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SUMMARY

During olfactory learning in fruit flies, dopaminergic
neurons assign value to odor representations in
the mushroom body Kenyon cells. Here we identify
a class of downstream glutamatergic mushroom
body output neurons (MBONs) called M4/6, or
MBON-b2b02a, MBON-b02mp, and MBON-g5b02a,
whose dendritic fields overlap with dopaminergic
neuron projections in the tips of the b,b0, and g lobes.
This anatomy and their odor tuning suggests that
M4/6 neurons pool odor-driven Kenyon cell synaptic
outputs. Like that of mushroom body neurons, M4/6
output is required for expression of appetitive and
aversive memory performance. Moreover, appeti-
tive and aversive olfactory conditioning bidirection-
ally alters the relative odor-drive of M4b0 neurons
(MBON-b02mp). Direct block of M4/6 neurons in
naive flies mimics appetitive conditioning, being
sufficient to convert odor-driven avoidance into
approach, while optogenetically activating these
neurons induces avoidance behavior. We therefore
propose that drive to the M4/6 neurons reflects
odor-directed behavioral choice.

INTRODUCTION

Learning permits animals to convert innate reflexive stimulus-

driven behavioral responses into meaningful stimulus-guided

actions. Understanding how such sensory-motor transforma-

tions are implemented and altered in the nervous system is a

subject of great interest.

InDrosophila, innate behavioral responses to odors can be re-

directed towardapproachor avoidancebya learning session that

couples odor exposure with rewarding sugar or punitive electric

shock, respectively (Tempel et al., 1983; Tully and Quinn, 1985).

Recently, substantial progress has been made in understanding

the neural mechanisms of odorant coding and learning in the fly

(Wilson, 2013; Masse et al., 2009; Perisse et al., 2013; Busto

et al., 2010; Dubnau and Chiang, 2013). However, it remains un-

clear howperipheral odor responses are transformed into behav-

ioral performance and how learning redirects the transformation.
Flies detect airborne odors using unique collections of olfac-

tory sensory neurons (OSNs) housed in their antennae andmaxil-

lary palps (de Bruyne et al., 1999, 2001). The tuning of each OSN

type is determined by the expression of a single odorant receptor

gene (Dobritsa et al., 2003; Hallem and Carlson, 2004, 2006;

Vosshall, 2000). Axons fromOSNs expressing the same receptor

converge onto the same glomerulus in each antennal lobe (Vos-

shall, 2000; Gao et al., 2000; Couto et al., 2005; Fishilevich and

Vosshall, 2005), where their activity is relayed to excitatory and

inhibitory projection neurons (Olsen et al., 2010; Kazama

and Wilson, 2008; Parnas et al., 2013; Liang et al., 2013). Excit-

atory projection neurons deliver odor information to the calyces

of the mushroom bodies (MBs) and to neurons in the lateral horn

(LH), whereas inhibitory PN activity is exclusively relayed to the

LH (Jefferis et al., 2001; Wong et al., 2002; Fisxek and Wilson,

2014; Wang et al., 2014). The LH is largely believed to be respon-

sible for driving innate behavioral responses to odors, since

blocking all mushroom body neuron output has little conse-

quence on these behaviors (Heimbeck et al., 2001; Parnas

et al., 2013). In contrast, disrupting the mushroom body has

long been known to impair learned responses (Heisenberg

et al., 1985; Dubnau et al., 2001; McGuire et al., 2001; Schwaer-

zel et al., 2002), consistent with the MB being critical for odor

memory (Heisenberg, 2003).

Each MB is comprised of 2,000 intrinsic Kenyon cells (KCs),

and an individual odor is represented as activity in a sparse sub-

set of these cells (Wang et al., 2004; Honegger et al., 2011). Value

can be assigned to these odor representations during learning by

the action of reinforcing dopaminergic neuronswhose presynap-

tic terminals are confined to discrete zones along the lobes of the

MB (Schwaerzel et al., 2003; Riemensperger et al., 2005; Clar-

idge-Chang et al., 2009; Aso et al., 2012; Mao and Davis,

2009; Liu et al., 2012; Burke et al., 2012; Waddell, 2013). This

anatomy and a requirement for dopamine receptor in MB neu-

rons (Kim et al., 2007; Qin et al., 2012) is consistent with a model

that olfactory memories are represented in the presynaptic

output synapses frommushroom body KCs onto relevant down-

stream neurons (Heisenberg, 2003).

Anatomical work suggests that fewer than 40 output neurons

collect synaptic outputs from the 2,000 KCs (Tanaka et al.,

2008; Aso et al., 2014). This substantial convergence indicates

that information may be lost, and raises the question of what in-

formation is represented as changes in synaptic efficacy from

KCs to downstream output neurons. Prior work suggests that

the MB is involved in motor gating (Huber, 1967; Martin et al.,
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1998) and that an element of memory valence is differentially

coded between subclasses of the ab KCs (Perisse et al., 2013).

How such information is represented in the connections be-

tween KCs and particular downstream neurons is currently

unclear.

Physiological changes after training have been reported in two

sets of memory-relevant cholinergic output neurons that have

dendritic fields within the vertical lobes of the mushroom body

(Séjourné et al., 2011; Pai et al., 2013; Plaçais et al., 2013). How-

ever, the behavioral consequence of synaptic modification at

these sites is unclear. Here we identify a small set of glutamater-

gic output neurons whose dendrites lie within the tip regions of

the horizontal mushroom body lobes and in close spatial prox-

imity to presynaptic terminals of reinforcing dopaminergic neu-

rons (Burke et al., 2012; Liu et al., 2012). Blocking these output

neurons impairs conditioned odor approach and avoidance.

Strikingly, the activation of these output neurons by the condi-

tioned odor is depressed by reward learning and potentiated

by aversive learning. Moreover, directly inhibiting these neurons

in naive flies converts odor avoidance into attraction, whereas

flies are repelled by their activation. Our data therefore suggest

that a critical element of learning-induced plasticity within the

MB manifests as a bidirectional change in the relative odor drive

to specific types of MB output neurons.

RESULTS

GAL4 Control of Glutamatergic M4/6 MBONs
Identified dopaminergic neurons in the PAM (protocerebral ante-

rior medial) cluster in the Drosophila brain convey rewarding

reinforcement (Burke et al., 2012; Liu et al., 2012). Blocking

the output from a subset of these that are labeled by the

0104-GAL4 driver impairs short-term sweetness-reinforced

and longer-term nutrient-reinforced sugar memory (Burke

et al., 2012). Furthermore, pairing thermogenetic activation of

these neurons with odor presentation formed appetitive odor

memories (Burke et al., 2012). The presynaptic terminals from

0104-labeled dopaminergic neurons densely innervate the b0

and g lobe tips of the horizontal mushroom body lobes, which

suggests that appetitive olfactory memories may be represented

as changes in the efficacy of synaptic outputs in these regions

from the odor-activated KCs onto as-yet-unidentified down-

stream neurons.

By visually screening available GAL4 collections (Jenett et al.,

2012; Bidaye et al., 2014), we identified three fly lines that labeled

candidate postsynaptic neurons with arbors in the tip regions,

b2, b
0
2, and g5, of the horizontal mushroom body lobes (Figure 1).

Neurons innervating b02 and g5 have been described as MB-M4

and MB-M6 (Tanaka et al., 2008). We therefore named the cells

that predominantly innervate either the tip of the b, b0, or g lobe as

M4b, M4b0, and M6, respectively. A very recent study has re-

named these neurons as MBON-b2b02a (M4b), MBON-b02mp

(M4b0), and MBON-g5b02a (M6) (Aso et al., 2014). We use both

names here for clarity. R21D02-GAL4 expresses in all M4b/

MBON-b2b02a, M4b0/MBON-b02mp, and M6/MBON-g5b02a
neurons per hemisphere (Figure 1A, Movie S1). VT1211-GAL4

expresses in M4b0/MBON-b02mp and M6/MBON-g5b02a, but

not in the b tip projecting M4b/MBON-b2b02a (Figure 1B, Movie
418 Neuron 86, 417–427, April 22, 2015 ª2015 The Authors
S2). Lastly, R66C08-GAL4 only expresses in the M6/MBON-

g5b02a neurons that mostly innervate the g lobe tip and the ante-

rior zone of b02 (Figure 1C, Movie S3). We determined the polarity

of the M4/6 neurons using expression of established neural

compartment marker proteins. The dendritic marker DenMark

(Nicolaı̈ et al., 2010) localized exclusively to the horizontal MB

lobe tips, while the presynaptic active zone protein Syd-1 (Owald

et al., 2010) localized to the processes of the M4/6 neurons that

lie outside of theMB in the superior medial protocerebrum (SMP)

and the crepine region (Ito et al., 2014) (Figure 1D). This polarity

suggests that the dendritic field of the M4/6 neurons lies within

the MB lobes and is consistent with a role as potential output

neurons that pool KC synaptic weights. The genomic fragment

used to create the VT1211-GAL4 line (Bidaye et al., 2014) comes

from a region that is proximal to the gene for the vesicular gluta-

mate transporter (DVGlut) (Daniels et al., 2008; Mahr and Aberle,

2006). We immunostained the fly brain with an anti-DVGlut anti-

body (Mahr and Aberle, 2006) to determine whether the M4/6

neurons might be glutamatergic. DVGlut labeling perfectly over-

lapped with the GFP-marked presynaptic field of the M4/6 neu-

rons (Figure 1E). This is most evident at higher resolution where,

in addition, individual M4/6 presynaptic boutons can be seen to

be large and spherical (Figure 1E, inserts). We also used GRASP

(Feinberg et al., 2008; Gordon and Scott, 2009) to test whether

the processes of the M4/6 neurons are close to those of the

dopaminergic PAM neurons (Figures 1F and S1B). This analysis

revealed strong GFP fluorescence at two locations: the tips of

the horizontal MB lobes, where the M4/6 dendrites and dopami-

nergic presynapses reside, and in the SMP between M4/6 pre-

synaptic terminals and the dendrites of dopaminergic neuron.

Although GRASP is most reliably a proximity marker, it is notable

that the GRASP visible in the SMP appears to preferentially label

terminals of M4/6 neurons rather than the non-synaptic neurites,

suggesting that the points of contact may be genuinely synaptic.

M4/6 Neurons Are Required for Appetitive and Aversive
Memory Expression
We tested whether output from M4/6 neurons was required

for behavioral expression of memory performance by using

the R21D02, VT1211, and R66C08 GAL4 drivers to express

the dominant temperature-sensitive UAS-shibirets1 (shits1) trans-

gene (Kitamoto, 2001). In each experiment we compared the

performance of flies with M4/6 neural blockade to control flies

carrying only the GAL4 or UAS-shits1 transgene. We first tested

immediate memory performance following sucrose-reinforced

appetitive conditioning (Tempel et al., 1983; Krashes and Wad-

dell, 2008). All flies were trained and tested for 3 min memory

at the restrictive temperature of 32�C. Blocking the M4/6

neurons caused an impairment in memory performance.

R21D02;shits1, VT1211;shits1 and R66C08;shits1 flies displayed

performance that was statistically different to that of shits1 and

their respective GAL4 control flies (Figures 2A1, 2B1, and 2C1).

We also restricted the blockade of M4/6 neurons to the time of

memory retrieval by training flies at the permissive 23�C and

raising the temperature to 32�C 30 min before and during testing

24 hr appetitive memory. These analyses again uncovered a

significant defect in flies with impaired M4/6 neurons, demon-

strating a clear requirement for M4/6 neural output for the



Figure 1. Three Pairs of Glutamatergic M4b/

MBON-b2b02a, M4b0/MBON-b02mp, andM6/

MBON-g5b02aOutput Neurons Innervate the

Tips of the Horizontal Mushroom Body

Lobes

(A–C) The M4b/MBON-b2b02a, M4b0/MBON-

b02mp, and M6/MBON-g5b02a neurons predom-

inantly innervate either the tips of the b, b0, or g
lobes of the mushroom bodies (MB). (A) R21D02-

GAL4 expresses in the M4b/MBON-b2b02a,
M4b0/MBON-b02mp, and M6/MBON-g5b02a neu-

rons that predominantly innervate the b, b0, and g

lobe, respectively. (B) VT1211-GAL4 labels the

M4b0/MBON-b02mp and M6/MBON-g5b02a that

innervate the b0 and g lobes. (C) R66C08-GAL4

only expresses in the two M6/MBON-g5b02a
neurons that predominantly innervate the g lobes

but also have a projection into the anterior zone

of the b0 tip. (A–C) Scale bar is 50 mm. Right

panels provide magnified sagittal views through

the tips of the horizontal MB lobes and illustrate

the respective innervation of M4/6 neurons in

the b, b0, and g lobes (indicated by dashed lines

in A). Cartoons summarize the neurons covered

by each GAL4 driver. Movies S1, S2, and S3

show projection view examples of each GAL4

line.

(D) Expression of neuronal compartment markers

reveals that the M4b/MBON-b2b02a, M4b0/
MBON-b02mp, and M6/MBON-g5b02a neurons

likely receive input from MB neurons through

their DenMark-labeled dendritic region that lies

within the MB lobe tips. Additionally, their Syd-1-

labeled presynaptic output region is concen-

trated in the superior median protocerebrum

(SMP) and the crepine region. Scale bar is

25 mm. Below: schematic of the polarity of M4/6

neurons.

(E) Presynaptic boutons of the M4b/MBON-

b2b02a, M4b0/MBON-b02mp, and M6/MBON-

g5b02a neurons (green label, white arrows) co-

stain with antibody to the Drosophila vesicular

glutamate transporter (DVGlut, magenta). Scale

bar is 10 mm.

(F) GFP reconstitution across synaptic partners

(GRASP) suggests that the dendrites of M4b0/
MBON-b02mp and M6/MBON-g5b02a neurons

are in close proximity to the output regions of

rewarding dopaminergic neurons in the MB

lobe tips. One half of GRASP is driven by R48B04-

LexA (Figure S1A) (Lin et al., 2014) and the

other by VT1211-GAL4. Similar results are seen

when GRASP is driven by R58E02-LexA and

R66C08-GAL4 (Figure S1B). In addition, in both cases GRASP is observed between the M4b0/MBON-b02mp and M6/MBON-g5b02a output syn-

apses and the dendrites of rewarding dopaminergic neurons in the SMP. Scale bar is 20 mm.
expression of conditioned approach (Figures 2A2, 2B2, and

2C2). We similarly tested the role of M4/6 neurons in electric-

shock-reinforced aversive short-term memory. Memory perfor-

mance of R21D02;shits1, VT1211;shits1 and R66C08;shits1 flies

was again statistically different to that of shits1 and their respec-

tive GAL4 control flies (Figures 2A3, 2B3, and 2C3). In both the

appetitive and aversive memory experiments, the observed

defect appeared more pronounced when simultaneously block-

ingM4b0/MBON-b02mp orM4b0/MBON-b02mp andM4b/MBON-
b2b02a neurons with M6/MBON-g5b02a neurons, using VT1211

or R21D02, than blocking M6/MBON-g5b02a neurons alone

with R66C08. Importantly, control experiments performed at

permissive 23�C did not reveal significant differences between

the relevant groups (Figure S2). Output from the M4b/MBON-

b2b02a, M4b0/MBON-b02mp, and M6/MBON-g5b02a neurons is

therefore required for the expression of appetitive and aversive

memory performance and we propose that the three cell types

may function together.
Neuron 86, 417–427, April 22, 2015 ª2015 The Authors 419



Figure 2. Blocking M4b/MBON-b2b02a, M4b0/MBON-b02mp, and M6/MBON-g5b02a Neurons Impairs the Expression of Appetitive and

Aversive Memory Performance

(A–C) Schematic representations of the MBON neuron coverage in each GAL4 line used. R21D02 labels all M4b/MBON-b2b02a, M4b0/MBON-b02mp, and M6/

MBON-g5b02a neurons. VT1211 labels M4b0/MBON-b02mp and M6/MBON-g5b02a. R66C08 only labels the M6/MBON-g5b02a neurons. Blocking M4/6 neurons

with UAS-shits1 (A1, B1, and C1) significantly impairs 3 min appetitive memory performance (A1: n R 10, p < 0.05; B1: n R 7, p < 0.05; C1: n R 13, p < 0.05).

Blocking M4/6 neurons only during testing (A2, B2, and C2) significantly impairs 24 hr appetitive memory performance (A2: nR 9, p < 0.05; B2: nR 16, p < 0.05;

C2: n R 7, p < 0.05). Blocking M4/6 neurons (A3, B3, C3) significantly impairs 3 min aversive memory (A3: n R 10, p < 0.05; B3: n R 8, p < 0.05; C3: n R 10,

p < 0.05). All data are represented as the mean ± SEM. Asterisks denote p < 0.05; all statistics are one-way ANOVA followed by a Tukey’s HSD post-hoc test.
Odors Evoke Activity in MBON Dendrites in the b0 Lobe
To further understand the role of the M4/6 neurons in shaping

a behavioral response, we used VT1211-GAL4 to express

GCaMP6m (Chen et al., 2013) in the M4b0/MBON-b02mp and

M6/MBON-g5b02a neurons and performed two-photon func-

tional calcium imaging to monitor odor-evoked activity in living

flies. We exposed flies to 5 s pulses of methylcyclohexanol

(MCH) and octanol (OCT), the same odors used in training,

and monitored changes in GCaMP fluorescence in the dendrites

of M4b0/MBON-b02mp and M6/MBON-g5b02a in the MB lobe

tips (Figure 3A). The magnitude of the dendritic odor-evoked re-

sponses was smaller (and with our experimental settings below

the level of noise) in MBON dendrites in the g lobe (Figure S3)
420 Neuron 86, 417–427, April 22, 2015 ª2015 The Authors
than dendrites in the b0 lobe (Figures 3B and 3C). Since the

behavioral data indicated that M4b0/MBON-b02mp and M6/

MBON-g5b02a neurons are both required for memory perfor-

mance (Figure 2B versus Figure 2C), we concentrated further

analysis on the MBON dendrites in the b0 lobe. Exposing flies

to MCH or OCT elicited robust calcium transients throughout

the MBON dendrites in the b0 lobe (Figures 3B and 3C). Further-

more, odor-evoked calcium transients were also evident in the

presynaptic boutons of the output neurons (Figure 3D), suggest-

ing the odor-driven input to the dendrites is propagated to

the release sites. The MBON dendrites in the b0 lobe also

responded when flies were exposed to other odors such as

6-methyl-5-hepten-2-one and pentyl acetate (Figure S4A).



In addition, memory performance was impaired when M4b0/
MBON-b02mp and M6/MBON-g5b02a neurons were blocked af-

ter flies were trained with these odors (Figure S4B), suggesting

that the role of the M4/6 neurons in memory retrieval is not spe-

cific to OCT and MCH.

Learning Bidirectionally Alters Relative Odor Drive to
M4b0 Neurons
We next determined whether the odor-evoked activity of the

MBON dendrites in the b0 lobe was modified by training. Flies

were trained using either an appetitive or an aversive condition-

ing protocol and were subsequently captured and prepared for

live-imaging of odor-evoked activity within a window of 1–2 hr af-

ter training. Importantly, blocking M4b0/MBON-b02mp and M6/

MBON- g5b02a neurons impaired both appetitive and aversive

memory 2 hr after training (Figures 3E, 3F, and S5 for permissive

temperature controls). We monitored the calcium responses

evoked in MBON dendrites in the b0 lobe (example traces shown

in Figures 3G and 3H) by exposing the flies to either the odor that

had been previously paired with sugar reward or electric-shock

punishment (the CS+), or to the non-reinforced odor (the CS�).

We also compared the odor-evoked responses in flies that

were mock-trained—subjected to the full conditioning regimen

of odor presentation but without reinforcement delivery. In addi-

tion, we performed both the aversive and appetitive protocols

using either MCH as the CS+ and OCT as the CS�, or OCT as

the CS+ and MCH as the CS�. Strikingly, in both appetitive

conditioning experiments the response to the CS+ relative to

the CS� was decreased when compared to the responses in

mock trained flies (Figures 3I and 3K). Moreover, this relationship

was reversed in each experiment following aversive training, with

the relative CS+ to CS� evoked response being increased when

compared to the responses in mock trained flies (Figures 3J and

3L). These data suggest that the relative odor drive to the MBON

dendrites in the b0 lobe is bidirectionally tuned by olfactory con-

ditioning, and they are consistent with the relative conditioned

odor drive being depressed by appetitive learning and potenti-

ated by aversive learning.

Direct Manipulation of M4/6 Neurons Can Mimic
Learning in Naive Flies
We reasoned that if a reduced conditioned-odor drive to MBON

dendrites in the b0 lobe was an important element of appetitive

learning, we might be able to mimic conditioned approach by

directly inhibiting the M4/6 neurons. In general, naive flies are

repelled by high concentrations of odor when presented in a

choice with a clean air stream (Tully and Quinn, 1985; Heimbeck

et al., 2001). We therefore used UAS-shits1 to test whether M4/6

neuron block altered naive odor avoidance behavior. Control

flies that were either heterozygous for the R21D02-GAL4,

VT1211-GAL4, or the UAS-shits1 effector transgene showed

robust avoidance of MCH when presented at 100-, 1,000-, and

4,000-fold dilutions. Strikingly, at the two lower concentra-

tions, blocking M4/6 neurons converted naive odor avoidance

behavior into significant odor approach (Figure 4A). A similar

abolishment and reversal of avoidance was also observed

with OCT, although the effective concentration range appears

to be different (Figure 4B). Interestingly, blocking only the
M6/MBON-g5b02a neurons blunted the aversion but did not

induce behavioral reversal (Figures 4C and 4D), indicating that

the M4b0/MBON-b02mp neurons play a particularly prominent

role. Furthermore, no significant effects on odor avoidance

were observedwhen the same flieswere tested at the permissive

temperature (Figure S8) or when blocking the previously

described MB-V2a/MBON-a2sc and MB-V2a0/MBON-a03 (Sé-

journé et al., 2011; Aso et al., 2014) or MB-V3/MBON-a3 (Pai

et al., 2013; Plaçais et al., 2013; Aso et al., 2014) output neurons

that are dendritic to the vertical lobes of the mushroom body

(Figures 4C and 4D). We speculate that the loss of the phenotype

at high MCH concentration reflects either a ceiling effect or a

significant role for the LH. Nevertheless, these data indicate

that the observed behavioral reversals are specific to blocking

M4b0/MBON-b02mp and M6/MBON- g5b02a neurons and

that inhibiting these output pathways can convert odor avoid-

ance into odor attraction in a manner that reflects appetitive

conditioning.

Our imaging data also indicate that the relative CS+ to CS�
odor drive to MBON dendrites in the b0 lobe is increased after

aversive conditioning. We therefore tested whether activation

of M4/6 neurons promoted avoidance behavior. We expressed

a UAS-ReaChR red-light-activated channelrhodopsin transgene

(Inagaki et al., 2014) in M4/6 neurons using R21D02-GAL4

and allowed flies to choose between an unlit arm and a red-

light-illuminated arm in a T-maze. Whereas all control flies

distributed evenly between the tubes, a significant fraction of

R21D02;ReaChR flies avoided the illuminated arm (Figure 4E),

consistent with M4/6 neuron activity driving avoidance behavior.

Therefore, both the imaging of odor-evoked responses after

training and the behavioral experiments reveal bidirectional

phenotypes that are consistent with the KC-M4/6 junction being

a key site that provides direction to odor-driven behavior after

aversive and appetitive training.

DISCUSSION

Many prior studies, including our own, have concluded that

mushroom body neurons are dispensable for naive odor-driven

behavior and subsets are either required or are dispensable for

particular memory functions (Heimbeck et al., 2001; Heisenberg

et al., 1985; Dubnau et al., 2001; McGuire et al., 2001; Schwaer-

zel et al., 2002; Krashes et al., 2007; Cervantes-Sandoval et al.,

2013; Isabel et al., 2004; Huang et al., 2012; Perisse et al., 2013;

Xie et al., 2013). However, these experiments simultaneously

blocked all the outputs from a given population of KCs using

cell-wide expression of shits1. Our results here suggest that these

models should be reconsidered. Blocking the specific M4b/

MBON-b2b02a, M4b0/MBON-b02mp, and M6/MBON-g5b02a
output from themushroom body, as opposed to blocking all out-

puts, has a radical effect on naive odor-driven behavior. We pro-

pose that ordinarily, in naive flies, the multiple mushroom body

output channels are ultimately pooled and contribute a net

zero to odor-driven behavior. Therefore, if one uses a mushroom

body neuron-driven UAS-shits1 that simultaneously blocks all

outputs, there is no apparent effect on naive behavior. If, how-

ever, one blocks only one channel, or alters its efficacy by

learning, the odor-driven behavior can be changed. A similar
Neuron 86, 417–427, April 22, 2015 ª2015 The Authors 421



Figure 3. Odor-Evoked Responses in MBON Dendrites in the b0 Lobe Are Bidirectionally Altered by Conditioning

(A) Schematic of the imaging plane and area of interest of the M4b0/MBON-b02mp neuron.

(B) Example pseudocolored traces of calcium transients measured in the MBON dendrites in the b0 lobe in a naive fly exposed to MCH or OCT, the odors used in

conditioning. Scale bar is 10 mm.

(C and D) Time courses of odor-evoked GCaMP responses (DF/F) collected at the level of the M4b0 neuron dendrites (C) (n = 18, nine animals) or presynaptic

boutons (D) (n = 9, nine animals). Traces represent mean odor responses (solid line) and standard deviation (gray shading). Arrows indicate onset of odor

presentation.

(E and F) Blocking M4b0/MBON-b02mp and M6/MBON-g5b02a neurons significantly impairs 2 hr appetitive (E) (n R 16, p < 0.05) and aversive memory retrieval

(F) (n R 19, p < 0.05). Statistics are one-way ANOVA followed by a Tukey’s HSD post-hoc test. Data shown are the mean ± SEM.

(G and H) Single example traces of calcium transients evoked by trained odors recorded from MBON dendrites in the b0 lobe 1–2 hr after (G)

appetitive and (H) aversive conditioning. In these examples CS+ is the MCH responses and CS� is the OCT response. Arrows indicate onset of odor

presentation.

(I) Difference of responses evoked by the CS+ (MCH in red, OCT in blue) and CS� following appetitive training relative to the mean transients of mock trained flies

(also see Figures S6 and S7).

(J) Difference of responses evoked by the CS+ (MCH in red, OCT in blue) and CS� following aversive training. Shock training shifts the curve toward a relative

increase of the CS+ response, while sugar training shifts the curve in the opposite direction. Data shown are themean ± SEM. Light gray boxes indicate the time of

the odor exposure.

(legend continued on next page)
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Figure 4. Blocking M4/6 Neurons Mimics

Appetitive Conditioning by Converting

Naive Odor Avoidance into Attraction

(A) Blocking M4/6 neurons in naive flies with either

R21D02 (M4b/MBON-b2b02a,M4b0/MBON-b02mp,

and M6/MBON-g5b02a) or VT1211-driven (M4b0/
MBON-b02mp and M6/MBON-g5b02a) UAS-shits1

reverses the behavioral response to 1:1,000 and

1:4,000 MCH. Robust avoidance behavior is con-

verted into approach behavior (1:1,000: nR 8, p <

0.05;1:4,000:nR14,p<0.05).R21D02;UAS-shits1

flies showed a significant decrease in avoidance of

1:100MCH (n = 8, p < 0.05), but VT1211;UAS-shits1

flies were not significantly different from VT1211

alone (n = 8, p > 0.05).

(B) Blocking M4/6 neurons in naive flies also im-

pairs or reverses OCT avoidance (1:100: n R 8,

p < 0.05; 1:1,000: nR 11, p < 0.05; 1:4,000: n = 8,

p < 0.05 for VT1211;shits1 and p > 0.05 for

R21DO2;shits1).

(C and D) Blocking M6/MBON-g5b02a neurons in

naive flies with R66C08-driven UAS-shits1 reduces

avoidance toMCH (C) (1:1,000 dilution; nR 10, p <

0.05) and OCT (D) (1:1,000 dilution; n = 6, p < 0.05).

Blocking the vertical a-lobe output MB-V3/MBON-

a3 (n R 5, p < 0.05) using G0239-GAL4 does not

impair naive MCH or OCT avoidance. Blocking the

MB-V2a/MBON-a2sc and MB-V2a0/MBON-a03
verticala- anda0-lobeoutputs (nR6,p<0.05) using

NP2492-GAL4 does not impair MCH avoidance.

(E) Flies avoid optogenetic activation of M4b/

MBON-b2b02a, M4b0/MBON-b02mp, and M6/

MBON-g5b02a neurons (n R 13, p < 0.05). Data

are the mean ± SEM. Asterisks denote p < 0.05; all

statistics are one-way ANOVA followed by a Tu-

key’s HSD post-hoc test.
logic could also account for why we observe clear memory

retrieval defects when blocking M4b0/MBON-b02mp and M6/

MBON-g5b02a neurons that presumably pool outputs from the

tip of the g and b0 lobe, yet blocking all a0b0 neuron outputs did

not demonstrably disrupt later memory retrieval (Krashes et al.,

2007; Krashes and Waddell, 2008). Others have shown a role

for a0b0 neuron output to retrieve earlier forms of memory

(Wang et al., 2008; Cervantes-Sandoval et al., 2013).

Both our physiological and behavioral results are consistent

with a depression of the M4b0/MBON-b02mp and M6/MBON-

g5b02a output being sufficient to code learned approach.

Learning-related plasticity has been reported at the b-lobe out-

puts in both bees (Okada et al., 2007) and locusts (Cassenaer

and Laurent, 2012), although the importance of these synaptic

connections in the behavior of these insects is not known. At

this stage we cannot be sure that our observed decrease in

the relative odor drive reflects plasticity of the synapses between

odor-specific KCs and the M4/6 neurons. However, it seems

plausible, because this synaptic junction is addressed by the
(K and L) Bar graphs illustrate peak ± 0.5 s values of the odor response differe

difference to the mean of the mock (see Experimental Procedures, Equation 2), f

CS+: n (appetitively trained) = 22, 11 animals, n (mock) = 19, 11 animals, p < 0.05

OCT as CS+: n (appetitively trained) = 59, 32 animals, n (mock) = 58, 31 animals

p < 0.05; statistics are Mann-Whitney U-test.
relevant rewarding dopaminergic neurons (Burke et al., 2012).

Given that blocking M4b0/MBON-b02mp and M6/MBON-g5b02a
neurons converts avoidance to approach, other mushroom

body output channels, perhaps some of which lie on the vertical

a-lobe projection (Séjourné et al., 2011; Plaçais et al., 2013),

must drive the approach behavior. It is therefore conceivable

that a similar plasticity of odor drive to these putative approach

outputs could be critical for aversive conditioning. Such an

idea is consistent with several prior reports of aversive memory

traces that are specific to the vertical a-branch of the mushroom

body (Yu et al., 2005, 2006; Cervantes-Sandoval and Davis,

2012). In addition, aversive learning has been reported to

depress odor drive in the vertical lobe of downstream MB-V2a/

MBON-a2sc and MB-V2a0/MBON-a03 neurons (Séjourné et al.,

2011; Aso et al., 2014) and to potentiate odor drive of MB-V3/

MBON-a3 output neurons (Pai et al., 2013; although Plaçais

et al. [2013] reported potentiation after appetitive learning). How-

ever, it is notable that blocking either the MB-V2a/MBON-a2sc

and MB-V2a0/MBON-a03 neurons or MB-V3/MBON-a3 neurons
nce curves for trained and mock trained animals expressed as a percentage

or (K) appetitive or (L) aversive paradigms. Data are mean ± SEM; for MCH as

; n (aversively trained) = 24, 13 animals, n (mock) = 19, 11 animals, p < 0.05; for

, p < 0.05; n (aversively trained) = 37, 20 animals, n (mock) = 29, 16 animals,
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did not affect naive odor avoidance behavior in our experiments

or those of others (Séjourné et al., 2011; Pai et al., 2013; Plaçais

et al., 2013). Therefore, although MB-V2a/MBON-a2sc, MB-

V2a0/MBON-a03, and MB-V3/MBON-a3 neurons are required

for memory expression, it is not currently known which reinforc-

ing neurons address MB-V2a/MBON-a2sc, MB-V2a0/MBON-

a03, and MB-V3/MBON-a3 connections and how these outputs

specifically contribute to odor-guided behavior.

Our physiological analyses suggest bidirectional plasticity of

odor-evoked responses, with aversive learning increasing the

relative conditioned odor drive to the M4b0/MBON-b02mp neu-

rons. This could account for why output from M4/6 neurons is

also required for expression of aversive memory. Moreover,

whereas blocking the M4b/MBON-b2b02a, M4b0/MBON-b02mp,

and M6/MBON-g5b02a neurons converts odor avoidance into

approach, activation of M4b/MBON-b2b02a, M4b0/MBON-

b02mp, and M6/MBON-g5b02a neurons drives avoidance. It

therefore seems likely that plasticity of the relative odor drive

to M4b0/MBON-b02mp neurons is also part of the aversive mem-

ory engram. Again, we do not know that the increased odor drive

after training reflects synaptic potentiation between odor-spe-

cific KCs and the M4b0/MBON-b02mp neurons. Increased odor

drive to M4b0/MBON-b02mp neurons could, for example, also

result from plasticity elsewhere in the KCs that enhances signal

propagation along the horizontal KC arbor. Nevertheless, the

MB-M3 dopaminergic neurons that are required to reinforce

aversive memory also innervate the tips of the b and b0 lobe
(Aso et al., 2012). In addition, a recent study reported that aver-

sive learning specifically decreased unconditioned odor-evoked

neurotransmission from the g neurons (Zhang and Roman,

2013), a result that presumably would mirror a relative increase

in the response to the reinforced odor. Lastly, aversive condition-

ing using relative shock intensity utilizes the rewarding dopami-

nergic neurons (Perisse et al., 2013) that occupy the same zones

on the mushroom body as the M4b0/MBON-b02mp and M6/

MBON-g5b02a neuron dendrites. With the caveat that GRASP

is only an indicator of proximity, our anatomical studies suggest

that dendrites of rewarding dopaminergic neurons may connect

to the M4b0/MBON-b02mp and M6/MBON-g5b02a neuron pre-

synaptic terminals, forming a potential feedback or forward

loop that could serve such a relative-judgment function.

It is perhaps noteworthy that KC outputs in the vertical lobe are

onto excitatory cholinergic MB-V2a/MBON-a2sc and MB-V2a0/
MBON-a03 (Séjourné et al., 2011) and MB-V3/MBON-a3 (Pai

et al., 2013; Plaçais et al., 2013) neurons, whereas the horizontal

outputs are onto glutamatergic, potentially inhibitory (Liu and

Wilson, 2013), M4b/MBON-b2b02a, M4b0/MBON-b02mp, and

M6/MBON-g5b02a neurons. This suggests that distinct signaling

modes may be driven from the bifurcated collaterals of KCs. It

will be crucial to understand how these outputs from the different

branches, and those from discrete lobes, are ultimately pooled

to guide appropriate behavior.
EXPERIMENTAL PROCEDURES

Fly Strains

All flies were reared on standard cornmeal-agar food at either 25�C or 18�C.
The driver lines used were R21D02-GAL4, R66D08-GAL4, R48B04-LexA (Je-
424 Neuron 86, 417–427, April 22, 2015 ª2015 The Authors
nett et al., 2012; Lin et al., 2014), R58E02-LexA (Liu et al., 2012), G0239-GAL4

(Pai et al., 2013), NP2492-GAL4 (Séjourné et al., 2011), and VT1211-GAL4

(Bidaye et al., 2014). GAL4 driver lines were crossed to UAS-shits1 (Kitamoto,

2001) or UAS-ReaChR (Inagaki et al., 2014). GAL4 driver lines, UAS-shits1, or

UAS-ReaChR were crossed to Canton-S flies as controls. For anatomy, driver

lines were combined with UAS-mCD8-GFP (Lee and Luo, 1999), 247-LexA

(Pitman et al., 2011), LexAop-mCD2-mRFP (Lai and Lee, 2006), UAS-

DenMark-mRFP (Nicolaı̈ et al., 2010), or UAS-GFP-Syd-1 (Owald et al.,

2010). GRASP experiments were performed as described (Gordon and Scott,

2009; Pitman et al., 2011).

Confocal Imaging and Immunostaining

All confocal images were acquired on a Leica SP5 at manually adjusted laser

intensity and gain. Brains were dissected on ice and fixed in 4% paraformalde-

hyde. For native fluorophore imaging, samples were incubated and washed in

PBT (0.1% Triton) and PBS before mounting. For immunostainings, brains

were incubated in PBT (0.1% Triton) supplemented with a rabbit anti-DVGlut

primary antibody (Mahr and Aberle, 2006) (1:500 dilution), followed by incuba-

tion with secondary antibodies (Alexa 647, Sigma).

Two-Photon Calcium Imaging

We imaged 3- to 8-day-old UAS-GCaMP6m; VT1211-GAL4 female flies

1–2 hr after training. Flies were trained using either 4-MCH or 3-OCT as the

CS+ and the reciprocal odor as the CS� in a T-maze (see below). Mock

trained flies were exposed to MCH and OCT with no sugar or shock reinforce-

ment. For imaging, flies were briefly anesthetized < 10 s on ice and mounted

in a custom-made chamber. The head capsule was opened under room tem-

perature sugar-free HL3-like saline (Yoshihara, 2012). The legs and proboscis

were immobilized with wax. Fluorescence was excited using 70 fs pulses, 80

MHz repetition rate, centered on 910 nm generated by a Ti-Sapphire laser

(Chameleon Ultra II, Coherent). Images of 256 3 128 pixels were acquired

at 11.5 Hz using two-photon microscopy (Scientifica) with a 40X, 0.8 NA wa-

ter-immersion objective, controlled by ScanImage 3.8 software (Pologruto

et al., 2003). Odors were delivered on a clean air carrier stream using a

custom-designed system (Shang et al., 2007), which also synchronizes the

timing of odor delivery and the two-photon image acquisition. Two-photon

fluorescence images were manually segmented using ImageJ. Movement

of the animal was small enough such that images did not require registration.

The fluorescence over the defined region of interest was summed at each

frame to yield one fluorescence trace, F(t). Where possible, each hemisphere

was separately evaluated and treated as an independent ‘‘n.’’ All subsequent

analyses utilized custom-written Matlab routines. Flies were exposed to two

consecutive 5 s clean air puffs with 30 s intervals. First responses were dis-

carded and second responses were defined as the ‘‘no odor response.’’ After

brief rest, flies were exposed to 5 s MCH (air stream passing over 10�2 odor

dilution in mineral oil, and then further blended 1:9 with a clean air stream),

then 30 s clean air, followed by 5 s OCT pulse. This odor stimulation protocol

was delivered twice. Baseline fluorescence (F) corresponds to the average

fluorescence signal across an 8 s window starting 9 s after scan onset and

terminating 3 s before the first air or odor exposure. The baseline was then

used to compute the relative change in fluorescence (DF(t)/F = (F(t) � F)/F).

Responses were determined to start 2.5 s after the instrumentation odor de-

livery command and to end within 12.5 s. This delayed onset accounts for the

computational, electronic, mechanical, and fluid flow lag. The response

curves were normalized and averaged over the two paired odor

presentations:

CS+ =�
n ðtÞ= 1

2

X2

i = 1

CS
+ =�
n;i ðtÞ

R 12:5

0

 
CS+

n;i ðtÞ+CS�
n;i ðtÞ

2

!
dt

(Equation 1)

CS
+ =�
n;i ðtÞ are the DF(t)/F response curves of the ‘‘n’’th experiment to the

‘‘i’’th odor stimulation protocol. The normalization factor was chosen to be

the average of the total CS+ and CS� response to avoid bias toward one

or the other and was calculated as the sum over the acquisition time points

of the DF(t)/F curves multiplied by the sampling interval. We then computed

the odor response difference for each n, Dn(t) = CSn
+ � CSn

�. To quantify



the difference between the trained and mock groups, the area under the peak

of each curve (defined as 5 ± 0.5 s after odor delivery) was computed and ex-

pressed as a percentage difference to the mean of the mock response

curves:

Peakn = 1003

R 5:5

4:5
DnðtÞdt � hDimock

hDimock

(Equation 2)

< D > mock is the mean of the odor response difference curves in the corre-

sponding mock group:

hDimock =
1

Nmock

XNmock

j = 1

Z 5:5

4:5

DjðtÞdt (Equation 3)

where the summation is over the experiments in the relevant mock group and

Nmock is the number of experiments in that group.We note that by inspection of

Equation 2, the average of the Peakn values for each mock group will be zero.

The Peak values obtained from each trained group were compared with

those of the corresponding mock group using the Mann-Whitney U-test

(see Figure S6 for normalized odor response traces and Figure S7 for analysis

overview). The learning-induced difference curve, L(t), is the difference

between the mean ± SEM of the Dn(t) curves of the trained and corresponding

mock groups. The errors were combined in the usual way, i.e., error in

LðtÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SEMðtÞ2trained +SEMðtÞ2mock

q
. Graphs were created in Prism 6 (GraphPad

Software).

Behavior

For appetitive and aversive memory testing, flies were reared at 25�C and 4- to

9-day-oldmixed-sex populations were tested together in all experiments. Flies

were starved for 21–24 h prior to appetitive training (Krashes and Waddell,

2008). Flies were also starved after training for 2 hr and 24 hr memory testing.

Aversive and appetitive training was performed as described (Perisse et al.,

2013). Briefly, for appetitive conditioning flies were exposed to the CS� for

2min followed by 30 s of air and then to the CS+ in the presence of dry sucrose

for 2 min. For aversive conditioning flies were exposed to the CS+ for 1 min

with twelve 90 V electric shocks at 5 s intervals followed by 45 s of air and

the CS� for 1 min. For testing flies were given 2 min to choose between the

CS+ and CS� in a T-maze. Performance index (PI) was calculated as the num-

ber of flies approaching (appetitive memory) or avoiding (aversive memory) the

conditioned odor, minus the number of flies going the other direction, divided

by the total number of flies in the experiment. A single PI value is the average

score from flies of the identical genotype tested with the reciprocal reinforced/

non-reinforced odor combination (Tully and Quinn, 1985; Perisse et al., 2013).

Permissive temperature was 23�C and restrictive 32�C. Odor dilutions were

adjusted between experiments and odor batches to minimize bias (MCH 5–

8 ml in 8 ml mineral oil and OCT 7–8 ml in 8 ml mineral oil). All memory experi-

ments utilized a transgenic line with UAS-shibirets1 on the X and III

chromosome.

To assay naive odor choice, 5-day-old flies were starved for 21–24 hr prior to

testing. Flies were allowed to choose betweenMCH or OCT (1:100, 1:1,000, or

1:4,000 dilution in mineral oil) and mineral oil-suffused air streams for 2 min.

Preference index was calculated as the number of flies approaching the

odor minus the number approaching mineral oil, divided by the total number

of flies in the experiment. All naive odor choice experiments utilized a trans-

genic line with UAS-shits1 on the III chromosome, and crosses were reared

at 18�C. One ‘‘n’’ corresponds to a single test trial.

For optogenetic experiments flies were kept on food supplemented with

1 mM retinal for 2 days prior to testing. Three high-power LEDs (700 mA,

centered at 630 nm) were mounted on one arm of the T-maze and triggered

for 100 ms at 5 Hz. Flies were given 1 min to choose between the illuminated

or non-illuminated arm.

Statistical Analysis

Data were analyzed using Matlab and Prism 6. All behavioral data were

analyzed with a one-way ANOVA followed by a Tukey’s honestly signifi-

cant difference (HSD) post-hoc test. Imaging data were analyzed using a

Mann-Whitney U-test. Definition of statistical significance is set at p <

0.05.
SUPPLEMENTAL INFORMATION

Supplemental Information includes eight figures and three movies and can be

found with this article online at http://dx.doi.org/10.1016/j.neuron.2015.03.025.

AUTHOR CONTRIBUTIONS

D.O. and S.W. conceived this project and designed all experiments. J.F., G.D.,

E.P., and D.O. performed all behavioral experiments. Live-imaging was per-

formed by D.O. using custom apparatus and software designed by D.O. and

C.B.T. and constructed and programmed by C.B.T. Imaging data were

analyzed by D.O and C.B.T. using software programmed by C.B.T. and de-

signed by D.O. and C.B.T. GAL4 lines were visually screened and selected

by W.H. and D.O. Anatomical data were produced by W.H. and D.O. The

manuscript was written by S.W. and D.O.

ACKNOWLEDGMENTS
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