds to an input protein. The edge thickness between
proteins corresponds to the computed correlation coefficient.
The thickness of the edges increases linearly with coefficient
score. In this way, users can identify highly co-evolved protein
pairs easily. Users can also filter out edges by specifying a
correlation coefficient threshold. All these facilities provide
users with a global view of the detected associations between
proteins.

INTERPRETATION

The computed correlation coefficient ranges from �1 to 1.
A correlation coefficient of 1 corresponds to 100% correlation
or similarities in the input proteins’ evolutionary histories,
while a score of �1 implies 100% anti-correlation. A coeffi-
cient of 0 will mean that there is no correlation. Goh et al. and
Pazos et al. in their separate works have determined a lower
coefficient limit of 0.8 to be a good indicator of interacting

Figure 2. Detected co-evolved proteins visualized as a protein network. The edge thickness increases linearly with the computed correlation coefficient. Users can
specify the coefficient cut-off value for the construction of the network.
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proteins; users can therefore use this value to identify potential
interacting proteins. To assess the sensitivity of this particular
threshold, we have also computed the correlation coefficient
for 111 yeast protein–protein interactions (20) (supplementary
data) which represent a confident set of true interactions as
they have been detected by multiple methods. Figure 3 shows
the distribution of computed coefficients. The result indicates
that the user can detect �45% of these high-confident inter-
actions using a cut-off value of 0.8. In addition, we also tested
ADVICE on a set of 63 putative non-interacting yeast protein
pairs where one protein is localized in the nuclear membrane
while the other is localized in the mitochondrial inner mem-
brane. Of these protein pairs, <5% were found to have correla-
tion coefficients >0.8. For a suitable upper bound for detecting
spurious interactions, we have observed that �23% of these
false interactions have coefficients <0.3. For the high-
confidence interactions, only 2.7% of them have correlation
coefficients <0.3. Thus, for the purpose of validating experi-
mental interactions, users can adopt a cut-off value of �0.3 to
detect potential spurious interactions. The use of a higher cut-
off will need to be treated prudently or done in conjunction
with other validation methods such as gene expressions for
best result.

SUPPLEMENTARY MATERIAL

Supplementary Material is available at NAR Online.
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