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Abstract

Previous studies have demonstrated that, as naive murine CD4+ cells differentiate into Th1 cells, 

they lose expression of the second chain of IFN-γR (IFN-γR2). Hence, the IFN-γ-producing subset 

of Th cells is unresponsive to IFN-γ. Analysis of IFN-γ-producing CD8+ T cells demonstrates that, 

like Th1 cells, these cells do not express IFN-γR2. To define the importance of IFN-γ signaling for 

the development of functional CD8+ T cells, mice either lacking IFN-γR2 or overexpressing this 

protein were examined. While CD8+ T cell development and function appear normal in IFN-

γR2−/− mice, CD8+ T cell function in IFN-γR2 transgenic is altered. IFN-γR2 transgenic CD8+ T 

cells are unable to lyse target cells in vitro. However, these cells produce Fas ligand, perforin, and 

granzyme B, the effector molecules required for killing. Interestingly, TG CD8+ T cells proliferate 

normally and produce cytokines, such as IFN-γ in response to antigenic stimulation. Therefore, 

although IFN-γ signaling is not required for the generation of normal cytotoxic T cells, 

constitutive IFN-γ signaling can selectively impair the cytotoxic function of CD8+ T cells.

Effector CD8+ T cells, also known as CTLs, are important mediators of immune responses 

against certain pathogens, transformed cells, and foreign organ grafts (1, 2). These T cells 

perform their functions by elaborating a number of distinct effector mechanisms. CD8+ T 

cells produce cytokines such as TNF-α and IFN-γ. TNF-α is a proinflammatory cytokine 

that functions to inhibit viral gene expression and replication and can initiate apoptotic 

signaling (3). IFN-γ has been shown to activate effector cells such as macrophages and 

neutrophils, regulate CD4+ Th cell differentiation, as well as metabolically suppress infected 

or transformed cells (4). CD8+ T cells can also directly attack and induce cytolysis of their 
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target cells by two distinct pathways, both of which are activated in response to signaling 

through the TCR (5). One of these pathways involves the release of soluble cytotoxic factors 

such as the pore-forming molecule perforin and the granzymes, which are stored within 

cytoplasmic granules (6, 7). These molecules are released shortly following TCR triggering 

and lead to the perforation of the membrane and the activation of caspases in target cells, 

resulting in their eventual lysis. Following activation and de novo protein synthesis, CD8+ T 

cells also up-regulate the expression of Fas ligand (FasL)3 (CD95 ligand) on their cell 

surface that, through interaction with Fas (CD95) on the target cell, triggers the apoptotic 

pathway (3, 7). In addition to these two pathways, 24–48 h postactivation CD8+ T cells 

begin producing TNF-α, which can also lead to killing of target cells (8).

The differentiation of naive Th cells into mature effector cells is regulated by a number of 

factors, including the strength of the activating stimulus (peptide affinity, Ag dose, and level 

of costimulation), the route of immunization, and the cytokines present in their immediate 

microenvironment (9-11). Like Th cells, the activation and maturation of naive CD8+ T cells 

into CTLs require TCR signaling (7, 12). The quality of the TCR signal can also regulate the 

effector function of the CTL (13, 14). For example, it has been shown that different epitopes 

of a particular viral Ag can lead to functionally heterogeneous effector CD8+ T cells (15, 

16).

Extensive work has demonstrated that cytokines present at the time of TCR triggering are 

critical in regulating the course of Th differentiation, leading to the generation of distinct, 

mature effector Th subsets, such as Th1 and Th2 cells (17, 18). Moreover, during their 

differentiation, Th1 and Th2 cells acquire differential responsiveness to cytokines. For 

instance, while Th2 cells can signal through the IFN-γR, Th1 cells are unresponsive to IFN-

γ because they do not express the second chain of its receptor (IFN-γR2) (19-21). 

Transgenic (TG) overexpression of this protein, and the resultant responsiveness to IFN-γ in 

Th1 cells, profoundly impairs the effector function of these cells, indicating that the 

regulation of responsiveness to this cytokine is critical for normal Th1-dependent immunity 

(22).

The role that cytokines play in the thymic development, activation of CD8+ T cells, and the 

acquisition of mature CTL phenotypes is less clear. The regulation of responsiveness to 

cytokines by CD8+ T cells is also virtually unexplored. IFN-γ-producing CD8+ T cells, like 

Th1 cells, may potentially regulate their ability to signal through IFN-γR during their 

differentiation. It is also possible that IFN-γ signaling participates in, or affects, certain 

stages in the development of the mature effector phenotype in CD8+ T cells. To explore this 

possibility, IFN-γ signaling in CD8+ T cells was investigated.

In this study, IFN-γ-producing CD8+ T cells are shown to be incapable of signaling through 

IFN-γR because they lack expression of IFN-γR2, an integral component of the IFN-γR 

complex. As a result, these cells are insensitive to the biologic functions of this cytokine, 

such as up-regulation of class I MHC molecules. In TG mice, in which IFN-γR2 expression 

3Abbreviations used in this paper: FasL, Fas ligand; GAS, γ-activated site; IRF, IFN-regulatory factor; SOCS, suppressors of cytokine 
signaling; TG, transgenic; WT, wild type.
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is dysregulated, CD8+ T cells are responsive to IFN-γ. In response to antigenic stimulation, 

these T cells are activated, and proliferate and produce cytokines normally. However, these 

cells are functionally impaired, as they are unable to lyse allogeneic target cells. In contrast, 

CTL function in CD8+ T cells isolated from IFN-γR2−/− mice, which lack this receptor 

chain, is normal. These findings suggest that the regulation of responsiveness to IFN-γ in 

CD8+ T cells somehow participates in their maturation into CTLs. Therefore, in addition to 

the quality of the TCR signal, cytokines may regulate the acquisition of mature effector 

functions by CD8+ T cells.

Materials and Methods

Mice

IFN-γR2 TG mice were originally described by Tau et al. (22). TG mice were bred to the 

C57BL/6 genetic background for at least 10 generations. All TG mice used were 

heterozygous for the IFN-γR2 transgene. IFN-γR2 TG litters were screened by PCR using 

the following primers: 5′-GCACGTGGTTAAGCTCTCG (located in the CD2 promoter) 

and 5′-TGTCTCTGTGATGTCCGTACA. Appropriate controls (sex-matched littermates or 

age- and sex-matched mice) were used where normal or wild-type mice are indicated. IFN-

γR2-deficient mice were originally generated and described by Lu et al. (23). These mice 

were bred into the 129 genetic background for at least 10 generations. Where normal or 

wild-type mice are indicated, age- and sex-matched pure bred 129 mice were used (The 

Jackson Laboratory, Bar Harbor, ME). BALB/c mice were purchased from Jackson 

Laboratory. All mice were 4–6 wk of age at the start of a given experiment. All animal 

experiments conformed to Columbia University’s Institutional Animal Care and Use 

Protocols.

Tumor cell lines and tissue culture

Unless otherwise noted, cells were grown in complete RPMI containing 10 μg/ml penicillin-

streptomycin, 2 mM L-glutamine, 0.1 mM nonessential amino acids, 0.1 mM 2-ME, 1 mM 

sodium pyruvate, 10 mM HEPES, and 10% FBS. IL-2 media is complete RPMI containing 

IL-2 (20 U/ml). The EL-4 and S49.1 tumor cell lines were purchased from the American 

Type Culture Collection (Manassas, VA).

Cytokines and Abs

The mAbs 145-2C11 (anti-CD3; unconjugated, FITC), GK1.5 (anti-CD4; unconjugated), 

RM4-4 (anti-CD4; biotin, PE, FITC), 53-6.7 (anti-CD8; biotin, PE, FITC), M1/70 (anti-

CD11b/Mac-1α; unconjugated), RA3-6B2 (anti-CD45R/B220; unconjugated), 57.51 (anti-

CD28; unconjugated), 74D (anti-CD25; biotin), H1.2F3 (anti-CD69; FITC), MFL3 (anti-

CD95L/FasL; biotin), AF6-88.4 (anti-H-2Kb; FITC), and XMG1.2 (anti-IFN-γ; PE, FITC) 

were purchased from BD PharMingen (San Diego, CA). GR-20 (anti-IFN-γR1; FITC) and 

RA3-6B2 (anti-CD45R/B220; biotin) were a gift of M. Nawijn. Streptavidin-conjugated 

fluochromes (FITC, PE, and CyChrome) were purchased from BD PharMingen. Human 

rIL-2 was provided by the National Cancer Institute Biological Research Branch (Frederick, 

MD). Recombinant murine IFN-γ and human IFN-α A/D were purchased from Genzyme 

(Cambridge, MA).
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CD8+ T cell purification

CD8+ T cells were purified by negative selection similarly to previously described CD4+ T 

cell purification (22). Briefly, single cell suspensions from lymph nodes and/or spleens 

containing no RBCs were first incubated with rat anti-mouse mAbs against B cells (anti-

B220/CD45R), monocytes (anti-CD11b), and CD4+ T cells (anti-CD4) at 20 μg/ml each, 

washed, and then incubated with anti-rat IgG Dynabeads (Dynal, Lake Success, NY). Ab-

coated cells were removed using a magnetic concentrator (Dynal). The purity of CD8+ T 

cells was at least 80%, as determined by flow cytometry.

CD8+ T cell lines and clones

Allo-specific CD8+ T cells were derived based on published protocol (24). Accordingly, 

mice were primed by i.p. injection of 2–4 × 107 irradiated (17 Gy; 60Co Gammacell), 

allogeneic (BALB/c-derived) splenocytes (25). Two weeks later, CD8+ cells were purified 

from spleens and mesenteric lymph nodes, as described above. To generated cell lines, 

CD8+ T cells (1–3 × 106/well in a 24-well plate)) were stimulated with 7 × 106 APCs 

(irradiated BALB/c splenocytes)/well. Cultures were expanded in IL-2-containing media 

24–48 h after stimulation. CD8+ T cells were cultured in IL-2 media for 10 days following 

stimulation, at which point they were restimulated with APCs, as above. Cultures were 

maintained by serial 9- to 14-day cycles of stimulation with APCs and expansion in IL-2 

media. Allo-specific CD8+ T cell clones were generated as follows: 96 multiples of 8, 40, 

200, and 1000 CD8+ T cells purified from allo-primed mice (as above) were aliquoted into 

U-bottom microtiter plates in 100 μl complete RPMI. Cells were stimulated with 5 × 104 

allogeneic APCs/well. Every 2–4 days, a portion of the supernatant was aspirated and 

replaced with IL-2 media. Cells were restimulated at days 10 and 20 by adding 5 × 104 

APCs/well. Only clones from plates in which fewer than 30% of the wells contained live 

cells were expanded and propagated (as above) and used in experiments.

Analysis of Stat1 activation

Stat1 activation was detected by EMSA, as previously described (26, 27). Briefly, cells were 

treated with either IFN-α (15 ng/ml) or IFN-γ (10 ng/ml) for 30 min, and whole cell protein 

extracts were prepared (28). The extracts were incubated with a radiolabeled probe derived 

from the IFN-regulatory factor-1 (IRF-1) γ-activated site (GAS) element (5′-

GATCGATTTCCCCGAAAT). The shift in electromobility imparted by the binding of 

activated STATs to the probe was detected by resolving the complexes on a polyacrylamide 

gel and visualized by autoradiography.

RNA isolation and Northern analysis

Total RNA was prepared by using QiaShredder, followed by RNeasy Mini Kit, according to 

the instructions of the manufacturer (Qiagen, Valencia, CA). RNA (10 μg) from each sample 

was fractionated on a formaldehyde agarose gel and transferred to a nylon membrane, which 

was then hybridized with a radiolabeled probe and visualized by autoradiography, all 

according to standard protocol (29). cDNA probes were radiolabeled with [α-32P]dCTP and 

[α-32P]dATP using the Readyprime II random prime labeling system (Amersham Pharmacia 

Biotech, Piscataway, NJ). The IRF-1 cDNA was a kind gift of C. Schindler (30). The IFN-
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γR2 cDNA was previously described (20, 31). RT-PCR using total RNA isolated from wild-

type (WT) CTLs was performed with primers 5′-CTCCACGTGCTT TCACCAAA and 5′-

GGAAAATAGTACAGAGAGGCA for granzyme B, and 5′-

TGCTACACTGCCACTCGGTCA and 5′-TTGGCTACCTTG GAGTGGGAG for perforin 

cDNA, according to previously described primers and conditions (32). The suppressors of 

cytokine signaling-1 (SOCS)-1 and SOCS-3 cDNAs were previously described (33).

Intracytoplasmic cytokine analysis and flow cytometry

All Ab staining, unless otherwise indicated, was performed in PBS containing 1% BSA and 

0.1% sodium azide based on standard protocol. Following staining, cells were fixed in PBS 

containing 2% paraformaldehyde and analyzed using a FACScan flow cytometer (BD 

Biosciences, Mountain View, CA). Data analysis was performed using CellQuest software 

(BD Biosciences). Intracellular cytokine staining was performed based on recommended 

manufacturer’s protocol (BD PharMingen). In brief, 106 freshly purified or day 4–9 CD8+ T 

cells in IL-2 media were either stimulated with 0.5 μg/ml PMA (Sigma-Aldrich, St. Louis, 

MO) and 5 μg/ml ionomycin (Sigma-Aldrich) or left unstimulated for 2–4 h at 37°C. At this 

point, brefeldin A (Sigma-Aldrich) was added to 10 μg/ml for an additional 2 h. 

Alternatively, 3 × 105 freshly purified or day 5 CD8+ T cells were either stimulated with 7 × 

105 APCs, or left unstimulated for 2 h, at which point brefeldin A was added for an 

additional 10 h. Cells were then stained for cell surface markers, fixed in 2% 

paraformaldehyde, permeabilized with 0.5% saponin (Sigma-Aldrich), and stained for 

intracytoplasmic IFN-γ or with an isotype-matched Ab as a control.

Cytotoxicity assays

Cytotoxicity assays were performed based on standard protocol (34). In brief, 1–2 × 106 

target cells (S49 or EL-4) were labeled with 0.1–0.2 mCi51Cr, washed three times, and 

plated in 96-well microtiter plates at 5 × 103/well in 100 μl complete RPMI with or without 

5 μg/ml Con A (Amersham Pharmacia Biotech). Effector cells (CD8+ T cell lines or clones 

4–7 days poststimulation) were added in triplicate and in equal volume of media at the 

indicated ratios. In one set of experiments, CD8+ T cells freshly purified from primed mice 

(as above) were used as effectors 7 days following in vitro stimulation. In place of effectors, 

media alone (spontaneous lysis) or 1% Triton X (maximum lysis) was added to control 

wells. After incubation for 4 h at 37°C, 100 μl of culture supernatant was removed from 

each well and counted for radioactivity. Values for percentage of specific lysis were 

calculated as follows:

Net Con A-induced lysis was determined by calculating the difference in percent specific 

lysis values at each E:T ratio between the Con A-treated and untreated assays.
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Cell division cycle profile analysis using CFSE

CD8+ cells (freshly purified clones or lines, described elsewhere) were labeled with CFSE 

(Molecular Probes, Eugene, OR) in a modification of a previously described technique (22, 

35). Briefly, cells were washed with serum-free RPMI. Cells (107 cells/ml) were then 

labeled with 10 μM CFSE in serum-free RPMI at 37°C for 10 min, and CFSE was then 

neutralized with complete RPMI. CFSE-labeled CD8+ T cells were cultured either on anti-

CD3 mAb + anti-CD28 mAb-coated plates (5 μg/ml each Ab in PBS overnight at 4°C) or 

stimulated with APCs as above. Initial CFSE-labeling efficiency and the fluorescein 

intensities at the end of each experiment were detected using a FACScan flow cytometer. 

Histogram overlays and peak distribution analyses were performed using CellQuest 

software.

Results

CD8+ T cells do not express IFN-γR2 mRNA and are unresponsive to IFN-γ

It has previously been demonstrated that IFN-γ-producing CD4+ T cells (Th1) are 

unresponsive to IFN-γ because they do not express IFN-γR2 (19-21). Other IFN-γ-

producing lymphocytes, such as CD8+ T cells, may, like Th1 cells, modulate their ability to 

respond to this cytokine during their differentiation. To test this possibility, allo-specific 

CD8+ T lines and clones were generated. The ability of these cell lines to respond to IFNs 

was assessed.

Signaling by IFNs leads to the phosphorylation of STAT monomers, allowing the formation 

of homo- and heterodimers that can bind specific elements in the promoters of IFN-

responsive genes and ultimately regulate their expression (36). Type II IFN (IFN-γ) 

stimulates the phosphorylation of Stat1 and the formation of Stat1 homodimers, which bind 

GAS elements in the promoters of IFN-γ-responsive genes. The type I IFNs (IFN-α/β) 

stimulate the phosphorylation of Stat1 and Stat2 and activate the expression of genes whose 

promoters contain either GAS elements (which bind Stat1 homodimers) or IFN-stimulated 

response elements (which bind a complex of Stat1, Stat2, and IRF-9).

To determine whether CD8+ T cells are responsive to IFN-γ, protein extracts from IFN-γ- 

and IFN-α-treated cells were examined for GAS-binding activity (activated Stat1 

complexes) by EMSA. Activated Stat1 complexes were detected in extracts prepared from 

control EL-4 cells treated with either IFN-γ or IFN-α (Fig. 1A). Activated Stat1 complexes 

were also detected in CD8+ T cells cultured with IFN-α, but strikingly, CD8+ T cells 

cultured with IFN-γ were unable to activate Stat1 (Fig. 1A). This suggests that one or more 

components of the IFN-γ signaling pathway are either absent, defective, or inhibited in 

CD8+ T cells. The observation that Stat1 activation is detected following treatment with 

IFN-α indicates that Stat1, as well as Janus kinase 1 are present and functional in CD8+ T 

cells. To specifically identify the signaling defect in CD8+ T cells, the integrity of the IFN-

γR complex was examined. Similarly to Th1 cells (20, 21), IFN-γR1 protein was detected on 

the surface of CD8+ T cells using the GR-20 Ab (Fig. 1B). However, mRNA encoding the 

IFN-γR2 chain was not detected in these cells (Fig. 1C).
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Downstream of Stat1 activation, IFNs induce the expression of many genes, including the 

class I MHC genes and irf-1 (37). As expected, treatment of control T cells with either IFN-

α or IFN-γ resulted in increased levels of cell surface H-2Kb (Fig. 1D). In CD8+ T cells, 

however, while IFN-α had an inductive effect, IFN-γ had no apparent effect on cell surface 

H-2Kb levels (Fig. 1D). Furthermore, IFN-γ was unable to induce irf-1 gene expression in 

CD8+ T cells (Fig. 1E). Together, these data suggest that CD8+ T cells are unable to respond 

to IFN-γ because they may lack IFN-γR2, the signal-transducing component of the IFN-γR 

(38).

CD8+ T cells from IFN-γR2−/− mice develop and function normally

Because CD8+ T cells do not appear to express IFN-γR2, it may be that this receptor, and 

perhaps IFN-γ responsiveness in general, are dispensable for the development, 

differentiation, and the function of CD8+ T cells. To examine this possibility, CD8+ T cells 

isolated from mice that are unable to respond to IFN-γ were analyzed. Prior studies have 

shown that CD8+ T cells from mice deficient in IFN-γR1 can elaborate normal lytic and 

proliferative memory responses against virally infected targets (39). IFN-γR1-deficient mice 

are also resistant to most viral infections, suggesting that IFN-γ signaling may not be 

required for the development and function of CD8+ T cells. To directly examine the 

requirement for IFN-γR2 in the CD8+ T cell system, CD8+ T cells were isolated from IFN-

γR2-deficient mice and were analyzed. Prior studies have demonstrated normal numbers of 

CD8+ T cells in the lymphoid organs of IFN-γR2−/− mice (23), which is similar to findings 

in other IFN-γ-insensitive or IFN-γ-deficient systems. IFN-γR2−/− allo-specific CD8+ T 

cells proliferated and produced normal levels of IFN-γ in response to a number of activating 

stimuli, such as phorbol ester + calcium ionophore or allogeneic APCs (Fig. 2A and data not 

shown). Furthermore, these cells exhibited equivalent levels of specific allogeneic target 

lysis as compared with allo-specific CD8+ T cells derived from WT littermate controls (Fig. 

2B). IFN-γR2−/− CD8+ T cells therefore appear indistinguishable from their WT 

counterparts despite their inability to transduce the IFN-γ signal at all points during their 

development and maturation. These data suggest that IFN-γ signaling is not essential either 

for the development of CD8+ T cells or for their function.

TG expression of IFN-γR2 endows CD8+ T cells with IFN-γ responsiveness

The experiments above suggest that CD8+ T cells lack expression of IFN-γR2 and are 

insensitive to IFN-γ. To examine whether these two findings are directly linked, CD8+ T 

cells were isolated from IFN-γR2 TG mice, and their ability to signal through IFN-γR was 

analyzed. In these mice, TG expression of IFN-γR2 is driven by the CD2 promoter/

enhancer. This transgene mRNA, which had been previously shown to be expressed in 

CD4+ T cells (22), is also detected in CD8+ T cells isolated from IFN-γR2 TG mice (Fig. 

3A). In addition, IFN-γR2 TG CD8+ T cells are able to activate Stat1 in response to 

treatment with IFN-γ, in contrast to WT CD8+ T cells (Fig. 3B). This indicates 

overexpression of IFN-γR2 is sufficient to restore IFN-γ signaling in CD8+ T cells, and 

suggests that IFN-γR2 deficiency may be the sole locus of the defect in IFN-γ signaling seen 

in WT CD8+ T cells.
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The altered IFN-γ signaling potential observed in TG CD8+ T cells suggests that their 

biologic responses to IFN-γ may differ from those of WT CD8+ T cells. As expected, TG 

CD8+ T cells up-regulate levels of cell surface class I MHC in response to treatment with 

IFN-α, like WT CD8+ T cells (Fig. 3C). However, unlike their WT counterparts, IFN-γR2 

TG CD8+ T cells can increase cell surface expression of class I MHC molecules in response 

to IFN-γ (Fig. 3C). Interestingly, the basal level of class I MHC molecules is higher in TG 

than WT CD8+ T cells, which may be the reason for the more modest effect of IFNs on the 

up-regulation of these molecules in TG cells (Fig. 3C). Nevertheless, the up-regulation or 

class I MHC molecules in response to IFN-γ in TG cells is both significant and reproducible.

As previously reported, IFN-γR2 TG mice appear healthy and thrive when housed in a 

conventional facility (nonbarrier), and have normal proportions of CD8+ T cells in their 

spleens and lymph nodes (22). Furthermore, FACS analysis of thymocytes (CD4 vs CD8 vs 

CD3, and CD4 vs CD8 vs CD69) has revealed no differences between WT and TG mice. 

TG CD8+ T cells proliferate and can be propagated in vitro similarly to their WT 

counterparts. However, because IFN-γ has been reported to have antiproliferative effects (4), 

it is possible that TG CD8+ T cells have a proliferative disadvantage secondary to autocrine 

effects of this cytokine. To examine the effects of IFN-γ signaling on the mitotic profiles of 

CD8+ T cells, CD8+ T cells were purified from WT and TG mice and were labeled with 

CFSE, an amine-reactive, membrane-permeant, fluorescein-based dye that does not interfere 

with the biologic function of CD8+ T cells (40). The decay of the CFSE label was followed 

under a number of stimulation and proliferative conditions. WT and TG CD8+ T cells 

proliferate equally well when stimulated with either anti-CD3 plus anti-CD28 mAbs (Fig. 

3E and Table I) or allo-APCs (data not shown). These experiments were also performed 

using standard [3H]thymidine incorporation techniques, which yielded similar results (data 

not shown). Together, these data demonstrate that the IFN-γR2 transgene uniquely endows 

CD8+ T cells with IFN-γ responsiveness, but does not appear to affect their in vivo 

development or in vitro proliferation.

Altered gene expression in IFN-γR2 TG CD8+ T cells

IFN-γ has been shown to regulate the expression of over 200 genes, including transcription 

factors, such as IRF family members, c-fos, and c-jun, and signaling molecules such as 

SOCS family members, csk, lyn, and lck (37, 41-43). Stat1 is constitutively activated in TG 

CD8+ cells (Fig. 3B), most likely as a result of autocrine effects of IFN-γ. Furthermore, the 

basal levels of cell surface class I MHC molecules are elevated on IFN-γR2 TG CD8+ T 

cells. It is likely that autocrine effects of IFN-γ (Fig. 3B) induce the higher baseline of cell 

surface MHC molecules (Fig. 3C). To examine whether the IFN-γR2 transgene affects the 

expression of other IFN-γ-regulated genes, mRNA was isolated from activated CD8+ T cell 

lines derived from WT and TG mice. The mRNA levels of irf-1 and, more modestly, 

SOCS-1 and SOCS-3, were found to be elevated in TG cells (Fig. 3D). This suggests that the 

pattern of expression of these, and potentially other, IFN-γ-regulated genes is altered in IFN-

γR2 TG CD8+ T cells.
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IFN-γ signaling does not affect CD8+ T cell cytokine and proliferative memory responses 
ex vivo

To examine whether the signals transduced through IFN-γR affect CD8+ T cell responses in 

vivo, Ag-specific memory responses, such as proliferation and cytokine production, were 

examined in IFN-γR2 TG mice. CD8+ T cells were purified from primed mice, labeled with 

CFSE, and stimulated with allogeneic APCs. Both the fraction of CD8+ T that are 

alloreactive in the primed mice, and the proportion of these alloreactive cells that are IFN-γ 

producers, were determined by flow cytometry. Approximately 0.1% of isolated CD8+ T 

cells from mice primed with syngeneic APCs produced IFN-γ in response to ex vivo 

allogeneic stimulation (Fig. 4A). In contrast, at least 6-fold greater numbers of allo-primed 

WT and TG CD8+ T cells produced IFN-γ following ex vivo stimulation with allogeneic 

APCs (Fig. 4A). These results corroborate the in vitro data showing no difference in IFN-γ 

production between WT and TG cells (see below).

Three days following allostimulation, the distribution of the CFSE label in the population 

was analyzed by flow cytometry to determine the proportion of allo-responding CD8+ T 

cells. Both allo-primed WT and TG mice had comparable proportions of alloresponding 

CD8+ T cells (51.8% and 56.6%, respectively), which were consistently higher than the 

proportion of alloresponders from mice primed with syngeneic cells (35%) (Fig. 4B). 

Moreover, WT and TG alloresponder populations exhibited similar rates of CFSE decay 

(Fig. 4B, and data not shown). Therefore, in response to ex vivo antigenic challenge, primed 

TG mice generate equivalent proportions of CD8+ responders that proliferate and produce 

IFN-γ similarly to their WT counterparts.

IFN-γ signaling specifically impairs the effector killing function of CD8+ T cells

Although CD8+ T cells are resistant to IFN-γ, and signaling through IFN-γR appears to be 

dispensable for the normal development and function of these cells, IFN-γR2 TG CD8+ T 

cells appear to proliferate normally (Figs. 1–3). This raises the question of why CD8+ T cells 

become unresponsive to IFN-γ. It is possible that unresponsiveness to IFN-γ is not a mere 

phenomenon, but is an essential feature of CD8+ T cells intimately associated with the some 

element of their function. To test this possibility, two effector functions of CD8+ T cells, 

cytokine production and target cell lysis, were examined in vitro. Allo-specific CD8+ T cells 

derived from WT and IFN-γR2 TG mice were assayed for their ability to lyse 51Cr-labeled 

syngeneic (S49) and allogeneic (EL-4) tumor cell lines. WT CD8+ T cells specifically lysed 

allogeneic targets efficiently, but could not lyse syngeneic target cells (Fig. 5B). Strikingly, 

IFN-γR2 TG cells were unable to lyse allogeneic or syngeneic target cells (Fig. 5B). This 

defect in killing was confirmed multiple times with both CD8+ T cell lines and clones, as 

well as with freshly isolated CD8+ T cells from primed WT and TG mice (Fig. 5A). In 

contrast, both WT and TG CD8+ T cells produced equivalent amounts of IFN-γ in response 

to a number of stimuli, including plate-bound anti-CD3 + anti-CD28 mAbs, allo-APCs, and 

PMA + ionomycin, as assayed by both intracytoplas-mic staining and ELISA (Fig. 5C and 

data not shown). Together, these data suggest that IFN-γ responsiveness selectively alters 

the target cell lysis effector function of TG CD8+ T cells, but not their ability to produce 

IFN-γ.
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IFN-γ signaling does not affect the ability of CD8+ T cells to produce effector molecules

Allo-specific IFN-γR2 TG CD8+ T cells are unable to lyse allogeneic target cells, but are 

capable of normal proliferation and IFN-γ production. To identify the mechanism 

responsible for the observed defect in cytotoxicity, the ability of TG cells to produce effector 

molecules involved in killing was examined. WT and TG CD8+ T cells express equivalent 

levels of both perforin- and granzyme B-encoding mRNA at baseline, and these mRNA 

species are similarly up-regulated following treatment with Con A in WT and TG CD8+ T 

cells (Fig. 6A). Furthermore, cell surface levels of FasL are up-regulated in both WT and TG 

CD8+ T cells in response to stimulation with either allo-APCs or polyclonal stimuli (Fig. 6B 

and data not shown). The extent of increase in cell surface levels of FasL in TG cells 

(median fluorescence intensity rising from 4.5 to 11.4 upon stimulation) is consistently more 

modest than that seen in WT cells (5.3 rising to 16.3). These data suggest that the effector 

molecules required for the cytotoxic function of CTLs are expressed by TG CD8+ T.

The defect in killing may potentially be caused by an inability of IFN-γ-responsive CD8+ T 

cells to either normally recognize, or be properly activated by, allogeneic targets. To address 

this question, the effect of allogeneic stimulation on TG CD8+ T cell activation was 

examined. Following incubation with allo-APCs or stimulation with anti-CD3, TG cells can 

up-regulate expression of the activation markers CD69 and CD25 (IL-2Rα) equally well as 

their WT counterparts, suggesting that these cells recognize and are normally activated by 

allogeneic stimuli (Fig. 6B and data not shown). These data, together with the observation 

that TG CD8+ T cells proliferate normally (Fig. 3E and Table I), argue that IFN-γ signaling 

does not affect the ability of CD8+ T cells to be specifically activated through TCR-MHC 

contact, or through polyclonal TCR triggering.

It appears that TCR contact with physiologically appropriate MHC molecules results in the 

activation of IFN-γR2 TG CD8+ T cells and induction of cytokine production. Although 

TCR triggering in WT cells results in activation of their cytotoxic pathways, this type of 

stimulus may be insufficient to induce the exocytosis of cytotoxic granules in TG cells. It is 

possible that a particularly strong activating stimulus, such as Con A, may be able to induce 

exocytosis in TG CD8+ T cells, resulting in target cell lysis. Con A aggregates cell surface 

glycoproteins, thereby supernormally activating T cells independently of allo-MHC 

molecules (44). The addition of Con A to a standard killing assay (redirected killing) 

enhanced the cytotoxicity of both WT and TG CD8+ T cells (Fig. 6C). TG cells did not 

achieve the same absolute levels of S49 target cell lysis as did their WT counterparts in this 

redirected killing assay (Fig. 6C). However, the relative increase in cytotoxicity at each E:T 

ratio was equivalent among all WT and TG CD8+ T cell lines (Table II). Moreover, 

redirected killing using the syngeneic cell line EL-4 as a target resulted in equivalent 

increases in both relative and absolute values of lysis among all effector cell lines tested 

(Fig. 6D).

Together, these data suggest that IFN-γR2 TG CD8+ T cells produce the effector molecules 

that are required for killing, but are, nevertheless, unable to lyse their targets under normal 

conditions. The killing defect in TG cells can be circumvented through the addition of Con 

A, a strong activating stimulus. This suggests that signaling through the IFN-γR causes a 
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subtle, selective defect in CD8+ T cell activation that affects the elaboration of cytotoxicity 

rather than the production of the components required for this effector function.

Discussion

It is established that cytokines play a pivotal role in the development of mature, effector Th 

phenotypes (9). Previous studies have demonstrated that Th cells acquire differential 

responsiveness to cytokines during their differentiation (19-21). For instance, Th1 cells, the 

IFN-γ-producing CD4+ T cell subset, do not respond to IFN-γ because they lack expression 

of IFN-γR2 (20, 21). The present study investigates cytokine responsiveness in CD8+ T cells 

and its potential effects on the acquisition of a mature CTL phenotype. The experiments in 

this study demonstrate that, like their CD4+ counterparts, IFN-γ-producing CD8+ T cells 

express IFN-γR1, but not IFN-γR2, and are unable to transduce the IFN-γ signal, or respond 

to the biologic effects of this cytokine. There is no effective Ab to IFN-γR2, and standard 

binding assays may not be sufficiently sensitive to determine whether IFN-γR2 is present on 

the surface of CD8+ T cells, because this chain is not required for binding IFN-γ (45). 

Therefore, our data demonstrating that CD8+ T cells lack IFN-γR2 mRNA, are able to 

activate Stat1 in response to treatment with IFN-α but not with IFN-γ, and that TG 

expression of IFN-γR2 confers IFN-γ responsiveness to these cells, is the best available set 

of experiments to demonstrate this causal relationship. In support of this, our original report 

describing the lack of IFN-γ signaling in Th1 cells demonstrated that transfection of cDNA 

encoding IFN-γR2 into Th1 clones allows them to respond to IFN-γ (20).

Experiments using CD8+ T cells derived from IFN-γR2−/− mice demonstrate that IFN-γR is 

not required for the development of a mature CTL phenotype. Furthermore, TG 

overexpression of IFN-γR2 not only restores IFN-γ responsiveness in CD8+ T cells, but 

results in CTLs with altered function. This establishes an interesting paradigm, that IFN-γ-

producing T cells down-modulate expression of IFN-γR2 and consequently acquire an IFN-

γ-unresponsive phenotype. Moreover, unresponsiveness to IFN-γ appears to be essential for 

the development of the normal effector phenotypes of these cells.

Much is known about how IFN-γ and other cytokines affect CD4+ Th subset differentiation 

and function. However, the current understanding of the role of cytokines in the 

development, differentiation, and function of CD8+ T cells is still rudimentary. The finding 

that CD8+ T cells are insensitive to IFN-γ suggests that the modulation of responsiveness to 

this cytokine by these cells may be an event integral to their development. Remarkably, 

forced responsiveness to IFN-γ in CD8+ T cells appears to specifically impair their ability to 

kill, but leaves their other functions intact. It is interesting that the function of both CD4+ 

and CD8+ T cells is impaired in IFN-γR2 TG mice, but the effects of transgene expression 

on these cells are qualitatively different. TG Th1 cells elaborate defective IFN-γ-dependent 

responses, whereas production of this cytokine by TG CD8+ T cells is intact (22). It may be 

that these two cell types have innate differences in their “hard wiring” for IFN-γ production, 

as suggested by the dependence of Th1, but not CD8+ T cells on Stat4 for production of this 

cytokine (46).
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A number of groups have described CTLs whose function is altered, with a phenotype 

similar to that of IFN-γR2 TG CD8+ T cells. In these studies, CTLs stimulated by 

superantigen (47), subdominant viral epitopes (16), or altered peptides (altered peptide 

ligand phenomenon) (48, 49), and naturally occurring virus-specific CTLs (15, 50) appear to 

elaborate defective killing mechanisms, but can be activated to proliferate and produce IFN-

γ normally. It seems that, depending on the nature of the TCR signal, CTLs that appear to be 

normally activated can be selectively unable to elaborate one or more effector mechanisms. 

One group has shown that CTLs that cannot generate an appropriate Ca2+ signal in response 

to TCR triggering are unable to kill through the perforin/granzyme pathway (51-53). 

Degranulation can be induced by treatment of these cells with phorbol ester plus calcium 

ionophore, which circumvents the TCR to induce a large spike in intracellular Ca2+.

Like previously described CTLs with altered function, IFN-γR2 TG CD8+ T cells are 

activated, produce IFN-γ, and up-regulate FasL in response to antigenic stimulation. 

Although the extent of FasL up-regulation is more modest on TG than on WT CD8+ T cells, 

it is unlikely that this is the locus of the defect in killing in IFN-γR2 TG CD8+ T cells, 

because our cytotoxicity assay system does not measure FasL-mediated killing, which 

typically requires a longer assay time (54, 55). Furthermore, S49 cells, the allogeneic targets 

used in the killing assay, may be resistant to FasL-mediated killing (56). Remarkably, TG 

cells are unable to kill via the exocytotic pathway, although they produce the effector 

molecules required for this function. In contrast, in the presence of Con A, TG cells are able 

to lyse allogeneic and syngeneic targets. One effect of Con A is to promote cell-cell contact, 

which raises the possibility that TG CTLs may be unable to form the effector-target cell 

contacts that are required for killing (57). This potential dysfunction could be due to altered 

expression of adhesion molecules in these cells. However, since the typical net effect of 

IFN-γ is the up-regulation of cell surface levels of adhesion molecules, such as selectins 

(e.g., CD62L and CD62E) and integrins (e.g., CD49a-f and CD11a-c) on a host of cell lines, 

TG CTLs are probably able to bind with target cells (37). Con A can also induce multiple 

intracellular events, including protein tyrosine kinase activation, leading to increase in 

tyrosine-phosphorylated proteins, phosphatidylinositol 3-kinase activation, activation of 

pathways downstream of G proteins, rise of intracellular Ca2+, and the nuclear translocation 

of NF-ATp (58-62). These events correlate with the commonly accepted role of Con A as a 

polyclonal activator of T cells. It is likely that this lectin promotes killing by TG cells by 

triggering intracellular pathways in these cells that are not activated, or are differently 

activated, by TCR-MHC contact alone. Since many pathways activated by Con A are 

normally downstream of the TCR, these findings raise the possibility that the quality of the 

TCR signal in IFN-γR2 TG CTLs is altered.

IFN-γ is a pleiotropic cytokine that is known to regulate the expression of a vast array of 

genes, and consequently a host of cellular and immunological processes (37). In IFN-γR2 

TG CD8+ T cells, Stat1 is constitutively active, and baseline levels of IFN-γ-inducible 

proteins are elevated. We believe this occurs because of autocrine effects of IFN-γ rather 

than an artifact of overexpression of IFN-γR2 because we have previously reported that 

Stat1 is inactive in TG Th2 cell clones, which by definition do not produce IFN-γ (22). This 

suggests that the constitutive activation of the IFN-γ pathway seen in TG CD8+ T cells is 
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ligand dependent. Furthermore, altered pattern of gene expression in CD8+ T cells derived 

from IFN-γR2 TG mice can potentially create an environment that is incompatible with the 

acquisition of killing function or the generation of an appropriate TCR signal, leading to a 

selective defect in perforin/granzyme-mediated cytotoxicity in these cells. One potential 

mechanism for this defect may involve the SOCS-1 and SOCS-3 proteins, whose expression 

is known to be induced by IFN-γ, and is up-regulated in IFN-γR2 CD8+ T cells (42). These 

SOCS proteins may affect signaling by cytokines that are important in the function of CD8+ 

T cells. Both SOCS-1 and SOCS-3 have been implicated in the attenuation of the IFN-α 

signal (63-65). CTLs from mice that are deficient in the IFN-αβR were unable to elaborate 

Ag-specific killing functions, but were able to produce IFN-γ (66, 67). SOCS-3 has also 

been shown to inhibit Janus kinase 2 activation, and therefore, the activation of Stat5 by 

GM-CSF and perhaps by IL-5 (68, 69). Defects in IL-5 and GM-CSF have been shown to 

affect killing by CD8+ T cells (70, 71). Therefore, through the induction of SOCS 

expression, IFN-γ may potentially initiate an inhibitory cross-talk with the IFN-α, IL-5, 

and/or GM-CSF pathways, all of which have been implicated in CTL cytotoxicity. Beyond 

their role as suppressors of cytokine signaling, these members of the SOCS family have 

been implicated in inhibiting the activation of signaling pathways downstream of the TCR 

(72) (A. Banerjee, personal communication). In addition to the SOCS, there may be other 

IFN-γ-inducible factors that mediate this inhibitory cross-talk between the IFN-γR and TCR 

pathways, or that regulate pathways linking T cell activation to granule exocytosis. These 

factors may also be dysregulated in IFN-γR2 TG CD8+ T cells, leading to the observed 

phenotype.

This study has demonstrated that, during their development or differentiation, CD8+ T cells 

down-modulate expression of IFN-γR2, thereby extinguishing their ability to respond to 

IFN-γ. This event appears to be crucial for the acquisition of a fully functional, mature, CTL 

phenotype, since signaling through IFN-γR blocks the ability to utilize the perforin/

granzyme cytotoxic pathway by CD8+ T cells that are stimulated by their cognate Ag. 

However, it seems that IFN-γ signaling is not required for either the thymic development of 

CD8+ T cells or their differentiation into mature CTLs. What, then, is the biological 

importance of the control of IFN-γR2 expression? This phenomenon may be a self-

protective mechanism invoked by CD8+ T cells to avoid the potential deleterious effects of 

IFN-γ. Therefore, down-modulation of IFN-γR2 would occur automatically, either 

concomitantly with their acquisition of the capacity to produce IFN-γ, following the initial 

triggering of signaling through IFN-γR, or in response to another signal delivered during 

their differentiation. On the other hand, the modulation of IFN-γR2 expression could 

potentially be used as a self-regulatory switch by CD8+ T cells. Continued IFN-γR2 

expression in naive CD8+ T, which may, in fact, be normally responsive to IFN-γ, would 

delay their maturation or prevent it entirely. These cells would not be able to acquire a 

mature cytotoxic phenotype until down-modulation of IFN-γR2 expression is induced. 

Furthermore, by modulating IFN-γR2 expression, mature CTLs may be able to actively 

regulate their capacity to kill using the perforin/granzyme pathway. These scenarios 

represent an IFN-γ-mediated mechanism by which the immune system can self-limit its 

responses, thereby controlling the supply of new CTLs or modulating the function of 

existing CTLs. Whether the IFN-γ responsiveness phenotype becomes fixed or remains 
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flexible, the regulation of IFN-γR2 expression is an integral event in CD8+ T cell 

development and mature phenotype acquisition. IFN-γ-producing T cells, and potentially all 

IFN-γ-producing cells, may need to extinguish their ability to respond to IFN-γ by down-

regulating the expression of IFN-γR2 to develop into mature effector cells.
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FIGURE 1. 
CD8+ T cells do not express IFN-γR2 and are not responsive to IFN-γ. A, EMSA of protein 

extracts from untreated or IFN-γ- or IFN-α-treated (Rx) CD8+ T cell clones or control cells 

using GAS site as probe. B, Flow cytometric analysis of IFN-γR2 expression on CD8+ T cell 

clones with GR-20 Ab with isotype-matched control (73). C, Northern blot analysis of IFN-

γR2 mRNA expression using mRNA by CD8+ T cell clones and control, with GAPDH 

probe used as loading control. D, FACS analysis of class I MHC (H-2Kb) expression by 

CD8+ T cell clones and control cells (UnRx) treated with either IFN-α (15 ng/ml) or IFN-γ 

(10 ng/ml) for 72 h. E, Northern blot analysis of irf-1 mRNA expression using mRNA 

isolated from CD8+ T cell clones and control cells either untreated or treated with IFN-γ for 

12 h, with GAPDH probe used as loading control.
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FIGURE 2. 
Signaling through IFN-γR is not required for the normal cytokine production and killing by 

CD8+ T cells. A, IFN-γ production of allo-specific CD8+ T cell lines derived from WT and 

IFN-γR2−/− mice. Six days postallostimulation, untreated (- - - -) or PMA + ionomycin 

(IONO)-treated (—) cells were stained for intracytoplasmic IFN-γ and analyzed by flow 

cytometry. Chart below indicates the percentages of events within the indicated IFN-γ-

positive gate. B, 51Cr release assay measuring the specific cytotoxicity of allo-specific IFN-

γR2−/− (—) and WT (- - - -) CD8+ T cell lines toward syngeneic (EL-4, top) or allogeneic 

(S49, bottom) tumor cell lines.
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FIGURE 3. 
TG expression of IFN-γR2 restores responsiveness to IFN-γ in CD8+ T cells and does not 

affect their ability to proliferate, but alters their gene expression. A, Detection of IFN-γR2 

mRNA expression in IFN-γR2 TG CD8+ T cell clones and control cells by Northern blot as 

in Fig. 1C. B, EMSA of protein extracts from IFN-γ- and IFN-α-treated (Rx) IFN-γR2 TG 

CD8+ T cell clones and control cells as in Fig. 1a. C, FACS analysis of class I MHC 

(H-2Kb) expression by IFN-α- or IFN-γ-treated IFN-γR2 TG CD8+ T cell clones and control 

cells, as in Fig. 1D. NoRx, Untreated. D, mRNA was isolated from WT and TG CD8+ T 

cells (two cell lines each) 5 days following stimulation with allogeneic APCs. IRF-1, 

SOCS-1, SOCS-3, and GAPDH expression was visualized by Northern blotting. E, Analysis 

of the distribution of CFSE label by flow cytometry. Freshly isolated WT and CD8+ IFN-

γR2 TG CD8+ T cells from spleens and mesenteric lymph nodes were labeled with CFSE 

and stimulated with anti-CD3 + anti-CD28 Abs in the presence of IL-2. Cells were analyzed 

by FACS on day 3. Cell divisions undergone by CD8+ cells are represented by numbered 

gates.
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FIGURE 4. 
IFN-γR2 TG mice elaborate normal CD8+ T cell proliferative and cytokine memory 

responses ex vivo. A and B, Ex vivo IFN-γ production and alloresponder frequency 

following syngeneic or allogeneic priming. WT and IFN-γR2 TG mice were primed as 

indicated. At day 10, CD8+ T cells were purified, labeled with CFSE, and stimulated with 

allo-APCs or not. A, At 12 h, cells were stained for intracytoplasmic IFN-γ and analyzed by 

flow cytometry. Plots represent CD8-positive, CFSEbright (non-APC) events. The values in 

each panel represent the percentages of IFN-γ-positive events within the indicated gates. B, 

On day 3, the CFSE label distribution of the allostimulated cells analyzed by flow 

cytometry. Plots represent CD8+, CFSEbright (non-APC) events. CFSE intensity at day 0 

(dashed curve) is overlaid with the CFSE distribution at day 3 (solid curve). Of two clusters 

of CFSEbright cells in each histogram, the high intensity peak corresponds to the 

nonalloreactive cell population, whereas the low intensity peak represents the responder 

population that has undergone four to six cell division cycles. Values represent the 

percentages of CD8+ T cells responding to allogeneic stimulation within the indicated gates.
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FIGURE 5. 
IFN-γ signaling impairs CD8+ T cell cytotoxicity, but not cytokine production. A and 

B, 51Cr release assay measuring the specific cytotoxicity of allo-specific IFN-γR2 TG (—) 

and WT (- - - -) CD8+ T cell clones (B) or CD8+ T cells freshly isolated from allo-primed 

mice (A) toward syngeneic (EL-4, top) or allogeneic (S49, bottom) tumor cell lines. C, IFN-

γ production of allo-specific CD8+ T cell lines derived from IFN-γR2 mice. Six days 

postallostimulation, CFSE-labeled CD8+ T cells were stimulated with APCs or not. Twelve 

hours later, cells were stained for intracytoplasmic IFN-γ and analyzed by flow cytometry. 

Plots represent CFSEbright (non-APC) events. Values represent the percentages of IFN-γ-

positive events within the indicated gates.
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FIGURE 6. 
IFN-γR2 TG CD8+ T cells are normally activated, produce effector killing molecules, and 

exhibit cytotoxic activity following chemical stimulus. A, Detection of perforin, granzyme 

B, and GAPDH mRNA expression in unstimulated (5 days postallostimulation) or Con A-

stimulated (5 days) WT and IFN-γR2 TG CD8+ T cell lines by Northern blot. B, Flow 

cytometric analysis of cell surface FasL, CD69, and CD25 expression on WT and IFN-γR2 

TG CD8+ T cell clones that were either stimulated with APCs for 12 h (—) or left 

unstimulated (- - - -). Histogram represents CD8-positive events. C, Redirected killing assay 

measuring 51Cr release by labeled targets incubated with WT and IFN-γR2 TG CD8+ T cell 

lines in the presence or absence of Con A.
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Table I

Distribution of the CFSE label in CD8+ T cells

No. of Cycles

2 3 4 5 6 7

WT 2.27 6.48 17.37 33.61 32.26 8.4

TG line 1 0.79 2.58 9.91 32.86 45.01 9.41

TG line 2 2.63 9.25 23.75 38.84 22.36 3.57
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Table II
Net Con A-mediated lysis of allogeneic targets (S49)

3.7:1 11:1 33:1 100:1

WT A 18.5 28.2 31.1 30.2

WT B 21.2 19.4 23.9 26.8

TG A 12.4 30.0 32.2 40.6

TG B 8.2 18.5 21.2 24.1
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