
ArrayXPath: mapping and visualizing microarray
gene-expression data with integrated biological
pathway resources using Scalable Vector Graphics
Hee-Joon Chung1, Mingoo Kim1, Chan Hee Park1, Jihoon Kim1 and Ju Han Kim1,2,*

1Seoul National University Biomedical Informatics (SNUBI) and 2Human Genome Research Institute, Seoul National
University College of Medicine, Seoul 110-799, Republic of Korea

Received February 15, 2004; Revised April 18, 2004; Accepted May 3, 2004

ABSTRACT

Biological pathways can provide key information on
the organization of biological systems. ArrayXPath
(http://www.snubi.org/software/ArrayXPath/) is a
web-basedservice formappingandvisualizingmicro-
array gene-expression data for integrated biological
pathway resources using Scalable Vector Graphics
(SVG). By integrating major bio-databases and
searchingpathway resources,ArrayXPathautomatic-
ally maps different types of identifiers from microar-
ray probes and pathway elements. When one inputs
gene-expression clusters, ArrayXPath produces a list
of the best matching pathways for each cluster. We
appliedFisher’sexact test and the falsediscovery rate
(FDR) to evaluate the statistical significance of
the association between a cluster and a pathway
while correcting the multiple-comparison problem.
ArrayXPath produces Javascript-enabled SVGs for
web-enabled interactive visualization of pathways
integrated with gene-expression profiles.

INTRODUCTION

Cluster analysis is one of the most powerful methods for the
exploratory analysis of gene-expression data. Genes clustered
on the basis of similarity measures between expression profiles
also have positional associations along the chromosomes (1,2),
exhibit common cis-regulatory elements in their upstream
regions (3) and are coordinated by shared sets of regulators
(4). For annotation, gene-expression clusters can be assigned
to the well-known functional categories of the MIPS classifi-
cation (5) or the Gene Ontology terms (6) using annotations
from public databases (3,7,8).

Biological pathways can provide key information about the
organization of biological systems. Major publicly available

biological pathway resources, including the Kyoto Encyclo-
pedia of Genes and Genomes (KEGG) (9), GenMAPP (10) and
BioCarta (http://www.biocarta.com), provide a large collec-
tion of biological pathway diagrams. Tools have been devel-
oped to associate microarray gene-expression data with
pathway diagrams to create a comprehensive overview and
interpretation of the expression profiles (10–13). However,
these have some limitations. Some rely on static image files
that are difficult to manage. Although some provide dynamic-
ally generated diagrams with viewers and editors, the diagrams
as well as the tools are encoded in their own proprietary for-
mats. More importantly, some are monolithic, i.e. the data and
the visual presentation layers of the pathways are not clearly
separated (14). Although Systems Biology Markup Language
(SBML) (15) proposes an eXtensible Markup Language
(XML)-based standard for encoding pathway data structures,
it does not provide one for encoding static and/or dynamic
graphics. In JDesigner (http://www.cds.caltech.edu/�hsauro/
JDesigner.htm), a Win32 application for editing, visualizing
and simulating pathway diagrams encoded in SBML, the
visual presentation layer is tightly coupled to the data layer
so that it is not easy to integrate them with other useful bioin-
formatics resources.

One problem that complicates the mapping of expression
data onto pathways is that each pathway resource uses differ-
ent types of identifiers to annotate the nodes containing genes,
proteins, enzymes, metabolites, complexes and networks. For
example, the identifier of a pathway node may be a gene
symbol, GenBank accession number, UniGene ID (sometimes
already expired), LocusLink ID, EC (Enzyme Commission)
number, or a combination of these, or even null or ambiguous
descriptions. Moreover, microarrays of different platforms
also use different sets of identifiers for the probes. If
one has already mapped the identifiers of predefined pathway
nodes and microarray probes, it may be possible to map
gene-expression profiles onto pathway diagrams. Without a
powerful and general-purpose identifier-mapping engine, how-
ever, it may be difficult to map the diverse pathway–node and
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microarray probe identifiers from different resources reliably.
This may in part be why the previously developed tools
do not cover all microarray platforms and all public
pathway resources but are limited to predefined ones for
their analyses.

Clearly separating the data and the presentation layers based
on standards and implementing a reliable identifier-mapping
engine to map gene-expression profiles correctly onto path-
ways may benefit pathway-based analyses of microarray data.
To our knowledge, there is no web-based service integrating
major public pathway resources, mapping diverse identifiers,
applying sophisticated statistical tests and visualizing inte-
grated pathway and cluster diagrams. Here we use Scalable
Vector Graphics (SVG: http://www.w3.org/TR/SVG), a stan-
dard for describing two-dimensional graphics in XML. SVG
drawings can be made interactive and dynamic using a sup-
plemental scripting language accessing SVG Document
Object Models (DOMs) with a rich set of event handlers.
SVG files can then be visualized on the client side with a
web browser using a plug-in for SVG.

Here we present ArrayXPath. This is software that (i)
receives a clustered gene-expression profile of any microarray
platform in a tab-delimited text format via an Internet con-
nection; (ii) automatically resolves the microarray probe
identifiers (i.e. GenBank accession number, UniGene ID,
LocusLink ID, official gene symbol, SwissProt ID or TrEMBL
ID); (iii) searches major public pathway resources (i.e.
GenMAPP, KEGG and BioCarta); (iv) maps the different
identifier sets between microarray probes and pathway
nodes; (v) tests the statistical significance of the association
between gene-expression clusters and pathways (hence pro-
viding an automated annotation of clusters with the ranked
pathways); (vi) visualizes expression levels onto pathways;
and (vii) allows web-based user navigation through multiple
clusters and pathways enriched with animation features, using
Javascript-enabled SVG.

INPUT AND OUTPUT

Input

Input to ArrayXPath is a common tab-delimited text file for a
clustered gene-expression profile: hProbe IDi-hCluster IDi-
[hExpression level at conditionii]. The first column must
contain either a GenBank accession number, UniGene ID,
LocusLink ID, SwissProt ID, TrEMBL ID or an official
gene symbol. The second column contains the cluster ID.
The third to i-th columns are optional and contain expression
levels. ArrayXPath does not perform cluster analysis per se.
The input format is designed primarily for a partitional clus-
tering algorithm (i.e. K-means or Self-Organizing Maps), but a
clustering result from a hierarchical algorithm (i.e. dendro-
gram) may be applied by choosing a threshold carefully.

Output

ArrayXPath produces a list of the best matching pathways for
each cluster with statistical significance scores of non-random
association. Relevant pathways are listed in ascending order of
P-values (and multiple-comparison corrected Q-values) (16).
ArrayXPath provides a summary statistic for the overall

mapping between input clusters and all pathways matched.
If one chooses a pathway from the list, ArrayXPath outputs
a Javascript-enabled SVG file, color-coded both by expression
level and by cluster membership at each pathway–node level.

One can zoom in and out for better navigation throughmulti-
ple clusters and pathways with animation features using Java-
script-enabled SVG. One can choose particular experimental
conditions and any combination of clusters. The sequential
alteration of expression levels across conditions can be viewed
as an animated visual. Because it is tricky to overlap more than
one set of expression levels (i.e. more than one condition) at a
time on the same pathway diagram, ArrayXPath provides an
additional plot diagram to show the expression levels of all
clusters across all conditions (Figure 1).

A node in a pathway may be composed of more than one
element. For example, an enzyme complex in a KEGG path-
way may be composed of many proteins. ArrayXPath
automatically resolves the appropriate element IDs for the
mapping process with microarray probes, inserts the elements
as a legend and separately visualizes the expression levels at
each element level. Each pathway node is enriched with a
hyperlink to an automated annotation page for the correspond-
ing gene product(s) provided by our integrated database, GRIP
(Genome Research Informatics Pipeline).

METHODS

Pathway integration and resolving diverse identifiers

ArrayXPath searches publicly available major pathway
resources including KEGG, GenMAPP and BioCarta. We
have created a repository of meta-information by parsing
SBML files for KEGG and HTML files for GenMAPP
(http://www.genmapp.org/MAPPSet-Human/MAPP_index.
htm) and BioCarta (http://www.biocarta.com/genes/
allPathways.asp). As mentioned in the Introduction, a variety
of identifiers, including GenBank accession number, UniGene
ID, LocusLink ID, EC number, official gene symbol,
SwissProt ID and TrEMBL ID, are inconsistently used for
the pathway nodes as well as microarray probes, resulting
in enormous ambiguity in integrating data from different
resources. We have successfully integrated the major data-
bases including GenBank, UniGene, LocusLink, SwissProt,
Ensemble and UCSC Golden Path: refGene, knownGene,
all_mRNA and all_est. Homologous pairs for the probes are
resolved using NCBI’s Homologene. NetAffyx is used for
Affymetrix oligonucleotide arrays (http://www.affymetrix.
com/analysis/index.affx). When one inputs a clustered
gene-expression profile complying with the ArrayXPath
input format (see Input and Output), ArrayXPath automatic-
ally matches the probe identifiers of microarray data to the
identifiers of pathway nodes using a pre-computed table of
identifiers from the major databases.When a pathway node is a
composite type, i.e. consists of more than one element,
ArrayXPath separately matches and visualizes each probe
identifier to the corresponding individual element of the com-
posite object.

Table 1 shows the distribution of the pathway nodes iden-
tified fromKEGG, GenMAPP and BioCarta forHomo sapiens.
We found 1942 redundant nodes representing genes
and proteins for the 45 GenMAPP pathways. Among the
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1454 non-redundant elements, ArrayXPath successfully
assigned 1391 gene products (95.7%) to official gene symbols
(n = 1329; 91.4%), LocusLink IDs (n = 39; 2.7%) or SwissProt
IDs (n = 23; 1.6%). Only 63 (4.3%) remain unresolved because
of ambiguity. KEGG has 256 non-composite (i.e. simple) and
121 composite elements (i.e. enzymes), containing 256 and
505 gene products, respectively. Among the 256 simple-type
elements, 21 appear as members of composite-type elements.

Overall, KEGG has 740 unique elements and ArrayXPath
successfully assigned all of them (100%) either to official
gene symbols (n = 720; 97.3%) or to LocusLink IDs (n =
20; 2.7%).

Overall, ArrayXPath identified 3008 gene products for the
three major pathways. We created a pre-computed table link-
ing these elements to all resolvable GenBank accession num-
bers, to the UniGene, LocusLink, SwissProt and TrEMBL IDs

Figure 1. ArrayXPath maps gene-expression profiles onto pathway resources and visualizes pathway diagrams color-coded by gene-expression level. The control
panel on the left side permits users to interactively navigate the pathway and plot diagrams. As shown in the inset screenshot, ArrayXPath provides summary
information for each pathway node by integrating major public databases.
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and to official gene symbols for the reliable mapping of incom-
ing microarray probe identifiers. The accuracy, reliability and
coverage of this identifier-resolving process are essential for
the validity of the pathway lists, which are thus matched to a
cluster of microarray probes.

Statistical significance testing and false discovery rates

ArrayXPath determines the statistical significance of the asso-
ciation between a gene-expression cluster and a pathway in
terms of the non-random proportion of matched entities. Spe-
cifically, ArrayXPath applies Fisher’s exact test by construct-
ing a 2 · 2 contingency table containing the two cluster
memberships (within and without the cluster) as row variables
and the pathway memberships (within and without the path-
way) as column variables. We used Fisher’s exact test because
a large sample approximation is inappropriate in the pathway
case (a 2 · 2 table often contains a cell with expected
values <5).

Because this approach simultaneously tests the statistical
significances of the associations of a cluster to multiple path-
ways, we also have to deal with the problem of ‘multiple
hypothesis testing’. Two types of error measurements are com-
monly used in multiple hypothesis testing: the family-wise
error rate (FWER) and the false discovery rate (FDR). The
FWER offers a very strict error measure of at least one false
positive result among all significant hypotheses. The FDR is
defined as the expected proportion of false positive results
among all rejected hypotheses multiplied by the probability
of making at least one rejection (17). The FDR offers a much
less strict criterion and hence leads to an increase in power.
Pathways scores (P-values) smaller than a threshold are
considered potentially significant. The percentage of such
pathways identified by chance is the false discovery rate.
The P-value cut-off was decided by determining the FDR
following the scheme of Storey et al. (16).

The FDR provides a useful measure of the overall accuracy
of a set of significant matches. Because our interest lies in
ranking each pathway according to a certain threshold value,
the Q-value is preferred as a measure of significance for any
individual pathway. Assuming that null P-values after the
Fisher’s exact test are uniformly distributed in the density
plot of P-values, the proportion of truly null matches (those
that are equal to p0) can be estimated as the height of the flat

proportion of P exceeding a certain threshold: for the detailed
algorithm for fine-tuning p0 we refer the reader to Storey et al.
(16). After the Q-value is calculated, the maximum P-value
with an estimated Q-value less than or equal to the given
threshold is chosen as the P-value cut-off. We calculated
the Q-values for the matched pathways for each cluster and
listed them in ascending order.

DISCUSSION

ArrayXPath is a web-based service for mapping and visualiz-
ing microarray gene-expression profiles onto major biological
pathway resources. It permits one to input a clustered gene-
expression profile in a tab-delimited text format. Standard
representation of pathway diagrams and the clear separation
of the data and the visual presentation layers will benefit
flexible and extensible integration of bioinformatics modules
as well as heterogeneous genomic data.

We found �3000 non-redundant genes and proteins in the
three major pathway resources for H.sapiens, which is a rela-
tively small number compared with the estimated number of
genes for our species. Once we have integrated public pathway
resources in a standardmanner, it may be possible to extend the
pathway resources to biomedical literature and factual bio-
databases, using text mining and machine learning techniques.
Deciphering thecrosstalk amongpathwaysmayalsobean inter-
esting issue for the system-level understanding of life. Standard
web-based integration of a wide range of bioinformatics
resources will obviously help advance biological science.
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