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Abstract

The heart hypertrophies in response to developmental signals as well as increased workload. 

Although adult-onset hypertrophy can ultimately lead to disease, cardiac hypertrophy is not 

necessarily maladaptive and can even be beneficial. Progress has been made in our understanding 

of the structural and molecular characteristics of physiological cardiac hypertrophy, as well as of 

the endocrine effectors and associated signalling pathways that regulate it. Physiological 

hypertrophy is initiated by finite signals, which include growth hormones (such as thyroid 

hormone, insulin, insulin-like growth factor 1 and vascular endothelial growth factor) and 

mechanical forces that converge on a limited number of intracellular signalling pathways (such as 

PI3K, AKT, AMP-activated protein kinase and mTOR) to affect gene transcription, protein 

translation and metabolism. Harnessing adaptive signalling mediators to reinvigorate the diseased 

heart could have important medical ramifications.

The mammalian heart is a muscle, the fundamental function of which is to pump blood 

throughout the circulatory system to deliver oxygen and nutrients to organs and to transport 

carbon dioxide back to the lungs. In response to an increased workload, typically caused by 

pathological or physiological stimulation, the heart undergoes a growth process named 

hypertrophy, which decreases ventricular wall stress and maintains or even augments pump 

function (BOX 1). However, hypertrophy, from the Greek for ‘increased growth’, is a more 

complex phenomenon than this simple definition might suggest. Cardiomyocytes, which 

represent 85% of the heart mass, are the contracting cells of the heart, and they contain an 

arrayed series of basic contractile units called sarcomeres1–3 (BOX 1). Unlike other cell 

types that comprise the heart (that is, endothelial cells, fibroblasts, immune cells and 

progenitor cells), mammalian cardiomyocytes become terminally differentiated shortly after 
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birth and mostly lose their ability to proliferate, although a low level of cardiomyocyte 

turnover occurs throughout life1,4,5. As a consequence, although cardiac mass can be 

increased by fibroblast proliferation, and possibly also by progenitor cell activity and some 

cardiomyocyte renewal, mass increase primarily occurs through the hypertrophy of 

individual cardiomyocytes (BOX 1). Cardiac hypertrophy commonly occurs in response to 

pathological conditions such as hypertension and myocardial infarction from coronary artery 

disease, which eventually give rise to ventricular remodelling and dilatation, fibrosis, and 

diminished cardiac output2,3. However, the myocardium can also undergo an adaptive form 

of cardiac hypertrophy called physiological hypertrophy, which is fundamentally different 

from pathological hypertrophy because the heart does not develop disease and can even 

benefit from it6. A heart undergoing physiological hypertrophy shows enhanced vascular 

perfusion and metabolism, and the growth process is initiated by molecular pathways 

specific to physiological hypertrophy. This Review discusses the unique structural, 

functional, metabolic and circulatory features of physiological hypertrophy, although we do 

not attempt to cover the even more elaborate literature related to pathological cardiac 

hypertrophy.

Box 1

Cardiac hypertrophy geometries

The heart has the ability to increase its size and, depending on the stimulus, this results in 

physiological or pathological hypertrophy. Hypertrophy itself decreases ventricular wall 

stress by increasing the thickness of this wall. It follows Laplace’s law, which says wall 

stress (or tension) is an inverse function of wall thickness (tension = (pressure × 

radius)/(2 × wall thickness)). Cardiac hypertrophy can be classed as either eccentric or 

concentric growth, based on the geometries of the heart and individual cardiomyocytes 

(see the figure). Non-pathological eccentric hypertrophy is characterized by an increase 

in ventricular volume with a coordinated growth in wall and septal thicknesses, where 

individual cardiomyocytes grow in both length and width. However, eccentric 

hypertrophy under pathological conditions (myocardial infarction or dilated 

cardiomyopathy) can lead to wall dilation with preferential lengthening of 

cardiomyocytes. Physiological stimulation (such as pregnancy or endurance training) can 

also induce a less pronounced form of eccentric hypertrophy2,6. Concentric hypertrophy 

is characterized by a reduction in left ventricular chamber dimension and an increase in 

free wall and septal thicknesses, and individual cardiomyocytes typically increase in 

thickness more than in length (this results in a decreased length/width ratio)2,6. 

Concentric hypertrophy usually arises owing to pathological conditions such as chronic 

hypertension or valvular stenosis. Isometric exercise training, such as wrestling or 

weight-lifting, also induces a milder form of concentric cardiac hypertrophy that is not 

known to be pathological1. The heart can go from a normal state to a state of 

physiological hypertrophy and back, although pathological hypertrophy that produces 

heart failure may be less reversible.
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Characteristics of physiological hypertrophy

Physiological cardiac hypertrophy drives the normal growth of the heart from birth to early 

adulthood (which is known as postnatal or maturational hypertrophy, hereafter referred to as 

postnatal hypertrophy), the growth of the maternal heart during pregnancy, and the growth 

of the heart in well-conditioned athletes as a result of extreme and/or repetitive exercise. 

Postnatal hypertrophy is induced by greater circulatory demands of the growing organism 

and by high circulatory levels of growth hormone and insulin-like growth factor 1 (IGF1)7. 

During postnatal hypertrophy, some of the cardiomyocytes become binucleated, expand 

their contractile apparatus, remodel their extracellular matrix as the heart chambers enlarge 

and wall and septal thicknesses increase, and improve excitation contraction coupling 

efficiency through more elaborate calcium cycling between the transverse-tubule system and 

sarcoplasmic reticulum8,9. In pregnancy-induced physiological hypertrophy, cardiac growth 

is the greatest in the third trimester, as it is associated with the largest expansion in 

circulatory volume and cardiac output requirements for the mother given the rapid growth of 

the fetus10. Finally, exercise-induced cardiac hypertrophy, which was initially empirically 

described in cross-country skiers in the late nineteenth century, was later defined more 

definitively by electrocardiographic studies in the mid-1950s in marathon runners11,12 (BOX 

1).

Physiological hypertrophy is a mild form of growth, typically characterized by a 10–20% 

increase in heart weight normalized to body weight. Heart mass in professional athletes 

assessed by echocardiography routinely demonstrated a slightly, albeit significantly, 

increased value compared with sedentary age-matched control individuals13–15. In healthy 

women, pregnancy is associated with a transient 10–20% increase in total heart mass16. By 

contrast, in all mammals, postnatal hypertrophy typically results in a twofold or greater 

increase in left ventricular mass between birth and adulthood as a result of an increase in the 

average diameter of cardiomyocytes17,18.

Importantly, cardiac function is preserved during physiological cardiac hypertrophy. 

Measurements of systolic function, as assessed by echocardiography, are similar in both 

professional athletes and sedentary control individuals19. Similarly, diastolic function 

remains normal or is marginally enhanced in the athlete’s heart19. In addition, physiological 
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cardiac hypertrophy induced by pregnancy or exercise is fully reversible. In healthy women 

the hypertrophy of the left ventricle normalizes 8 weeks after parturition10. Moreover, 

echocardiographic studies showed that posterior wall thickness and estimated left ventricular 

mass regressed within a few weeks of deconditioning in college- and Olympic-trained 

athletes20,21. This collectively suggests that physiological hypertrophy induced by exercise 

or pregnancy is likely to be harmless, and perhaps even beneficial, in healthy individuals, 

although pre-existing conditions such as inherited cardiomyopathies, arrhythmogenic 

channelopathies or angiogenic imbalance can promote disease and even premature death in 

athletes and mothers22,23.

There is also a net induction in angiogenesis during physiological hypertrophy. Exercise 

training enhances coronary blood flow capacity, coronary artery diameter and the capillary 

to cardiomyocyte ratio throughout the heart24–26. Finally, hypertrophy can affect the 

metabolic substrate profile of the myocardium. Early in cardiac development, glycolysis is 

the major source of energy for proliferating cardiomyocytes. However, after birth, 

mitochondrial capacity increases and fatty acid oxidation becomes the primary metabolic 

pathway for generating ATP in the heart27. Whereas pathological cardiac hypertrophy is 

initially associated with a switch from an oxidative to a glycolytic metabolic profile, 

exercise-induced hypertrophy relies on maintaining a proper balance of glycolytic and fatty 

acid oxidation, as both are augmented28,29.

An important molecular feature of physiological hypertrophy is the absence of induction of 

the molecular stress fetal gene programme that is classically associated with the 

development of pathological hypertrophy30. This pathology-induced stress programme 

includes induction of mRNA for atrial natriuretic factor (ANF), brain natriuretic peptide 

(BNP), skeletal α-actin and β-myosin heavy chain (β-MHC; also known as myosin heavy 

chain 7)1. Genes encoding calcium-handling proteins also remain unchanged during 

physiological hypertrophy, whereas many such genes are altered in pathological hypertrophy 

or heart failure1. Moreover, physiological hypertrophy is not significantly associated with 

interstitial or replacement fibrosis as observed in pathological hypertrophy1. For example, 

levels of collagen I, which confers stiffness to the fibrotic matrix of the heart, remain 

unchanged in the left ventricles of rats subjected to endurance training31,32. Similarly, 

markers of myofibroblast activation that underlie pathological remodelling of the heart, such 

as smooth muscle α-actin, are not detected in exercised rat hearts32.

Physiological hypertrophy at the organ level is triggered at the cardiomyocyte level by a 

restricted number of hypertrophic stimuli, the signals from which converge on a limited 

number of intracellular signal transduction pathways that alter gene expression in the 

nucleus and increase the rates of protein and RNA synthesis to coordinate this unique type 

of growth response. The initiating stimuli for triggering physiological cardiac hypertrophy 

can be separated into stretch-sensitive mechanisms or biochemical signals that include 

neuro-endocrine factors and hormones, and will be discussed below.
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Initiating signals: hormones and receptors

The biochemical signals that underlie physiological hypertrophy are well characterized and 

include ligands for a network of tyrosine kinase receptors and nuclear receptors. Whereas 

pathological cardiac hypertrophy is mediated by the neuro-endocrine hormones endothelin 1 

and angiotensin II (BOX 2), physiological hypertrophy appears to be initiated by different 

ligands that include thyroid hormone, insulin, growth hormone and IGF1 (REF. 2) (FIG. 1). 

Cardiac concentrations of IGF1 but not endothelin 1 or angiotensin II were upregulated in 

professional athletes33. Vascular endothelial growth factors (VEGFs) also affect 

physiological cardiac hypertrophy. For example, postnatal heart growth was impaired in 

Vegfb-null mice34, and mice and rats overexpressing Vegfb in the heart developed cardiac 

hypertrophy characterized by enlarged cardiomyocytes with preserved cardiac function, at 

least early in life35,36.

Box 2

Pathological hypertrophy signalling pathways

Pathological hypertrophy is induced by disorders such as systemic or pulmonary 

hypertension, myocardial infarction, coronary artery disease, genetic mutations in genes 

encoding sarcomeric proteins, diabetic and metabolic cardiomyopathy, viral and bacterial 

myocarditis, valvular insufficiency and congenital heart defects3. Pathological 

hypertrophy is associated with increased rates of myocyte death, fibrotic remodelling and 

decreased systolic and diastolic function that often progresses towards heart failure. 

Angiotensin II, endothelin 1 and catecholamines bind to seven-transmembrane receptors 

that are coupled to and activate heterotrimeric G proteins. In particular, Gq/11 signalling 

activates phospholipase C (PLC), which catalyses the synthesis of inositol 1,4,5-

triphosphate (Ins(1,4,5) P3) and DAG3. Ins(1,4,5)P3 production induces intracellular 

Ca2+ release to then activate calcium/calmodulin-dependent protein kinase (CaMK) or 

calcineurin, which mediate cardiomyocyte growth2. Calcineurin is a calcium-dependent 

protein phosphatase that dephosphorylates nuclear factor of activated T cells (NFAT) 

transcription factors. NFAT forms complexes with the cofactors GATA4 or myocyte 

enhancer factor-2 (MEF2) to transactivate the transcription of hypertrophic target genes 

that are typically maladaptive, although some beneficial or cellular protective genes are 

also activated. For example, numerous genetic or pharmacologic gain- and loss-of-

function approaches have demonstrated the importance of the calcium–calcineurin–

NFAT pathway in regulating the pathological growth of the heart2 (FIG. 2), although 

calcineurin–NFAT signalling downstream of insulin-like growth factor 1 (IGF1) 

signalling could be adaptive62. Other examples of mediators of pathological cardiac 

hypertrophy are the p38 and c-Jun N-terminal kinase (JNK) branches of the MAPK 

cascade, which phosphorylate and activate the GATA4 transcription factor. Sustained 

p38 or JNK activation in the heart leads to cardiomyopathy and heart failure, whereas 

loss-of-function studies demonstrate their function as negative regulators of cardiac 

hypertrophy2. Catecholamines can also signal to adenylyl cyclase (AC) to induce 

activation of protein kinase A (PKA), which then phosphorylates an array of intracellular 

targets, leading to increased calcium release and enhanced contractility; the net effect of 
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this appears to be cardiomyopathic, as it results in increased myocyte apoptosis and 

necrosis. α/β-AR, α- or β-adrenergic receptor; AT-R, angiotensin II receptor; Endo-R, 

endothelin 1 receptor; MAPKK, MAPK kinase; MAPKKK, MAPK kinase kinase.

Thyroid hormone as a transcriptional activator of post-natal growth

Although the influence of the thyroid hormone triiodothyronine (T3) on adult physiological 

hypertrophy remains controversial, its role in postnatal hypertrophy (developmental growth) 

is more accepted. Thyroid hormone levels increase dramatically in children after birth37. In 

mice, circulating T3 levels transiently increase after birth, reaching a maximum during the 

second postnatal week (a 2,000-fold increase compared to the level of T3 at birth) and 

returning to lower levels at the end of the third week of life38. T3 exerts a direct 

transcriptional effect on contractile and calcium handling proteins as the heart matures 

during postnatal development. In rodents, T3 regulates the postnatal switch from the 

transcription of Myh7 (which encodes β-MHC) to the transcription of genes encoding α-

MHC39. T3 signals through two different thyroid hormone receptors (TRα and TRβ); by 

acting as a dimer with the retinoic acid receptor, these receptors function as transcription 

factors that can change gene expression40. In a similar way to α-MHC, T3 positively 

regulates expression of sarcoplasmic/endoplasmic reticulum calcium ATPase 2 (SERCA2) 

while inhibiting β-MHC and phospholamban expression40–43. T3 also activates the 
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transcription of the β1 adrenergic receptor, sodium and potassium channels, cardiac troponin 

I (CTNI), ANF, sodium/calcium exchanger (NCX), TRα1 and adenylyl cyclase (AC) types 

V and VI40. Interestingly, cytosolic TRα1 interacts with the regulatory p85 subunit of PI3K, 

which might be a potential mechanism underlying protein synthesis regulation in the heart41.

Insulin regulates protein synthesis and gene expression

In the heart, insulin signalling directly affects glucose transport, glycolysis, glucose 

oxidation, glycogen synthesis, fatty acid oxidation and protein synthesis44,45. Insulin binds 

to the tyrosine kinase insulin receptor (IR), the activation of which leads to the recruitment 

and phosphorylation of the adaptor proteins insulin receptor substrate 1 (IRS1) and IRS2, 

which activate the PI3K–AKT signalling pathway (see below). Mice null for Irs1 or Irs2 

displayed a general postnatal growth retardation phenotype46,47. Heart-specific deletion of 

the Inrs (insulin receptor) gene confirmed the role of insulin in postnatal heart growth, as 

hearts from these mice were smaller and individual cardio-myocyte volumes were 

reduced48. Moreover, heart-specific Inrs-knockout mice showed exacerbated hypertrophy 

with pathological stimulation, which was associated with mitochondrial dysfunction, 

suggesting that in the absence of this physiological growth pathway hearts were more prone 

to pathological hypertrophy49–51. Altogether, these studies indicate that insulin signalling 

serves as a fundamental baseline regulator of physiological growth of the heart, and the heart 

is not only smaller in its absence but is also more prone to pathology.

IGF1 as an initiator of physiological growth signalling

The best-described and perhaps most crucial signalling pathway regulating physiological 

cardiac hypertrophy is that initiated by IGF1. This ligand is mostly synthesized and secreted 

by the liver in response to systemic growth hormone (GH) and then targeted to the tissues in 

which it mediates growth. However, IGF1 can also be produced by target tissues, where it 

directly acts in an autocrine and paracrine manner52. For example, cardiac IGF1 and serum 

GH and IGF1 levels were found to be transiently increased following exercise33,53. 

Systemic and local IGF1 signalling were also shown to be essential for postnatal growth in 

general54. IGF1 binds the IR and the IGF1 receptor (IGF1R), a transmembrane tyrosine 

kinase receptor that activates the PI3K–AKT–phosphoinositide-dependent protein kinase 1 

(PDK1)–glycogen synthase kinase 3β (GSK3β) pathway (see below). Igf1-null mice or 

Igf1r-null mice display a growth retardation phenotype and perinatal lethality, confirming 

the centrality of this ligand in mediating developmental growth55.

Results obtained in genetically modified mice generally confirm the role of IGF1 in 

regulating physiological cardiac hypertrophy. Initial results obtained in mice with α-MHC-

driven overexpression of IGF1 in the heart showed a physiological benefit, but this 

improvement was likely to have occurred through postnatally related cardiomyocyte 

hyperplasia56. Later, separate transgenic mice overexpressing IGF1 under the control of the 

skeletal α-actin promoter developed a physiological form of cardiac hypertrophy, although 

the prolongation of this signal well into adulthood resulted in pathological cardiac 

hypertrophy characterized by increased fibrosis and decreased cardiac function57. By 

comparison, hearts overexpressing IGF1R (driven by α-MHC) displayed cardiac 

hypertrophy characterized by an increase in cardiomyocyte volume, absence of 
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histopathology and increased systolic function at 3 and 10 months of age58. However, Igfr1 

deletion in adult cardiomyocytes using the α-MHC-Cre transgene, which induced 

recombination few days after birth, did not affect the baseline growth phenotype of the 

heart, although adult mice with this deletion were resistant to exercise-induced 

hypertrophy59,60. These results clearly indicate the centrality of IGF1 and its receptor in 

signalling the physiological growth of the heart.

Initiating signals: mechanosensors

Mechanotransduction is the fundamental process that permits the conversion of mechanical 

forces into biochemical signals. In cardiomyocytes, extracellular, intracellular or 

intercellular mechanical forces (changes in pressure, volume, stiffness, and so on) are sensed 

by specialized transducing proteins within the plasma membrane, by focal adhesion 

complexes or internally within the cardiac Z line that contains mechanosensing proteins 

(FIG. 2). These sensing systems then activate signalling pathways that initiate physiological 

cardiac hypertrophy (FIG. 1).

Transient receptor potential (TRP) channels, which were originally identified in chicken 

skeletal myocytes61 and later identified in essentially all tissues and cell types, can function 

as stretch-sensitive signalling mediators that permeate calcium and other cations. This 

stretch-activated calcium current could then mediate growth signalling in the heart through 

downstream effectors such as calcineurin–nuclear factor of activated T cells (NFAT) 

signalling62. The TRP canonical (TRPC) subfamily is comprised of TRPC3, TRPC6 and 

TRPC7 (which are activated by diacylglycerol (DAG) that is generated by G protein-

coupled receptor signalling) as well as TRPC1, TRPC4 and TRPC5 (which can be activated 

by DAG and depletion of intracellular calcium stores)61. TRPC1, TRPC4, TRPC5 and 

TRPC6 are also known to be activated by stretching, and might thus participate in stretch 

sensing and downstream signalling to induce hypertrophic heart growth. Indeed, TRPC1 and 

TRPC6 have been shown to be directly activated by stretching, and both have been 

implicated in regulating cardiac hypertrophy63–66.

Integrins can also mediate mechanotransduction through their attachment to the extracellular 

matrix. Integrins are plasma membrane-spanning heterodimers comprised of β and α 

subunits that bind extracellular matrix components such as fibronectin, collagen or laminin. 

The cytoplasmic tail of the β subunit can transmit information on the basis of the 

composition and stretching of the extracellular matrix through signalling proteins that reside 

within the focal adhesion complex inside the cell. These integrin-associated complexes are 

composed of non-receptor tyrosine kinases, such as focal adhesion kinase (FAK) or integrin-

linked kinase (ILK), which recruit signalling proteins such as the RHO GTPases, PI3K and 

protein kinase C (PKC). Cardiac-specific ablation of Itgb1 (which encodes the β1 subunit) or 

a global deletion of Itgb3 (which encodes the β3 subunit) worsened hypertrophic disease 

induced by pressure overload67,68. However, although integrins certainly mediate stretch 

response signalling in fibroblasts and other cells, it remains unclear whether they function in 

an analogous manner in cardiomyocytes.
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The cardiac Z line, which is the site of thin filament anchoring, has also been implicated in 

mechanotransduction and stretch sensing through a large array of structural proteins, such as 

muscle LIM protein (MLP; also known as CSRP3), telethonin, myopalladin, palladin, 

cypher (also known as LDB3), actinin-associated LIM protein (ALP; also known as 

PDLIM3), cardiac ankyrin repeat protein (CARP; also known as ANKRD1), ankyrin, 

nebulette and obscurin (FIG. 2). Deficiencies or mutations in some of these proteins lead to 

cardiomyopathy69,70. Titin is another interesting candidate for a role in 

mechanotransduction, as it spans from Z line to Z line (where it interacts with other 

sarcomeric proteins), provides direct structural support by regulating the distention of 

sarcomeres and binds well over 20 proteins with roles in stretch–spring sensing70 (FIG. 2). 

Moreover, mutations in titin in humans also cause dilated cardiomyopathy71. Thus, there are 

multiple systems in place that could regulate physiological hypertrophy through a direct 

load-sensing mechanism within the cardiomyocyte itself.

Mediators of physiological hypertrophy

Many of the growth-inducing hormones, such as T3, insulin or IGF1, and the stretch-

sensitive signalling pathways, which are possibly initiated by integrins, TRPCs or 

sarcomeric Z-line proteins, converge on a finite number of intracellular signalling pathways. 

This enables them to directly transduce compensated or physiological growth signals into 

changes in gene expression, protein turnover, protein degradation and RNA processing to 

directly mediate the growth characteristics of the heart (FIG. 1). In addition, select 

microRNAs have been identified that are likely to directly regulate the physiological growth 

response of the myocardium. This area and the relevant references are discussed in BOX 3.

Box 3

MicroRNAs and physiological cardiac hypertrophy

MicroRNAs (miRNAs) are highly conserved, small, non-coding RNAs of 18 25 

nucleotides that generally downregulate gene or protein expression post-transcriptionally. 

With respect to adaptive growth regulation, the muscle-specific miRNAs miR-1 and 

miR-133 are downregulated in adult animal models of physiological cardiac 

hypertrophy116. Hypertensive rats undergoing exercise training show reduced muscle 

levels of miR-16 and miR-21 (which target vascular endothelial growth factor (VEGF) 

and BCL-2, respectively) but normal levels of miR-126 (which targets PI3K)117. 

However, other studies suggest that miRNAs might be important regulators of postnatal 

heart growth. For example, miR-195, a member of the miR-15 family, participates in the 

postnatal mitotic arrest of cardiomyocytes by downregulating cell cycle genes118. 

Transgenic mice overexpressing miR-195 under the control of the β-myosin heavy chain 

(β-MHC) promoter had hypoplastic hearts associated with downregulation of cell cycle 

genes that included the checkpoint kinase 1 (REF. 118). Similarly, the overexpression of 

miRNAs targeting thyroid hormone signalling, such as miR-208a, negatively regulates β-

MHC expression through thyroid hormone receptor-associated protein 1 (THRAP1; also 

known as MED13)119,120. Finally, miR-27a silences the thyroid hormone β1 receptor, 
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thereby negatively regulating β-MHC gene expression121. There are undoubtedly other 

miRNAs that will be uncovered as regulators of physiological hypertrophy.

PI3K–PTEN as a nodal signalling integrator

In response to insulin and IGF1 signal reception at the sarcolemma, signals converge on a 

common effector, PI3K. PI3Ks are heterodimeric lipid kinases localized at the plasma 

membrane, where they catalyse the formation of phosphatidylinositol-3,4,5-trisphosphate 

(PtdIns(3,4,5)P3). Once synthesized, PtdIns(3,4,5)P3 recruits cytosolic effectors through 

their pleckstrin homology (PH) domains. PtdIns(3,4,5)P3 is inactivated by lipid 

phosphatases such as PTEN, which acts as an endogenous PI3K inhibitor45. PI3Ks are 

subdivided into three classes based on sequence homologies of the catalytic domains and 

substrate specificity. Among them, class Ia PI3Ks (PI3Kα, PI3Kβ and PI3Kδ) are especially 

important for physiological hypertrophy because they are activated by the IR and IGF1R, 

and integrins. Class Ia PI3Ks are heterodimers composed of a regulatory subunit (p85β or 

p85α, or their truncated splice variants p50α or p55α, respectively) and a catalytic subunit 

(p110α, p110β or p110δ)45. Overexpression of a constitutively active p110α in the mouse 

heart under the control of the α-MHC promoter produced physiological growth of the 

heart72. Conversely, dominant negative p110α overexpression in the heart induced a non-

pathological atrophy and repressed growth induced by IGF1R overexpression and exercise 

training58,72,73. These results were later confirmed by gene targeting. Muscle-specific 

deletion of PI3K regulatory subunit 1 (Pik3r1; which encodes p85α) in a Pik3r2 (which 

encodes p85β)-null background or cardiac-specific deletion of Pik3ca (which encodes 

p110α) confirmed that class Ia PI3Ks are essential for physiological growth of the heart74,75. 

Finally, cardiac-restricted Pten deletion promoted heart growth at the organ and cellular 

levels76. Thus, PI3K and PTEN are central signalling integrators of the physiological growth 

response.

AKT directly promotes protein translation

AKT is a serine/threonine protein kinase, the activity of which is primarily regulated by 

PtdIns(3,4,5)P3-mediated membrane recruitment and by PDK1 activity. PDK1 is a kinase 

that translocates to the membrane following PtdIns(3,4,5)P3 synthesis, where it activates 

AKT, atypical PKCs and the ribosomal p70 S6 kinase (S6K). PI3K-dependent PDK1 

activation leads to direct AKT activation through phosphorylation of this kinase by PDK1 at 

Thr308 (REFS 45,77). Heart mass and individual cardiomyocyte volumes were significantly 

reduced in mice null for Pdk1 specifically in the heart, which suggests a role for this kinase 

during postnatal development78. There are three genes encoding AKT — Akt1, Akt2 and 

Akt3 — although Akt1 and Akt2 are the main cardiac isoforms45,79. Global loss of Akt2 in 

gene-targeted mice produced insulin resistance with no other discernible phenotype80. 

However, Akt1-null mice displayed general growth impairment and, remarkably, were 

refractory to physiological cardiac hypertrophy in response to swimming training81–83. 

Similarly, overexpression of a dominant negative AKT1 mutant (AKT1K179M) in the heart 

prevented hypertrophic growth84. Cardiac over-expression of a constitutively active AKT1 

mutant (either AKT1T308D/S473D or AKT1E40) or a membrane-localized AKT1 mutant 

(myr-AKT1) initially promoted hypertrophy with physiological characteristics in young 
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animals, although prolongation of such a signal was ultimately pathological84–86. Indeed, 

the magnitude of AKT1 activation and its cellular location are crucial determinants of its 

cellular effects. Conditional expression of the membrane-targeted myr-AKT1 in the mouse 

heart for 2 weeks induced a reversible physiological hypertrophy, whereas sustained AKT1 

expression for 6 weeks caused heart failure87. By comparison, nuclear targeting of AKT1 

did not affect heart growth but did induce hyper-plasia88,89. Mechanistically, AKT1 directly 

promotes protein translation, in part by inhibiting GSK3β activity, which negatively 

regulates eukaryotic translation initiation factor 2Bε (eIF2Bε)45,90,91 (FIG. 1). Consistent 

with these observations, overexpression of GSK3β in the adult heart blocked postnatal 

hypertrophy before ultimately inducing heart failure92. As a final mechanism, AKT was 

shown to inhibit the activity of forkhead box protein O3 (FOXO3), which results in reduced 

general protein turnover and catabolism mediated by the ubiquitin ligases atrogin 1 (also 

known as FBXO32) and muscle-specific RING finger protein 1 (MURF1; also known as 

TRIM63), and hence favours the net protein accumulation needed for hypertrophy93. 

Altogether these results indicate that short-term AKT activation promotes an adaptive 

cellular growth programme, whereas sustained AKT signalling leads to pathological 

hypertrophy and heart failure. Thus, the duration of a signal or its frequency is likely to be 

crucial in determining the overall beneficial versus detrimental effect on the heart.

mTOR increases mRNA translation in physiological hypertrophy

mTOR is part of two distinct serine/threonine kinase complexes, mTOR complex 1 

(mTORC1) and mTORC2, the latter of which is not sensitive to rapamycin. Both complexes 

regulate cell growth and survival, and have also been implicated in controlling adaptive 

growth of the heart. mTORC1 contains mTOR, regulatory associated protein of mTOR 

(RAPTOR) and G protein β subunit-like (GβL; also known as LST8). mTORC1 is activated 

following AKT-mediated inhibition of tuberous sclerosis complex 1 (TSC1) and TSC2, the 

latter of which functions as a GTPase-activating protein for RAS homologue enriched in 

brain (RHEB), which then directly activates mTORC1 (REF. 45) (FIG. 1). mTORC1 can 

also be activated by amino acids and inhibited by AMP-activated protein kinase (AMPK). 

Once activated, mTORC1 promotes ribosomal protein production through direct regulation 

of S6Ks and by inhibiting eIF4E-binding protein 1 (4EBP1), which then allows unrestrained 

cap-dependent translation by eIF4E45. mTORC2 may also control adaptive growth through 

its ability to directly phosphorylate and activate AKT, which then secondarily leads to the 

activation of mTORC1.

mTOR signalling has been explored in the heart. For example, pharmacologic inhibition of 

mTORC1 with rapamycin reverses cardiac hypertrophy induced by AKT 

overexpression84,87. Similarly, deletion of Tsc1 in the heart induced early neonatal cardiac 

hypertrophy, leading to heart failure that could be delayed by rapamycin treatment94. RHEB 

overexpression in vitro induced a 4EBP1-dependent hypertrophy that was probably 

adaptive, given the lack of fetal gene re-expression95. However, overexpression of a 

dominant negative mTOR in the heart did not inhibit the hypertrophic response to swimming 

exercise in mice96. Moreover, cardiac-specific deletion of Mtor or Rptor resulted in heart 

failure without an initial phase of hypertrophy97,98. Just as perplexing, deletion or 

overexpression of S6K had no effect in various models of physiological hypertrophy in the 
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mouse99. Taken together, these results underscore the complexity associated with mTOR 

signalling in the heart, such that pharmacologic inhibition with rapamycin can blunt 

physiological hypertrophy, but deletion of mTOR or other pathway regulators gives rise to 

cardiac dilatation and pathology. These findings suggest a crucial role for mTOR in basic 

heart homeostasis, as well as in adaptive hypertrophy.

C/EBPβ regulates physiological hypertrophy

CCAAT/enhancer binding protein-β (C/EBPβ) is a transcription factor that controls cellular 

proliferation in many cell types through changes in gene expression100. C/EBPβ was 

identified as a factor specifically downregulated by exercise training in a differential screen 

for physiological and pathological cardiac hypertrophy effectors101. Cardiomyocytes in 

which C/EBPβ was knocked down by siRNA or mice in which Cebpb was deleted 

heterozygously showed changes in gene expression profiles that mimic those seen in 

response to exercise. Cebpb-heterozygous mice displayed greater cardiomyocyte 

proliferation at baseline, as if they had been exercised, and were protected from pathological 

stress stimulation. Mechanistically, C/EBPβ functions downstream of AKT1 to inhibit CBP/

p300-interacting transactivator 4 (CITED4)-induced proliferation. C/EBPβ is also proposed 

to compete with serum response factor (SRF) to regulate a transcriptome specific to exercise 

training101. This study shows that C/EBPβ is another important regulator of an adaptive or 

physiological hypertrophy response: downregulation of C/EBPβ permits the expression of 

beneficial or protective genes and allows the expression of genes that enhance 

cardiomyocyte proliferation and hence cell number in the heart. Thus, the inhibition of C/

EBPβ activity could be used to possibly revitalize the damaged or cardiomyopathic heart.

ERK1/2 in physiological hypertrophy

ERK1 and ERK2 (ERK1/2; also known as MAPK3 and MAPK1, respectively) are activated 

in the heart or cultured cardiomyocytes by a wide array of stress stimuli, some of which, 

such as growth factors and stretching, are consistent with physiological growth. Indeed, 

overexpression of an activated MEK1 mutant protein in the heart, driven by the α-MHC 

promoter, induced constitutive ERK1/2 signalling; this produced a stable form of concentric 

cardiac hypertrophy without fibrosis and with a significant enhancement in cardiac function 

that was associated with protection from ischaemia–reperfusion injury to the heart102,103. 

Consistent with these observations, inhibition of ERK1/2 by overexpression of their 

dedicated phosphatase, dual specificity phosphatase 6 (DUSP6), resulted in more cardiac 

dilation on stress stimulation104. Similar results were observed in mice with combined 

disruption of Mapk3 and Mapk1 in the heart: such mice showed cardiac failure with stress 

stimulation, or even with ageing105. These lines of evidence suggest that ERK1/2 signalling 

provides a crucial component to the adaptive hypertrophic response that is protective, and it 

certainly protects cardiomyocytes from death following ischaemic injury106.

It thus appears that physiological hypertrophy is triggered by a restricted number of 

intracellular signalling pathways centred around the nodal mediators PI3K–PTEN, AKT and 

ERK1/2, which regulate the transcription of a specific set of genes (for example, C/EBPβ 

controls an exercise-specific transcriptome) and increase protein translation through mTOR.
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AMPK in metabolic reprogramming

The coordination of cardiac growth with metabolism is essential for an adaptive response. 

AMPK is described as the nodal point energy sensor in all cells that coordinates increases in 

metabolic output with nutrient utilization (FIG. 1). AMPK is a heterotrimeric protein kinase 

composed of three subunits: the catalytic α subunit, the β subunit that links the α and γ 

subunits and binds glycogen, and the γ subunit that binds AMP, ADP or ATP in a mutually 

exclusive manner107. AMP binding to AMPK leads to its activation through conformational 

changes that allow phosphorylation of the α subunit by the upstream kinases liver kinase B1 

(LKB1; also known as STK11), calcium/calmodulin-dependent protein kinase kinase-β 

(CaMKKβ; also known as CaMKK2) and transforming growth factor β-activated kinase 1 

(TAK1; also known as MAP3K7). Falling energy levels lead to AMPK activation by AMP 

that favours ATP production by stimulating fatty acid oxidation, glucose uptake and 

glycolysis, as well as by reducing ATP-dependent processes such as transcription and 

protein synthesis107. AMPK is therefore crucial to cardiac homeostasis, and most studies 

suggest that long-term inhibition of AMPK exacerbates pathological hypertrophy, leading to 

heart failure, whereas intermittent AMPK activation could be cardioprotective. For example, 

mouse hearts null for Adipoq (an adipose tissue-secreted hormone), in which AMPK activity 

was decreased, were sensitized to pressure overload-induced hypertrophy108. Mice null for 

Prkaa2, which encodes AMPKα2, developed an exacerbated pathological response to 

hypertrophic stimuli109,110. Interestingly, deletion of Stk11 (which encodes LKB1) in the 

heart led to reduced ventricular cardiomyocyte size in young animals, suggesting a positive 

role of AMPK in permitting proper postnatal cardiac growth111,112. However, loss of 

AMPK activity in older animals induced hypertrophy that was normalized by a 

constitutively active AMPK mutant or with rapamycin treatment112. With respect to AMPK 

activation, treatment with the AMPK activator metformin improved cardiac function 

following ischaemia–reperfusion injury in mice through a mechanism involving activation 

of endothelial nitric oxide synthase (eNOS) and the mitochondrial transcription factor 

peroxisome proliferator-activated receptor-γ co-activator 1α (PGC1α)113. Collectively, 

these studies underscore the importance of metabolic reprogramming during the 

hypertrophic response to ensure proper adaptation during physiological heart growth. Thus, 

enhancing AMPK activity with specific pharmacologic agents could be an attractive 

therapeutic avenue to explore for treating pathological conditions of the heart.

Conclusions

The concept that cardiac hypertrophy is deleterious largely pertains to insults that are known 

to result in loss of cardiovascular homeostasis or proper gene function. However, in the 

absence of a pre-existing condition, the heart can clearly grow to a limited extent in response 

to physiological stimuli without an increase in morbidity or mortality. Moreover, the heart 

can increase in size by two- to threefold solely as a result of cellular hypertrophy during 

postnatal development. Physiological hypertrophy could therefore be considered as a way to 

prevent cardiac dysfunction and failure. Indeed, exercise conditioning by itself reversed or 

delayed the onset of disease and extended lifespan in mouse models of desmin-related 

cardiomyopathy or hypertrophic cardiomyopathy114,115. Studies in animal models largely 

support the selective hypothesis that failure of the heart to mount a compensated 
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hypertrophy response through select nodal regulators of adaptive hypertrophic signalling 

ultimately leads to pathology and potentially heart failure. Moreover, one might even 

postulate that loss of adaptive hypertrophic ability and the underlying homeostatic 

hypertrophic pathways that support cardiomyocyte cross-sectional area growth is a 

molecular event that directly promotes dilation and possibly heart failure. For example, 

deletion of Mapk1 and Mapk3 from the mouse heart produced a phenotype in which 

cardiomyocytes were unable to grow in width (cross-sectional area) and instead defaulted to 

a molecular programme of myocyte lengthening that led to heart failure105. With respect to 

medical relevance, the collective work in the field suggests that the activation of adaptive or 

protective factors, even if they induce cardiac hypertrophy, could be a useful strategy in 

patients with heart failure. For example, selective induction of AMPK activity should be 

protective and help to restore energy balance to the cardiomyocyte to support adaptive 

hypertrophy. Several pharmaceutical companies have programmes devoted to the 

development and application of selective AMPK activators with just such a goal (cellular 

protection and supportive adaptive growth). Moreover, intermittent or controlled activation 

of AKT, PI3K, ERK1/2 or mTOR could be protective in supporting cardiac growth and 

cardiomyocyte viability to prevent a further decline in functional performance. However, a 

temporal component to such regulation might also be crucial. Indeed, physiological 

hypertrophy induced by exercise, and even by pregnancy, induces transient increases in 

cardiac load that are more phasic compared with sustained overload signals associated with 

pathological signalling (BOX 2). For example, it may be desirable to activate PI3K, AKT, 

ERK1/2 or AMPK for only a few hours each day to induce adaptive signals associated with 

exercise, which might selectively augment myocardial growth and reinvigorate metabolic 

functioning, while at the same time antagonizing ongoing cell death. Thus, the challenge 

moving forward will be to properly harness the molecular effectors that program beneficial 

or physiological cardiac growth in a controlled manner in an attempt to reinvigorate the 

failing heart.
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Glossary

Myocardium From the Greek mys (muscle) and kardia (heart). It is the thick 

middle muscular layer of the heart that contracts

Valvular stenosis Also called heart valve disease. Valvular stenosis occurs in 

response to stiffening, thickening, fusion or blockage of one or 

more valves of the heart. The heart comprises four valves: the 

mitral, aortic, tricuspid and pulmonic valves

Transverse-tubule 
system

Also called the T-tubule system. A T-tubule is a deep invagination 

of the sarcolemma (cardiomyocyte plasma membrane) enriched in 

excitation–contraction coupling molecules. T-tubule system refers 

to the network of T-tubules within an adult cardiomyocyte
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Systolic function The performance of the left ventricle during systole, which is the 

contraction of the heart. The best index of left ventricle systolic 

function is ejection fraction, which is calculated as the difference 

between end-diastolic and end-systolic left ventricle volume, 

divided by the end-diastolic left ventricle volume

Diastolic function The performance of the left ventricle during diastole, which is the 

relaxation of the heart and the filling of the ventricle

Arrhythmogenic 
channelopathies

Genetic or acquired cardiac ion channel diseases. Ion channels 

(sodium, potassium and calcium channels) control the electrical 

activity of the heart. Abnormal electrical activity can lead to 

cardiac arrhythmias (irregular cardiac rhythm) and sudden death

Myocarditis Inflammation of the heart caused by a viral or bacterial infection 

or an autoimmune disease. Myocarditis sometimes induces 

eccentric hypertrophy and heart failure

Stretch–spring 
sensing

Translation of changes in the cardiomyocyte extracellular 

environment (stretch) and the sarcomeres elasticity (spring) into 

biochemical hypertrophic signals

Sarcolemma Specialized plasma membrane of a myocyte
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Figure 1. Physiological hypertrophy signalling pathways
Physiological hypertrophy is an adaptive form of cardiac hypertrophy. The figure depicts 

central signalling pathways of physiological hypertrophy discussed in the text. Physiological 

hypertrophy is initiated by intermittent signals of triiodothyronine (T3), vascular endothelial 

growth factor B (VEGFB), insulin and insulin-like growth factor 1 (IGF1), as illustrated by 

the oscillating curve. The growth hormones activate membrane-localized tyrosine kinase 

receptors (VEGF receptor 1 (VEGFR1), IGF1 receptor (IGF1R) or insulin receptor (IR)) and 

nuclear receptors (thyroid hormone receptor (TR)), which trigger intracellular signalling 

pathways specific to physiological hypertrophy. These signalling pathways regulate the 

transcription of adaptive genes, protein synthesis, metabolism and energy production. The 

growth signals centre on common signalling branches controlled by ERK1/2, PI3K, AKT 

and mTOR complex 1 (mTORC1), whereas AMP-activated protein kinase (AMPK) governs 

metabolic adaptive reprogramming. 4EBP1, eukaryotic translation initiation factor 4E-

binding protein 1; C/EBPβ, CCAAT/enhancer binding protein-β; CaMKKβ, calcium/

calmodulin-dependent protein kinase kinase-β; CITED4, CBP/p300 interacting 

transactivator 4; eIF2Bε, eukaryotic translation initiation factor 2Bε; FOXO, forkhead box 

O; GSK3β, glycogen synthase kinase 3β; IRS1/2, insulin receptor substrate 1 or 2; LKB1, 

liver kinase B1; PDK1, phosphoinositide-dependent protein kinase 1; PGC1α, peroxisome 

proliferator-activated receptor-γ co-activator 1α; RHEB, RAS homologue enriched in brain; 

RXR, retinoic acid receptor; S6K, S6 kinase; SRF, serum response factor; TAK1, 

transforming growth factor β-activated kinase 1; TSC1/2, tuberous sclerosis complex 1 or 2.
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Figure 2. Stretch-mechanosensing in the initiation of physiological hypertrophy
Mechanotransduction converts mechanical forces into biochemical signals. Activation of 

transient receptor potential canonical (TRPC) channels by stretch leads to calcium influx 

and the activation of hypertrophic signalling pathways. Changes in the extracellular matrix 

(ECM) are sensed by integrins that signal through RHO GTPases, integrin-linked kinase 

(ILK), focal adhesion kinase (FAK), protein kinase C (PKC) and the pro-hypertrophic PI3K 

and ERK1/2. Stretch is also sensed within the sarcomeres at the Z line by proteins such as 

muscle LIM protein (MLP), actinin-associated LIM protein (ALP), nebulette (NEB), cypher, 

telethonin (Tele), obscurin (Obs) and the giant protein titin that senses both strain and 

stretch.
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