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Abstract

Motivation

The availability of ontologies and systematic documentations of phenotypes and their ge-

netic associations has enabled large-scale network-based global analyses of the associa-

tion between the complete collection of phenotypes (phenome) and genes. To provide a

fundamental understanding of how the network information is relevant to phenotype-gene

associations, we analyze the circular bigraphs (CBGs) in OMIM human disease phenotype-

gene association network and MGI mouse phentoype-gene association network, and intro-

duce a bi-random walk (BiRW) algorithm to capture the CBG patterns in the networks for un-

veiling human and mouse phenome-genome association. BiRW performs separate random

walk simultaneously on gene interaction network and phenotype similarity network to ex-

plore gene paths and phenotype paths in CBGs of different sizes to summarize their associ-

ations as predictions.

Results

The analysis of both OMIM and MGI associations revealed that majority of the phenotype-

gene associations are covered by CBG patterns of small path lengths, and there is a clear

correlation between the CBG coverage and the predictability of the phenotype-gene associ-

ations. In the experiments on recovering known associations in cross-validations on human

disease phenotypes and mouse phenotypes, BiRW effectively improved prediction perfor-

mance over the compared methods. The constructed global human disease phenome-ge-

nome association map also revealed interesting new predictions and phenotype-gene

modules by disease classes.

Introduction
In the past decade, large-scale efforts have been put into establishing ontologies and documen-
tations to describe the full collection of phenotypes (called phenome). The generated large
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phenotype databases and ontologies categorize phenotypes in many species [1–3] and human
genetic diseases [4]. The global analysis of the collection of phenotypes in a database or an on-
cology and the known phenotype-gene relations now provides a strategy to predict a list of can-
didate genes based on the knowledge of already determined phenotype-gene associations such
as those in Mouse Genome Informatics (MGI) [5] and Online Mendelian Inheritance in Man
(OMIM) [4], a database of human genes and genetic disorders. Complimentary to high-
throughput genomic profiling approaches, this knowledge-based strategy takes the advantage
of the availability of large phenotypic and molecular networks such as human disease pheno-
type network [6], human protein-protein interaction network [7, 8] or functional linkage net-
work [9]. The problem of predicting phenotype-gene associations in a real phenotype-gene
association subnetwork is illustrated in Fig 1. Based on the assumption that the relations
among the genes and among the diseases in the networks are predictive of their associations,
many network-based approaches have been proposed to utilize the disease modules and gene
modules in the networks to prioritize disease genes for a disease phenotype [9–19], to find re-
lated disease phenotypes for a gene set [20] or to detect disease-gene modules [21]. A more re-
cent method further explored protein complex relation in the networks to improve gene
prioritization [19]. Despite of the impressive results in the studies, few attempts have been
made to explain the network-based prediction approaches by graph patterns.

We postulate that the relation among phenotype-gene associations can be characterized by
circular bigraph patterns (CBGs). Based on the observation of high frequency of CBGs in MGI
and OMIM associations, we apply a bi-random walk algorithm (BiRW) [22] to capture the
CBG patterns in the networks for unveiling the association between the complete collection of
phenotypes and genes (phenome-genome association). The key assumption is that the global
structure of phenome-genome association can be represented by many overlaying circular
bigraphs, i.e. each phenotype-gene association is likely to be paired with some other pheno-
type-gene association(s) with their phenotypes and genes closely related in the phenotype net-
work and the gene network, respectively. The assumption is supported by the phenotype-gene
modules reported in [21] as well as the observation of frequent CBGs in this study. Thus, the
reconstruction of the complete phenome-genome association can be achieved by maximizing
the number of circular bigraphs balanced with the known associations.

BiRW iteratively adds new associations into the network by bi-random walk to evaluate the
number of recovered circular bigraphs with a decay factor penalizing longer paths in the CBG
patterns. Note that different from the algorithms for disease gene prioritization [9, 13–16],
which rank genes for a particular query phenotype, BiRW is a global approach to reconstruct
the missing associations for all the phenotypes simultaneously.

Methods
A phenotype-gene association network is a heterogeneous network composed of a phenotype
network, a gene network and the phenotype-gene associations modeled by a bipartite graph
(Fig 1). Let P(m×m), G(n×n) and A(m×n) be the affinity matrix of the phenotype network, the gene
network and the association bipartite graph respectively, wherem is the number of phenotypes
and n is the number of genes. The objective is to predict the missing associations based on the
heterogeneous disease phenotype-gene association network by reconstructing an association
matrix R(m×n). The magnitude of each Rij provides the degree of association between phenotype
i and gene j. In the following, we first introduce the concept of circular bigraphs (CBG) and
then the bi-random walk algorithm (BiRW) for learning R(m×n).

Network-based Phenome-Genome Association Prediction
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Circular Bigraphs
A CBG is defined as a subgraph composed of a phenotype path {p1, p2, . . ., pm} and a gene path
{g1, g2, . . ., gn} with two ends connected by two phenotype-gene associations (p1, g1) and (pm,
gn) (Fig 2). A CBG indicates a vicinity relation between two associations (p1, g1) and (pm, gn) by
generalizing the relations between p1 and pm by their distance in the phenotype network and
the relation between g1 and gn in the gene network. The smallest CBGs directly represent the
simple hypothesis by the existing methods as illustrated in Fig 2A. The triangle with two

Fig 1. Predictingmissing associations in disease phenotype-gene association network. This real subnetwork includes seven cancer phenotypes and
eight disease genes. Similar phenotypes and interacting genes are connected. The solid lines represent the OMIM association known before May, 2007. The
dash lines represent new OMIM associations added after May, 2007.

doi:10.1371/journal.pone.0125138.g001

Fig 2. Circular Bigraphs (CBG) in phenome-genome association network. A circular bigraph is composed of a phenotype path and a gene path with two
ends connected by phenotype-gene associations. (A), (B) and (C) CBGs with phenotype or gene paths of length 1, 2 and 3. CBGs of length 1 represent the
simple hypothesis. (D) The general hypothesis that CBG with phenotype or gene paths of arbitrary length. The blue bar on the right of the figures reports the
percentage of OMIM disease phenotype-gene associations that are covered by CBGs up to a certain path length. The red bar reports the percentage in the
MGI mouse phenotype-gene associations.

doi:10.1371/journal.pone.0125138.g002
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phenotype nodes and one gene node follows the assumption “similar phenotypes may share
the same causal gene”. The triangle with one phenotype node and two gene nodes follows the
assumption “causal genes of the same disease phenotype tend to interact”. The rectangle with
two phenotype nodes and two gene nodes follows the assumption “genes associated with simi-
lar phenotypes tend to interact”. In Fig 2B–2D, we generalize the hypothesis to CBGs of length
(l, r) by exploring the affinity relations captured by the phenotype path and the gene path of
longer lengths. We hypothesize that in the unknown complete disease phenome-genome asso-
ciation network, most of the associations tend to be captured by many very small circular
bigraphs. Simple calculations of the CBGs in the OMIM phenome-genome association network
confirm that, among 1987 OMIM disease phenotype-gene associations, only 34.68% associa-
tions are covered by simple hypothesis (Fig 2A), while more than 87% of the known OMIM as-
sociations are covered by at least one CBG of path length up to 3 (Fig 2C). CBGs of small path
lengths are prevalent in the human disease phenome-genome association network. Some real
CBG examples of different path lengths are given in S1 Fig. In the mouse phenome-genome as-
sociation network, the percentage of associations covered by CBG of length up to 1 or 2 are
similarly high with lower coverage by CBG of length 3, which is still significantly higher than
the expected coverage in networks with randomized phenotype-gene associations (S11 Table).
More detailed results will be discussed in the Section Results.

Based on the observation of high CBG frequencies in MGI and OMIM associations, BiRW
is specifically designed to capture the CBG patterns in the networks for unveiling phenome-ge-
nome association. BiRW aims to explore the CBGs by bi-random walk on both phenotype net-
work and gene network to evaluate potential candidate associations (Fig 3). By iteratively
extending the phenotype path and the gene path (achieved by multiplying P on the left and G
on the right in each step), the algorithm explores the CBGs weighted by a decay factor α 2
(0,1). The decay factor down-weights the importance of a CBG as the path length is getting

Fig 3. Illustration of bi-randomwalk. P andG are the affinity matrices of the phenotype network and the
gene network, respectively. A is the bipartite graph of the known phenotype-gene association from OMIM. By
iteratively extending the phenotype path and the gene path (achieved by multiplying P on the left orG on the
right in each step), the algorithm explores the CBGs weighted by a decay factor α 2 (0,1). The dashed edge
indicates a potential association to add into the network. The iterative algorithm finds the number of new
CBGs formed by introducing this additional connection. In other words, a potential association is evaluated by
its distance to the known associations in the phenotype network and the gene network.

doi:10.1371/journal.pone.0125138.g003
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longer. Here, the matrix multiplications (P(m×m)�A(m×n)�G(n×n)) mimic jumps on the phenotype
network, the gene network and the association network. In the first step, each element PAG(i, j)

represents the number of CBGs obtained by connecting a target phenotype i to a candidate
gene j with phenotype or gene paths length 1. If we ignore the decay factor for now, more gen-
erally, after t steps of multiplication P. . .(P(P�A�G)G). . .G = Pt AGt, CBG patterns with path
length t can be evaluated. To achieve the best solution R(m×n), we formulated the problem as R
= PRG, assuming P is column-normalized, G is row-normalized, and the elements in R add to

1. PRG can be rewritten in a vector form P � GR̂ where� is Kronecker product and R̂ is the
vector obtained by concatenating the columns in R. Each step of bi-random walk is the same as
a random walk on the Markov matrix P�G. Thus, the step of evaluating the CBGs is identical
to using power method to find the stationary distribution of P�G.

Bi-RandomWalk Algorithm
However, since only the CBGs of small path lengths are informative for predicting associations,
excessively counting CBGs of long path lengths could introduce false positives. [23] suggested
that genes within two-steps in a PPI network are more functional cohesion. Moreover, the phe-
notype similarity network and the gene network contain different topologies and structures,
and thus, the optimal number of random walk steps might be different on the two networks.
To address the problem, we restrict the number of random walk steps on the two sides by in-
troducing two parameters (l, r) as the numbers of maximal iterations in the following left/right
random walk on the networks,

Left Walk : Rt ¼ aP � Rt�1 þ ð1� aÞA
Right Walk : Rt ¼ aRt�1 � Gþ ð1� aÞA ð1Þ

The BiRW algorithm takes P, G, A, the decay factor α, left/right walk steps l and r as the in-
puts and outputs the predicted associations R. The BiRW algorithm is outlined as follows,

BiRW(P, G, A, α, l, r)

1 �P ¼ D
�1
2

P PD
�1
2

P

2 �G ¼ D
�1
2

G GD
�1
2

G

3 R0 ¼ A ¼ A
sumðAÞ

4 for t = 1 to max(l, r)
5 if t < = l
6 Rt left ¼ a�P � Rt�1 þ ð1� aÞA
7 if t < = r
8 Rt right ¼ aRt�1 � �G þ ð1� aÞA
9 Rt = (δt � l�Rt_left+δt � r�Rt_right)/(δt � l+δt � r)
10 return (R)

Note that P is normalized as �P ¼ D
�1
2

P PD
�1
2

P where DP is a diagonal matrix with diagonal ele-
ments DPii = ∑j Pij, and �G is the same normalized from G. A is normalized with elements adding
up to 1. Line 6 and line 8 are the left and right random walks. In Line 9, the propagation results
are combined, where δt � x is 1 if t� x and 0 otherwise. The algorithm will terminate as the
number of iterations exceedsmax(l, r).

Regularization Framework of Bi-RandomWalk
Clearly, BiRW explores CBG patterns on the phenotype network and the gene network. The al-
gorithm assumes that the probability of a phenotype being associated with a gene is
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proportional to the the number of weighted CBGs that are explored by bi-random walk and
connecting the phenotype and the gene. An equivalent statement is that a potential association
between a phenotype and a gene is evaluated by its distance to the other associations in the
phenotype network and the gene network. Actually, the closer the potential association to the
other associations, the more highly weighted CBGs will be created by this association. Thus,
BiRW is a global strategy to complete the association map, instead of prioritizing genes for a
specific disease phenotype. Accordingly, it provides a global optimality in the predicted associ-
ations. The mathematical interpretation of BiRW is by connecting a phenotype and a gene how
many weighted new CBG patterns are curated [22].

Given phenotype network P and gene network G, P�G is the Kronecker product of P and
G. Each P�G(i, u), (j, v) is 1 if Pi, j = 1 and Gu, v = 1, in other words phenotype i and j are neigh-
bors and gene u and v are also neighbors, and otherwise 0. BiRW learns an association matrix
R to minimize the following regularization framework,

a
X

u;v;i;j

ðP � GÞði;uÞ;ðj;vÞðRi;u � Rj;vÞ2 þ ð1� aÞ
X

i;u

ðRi;u � Ai;uÞ2:

In this regularization framework, the first term enforce a smoothness on R where pheno-
types (i, j) and gene (u, v) should form a CBG with phenotype i aligned with phenotype j and
gene u aligned with gene v when (i, j) are neighbors and (u, v) are also neighbors. The second
term uses prior knowledge A as a regularization term. The matrix form of the above objective
function is

max
R

aR̂TðD� ðP � GÞÞR̂ þ ð1� aÞjjR̂ � Âjj2; ð2Þ

where D is the diagonal matrix with the row sum of P�G as the diagonal entries. This objective
function is minimized by BiRW [22][24]. IsoRank algorithm is an bi-random walk algorithm
for global network alignment between PPI networks [25, 26]. While balanced BiRW is identical
to IsoRank, BiRW explicitly interprets iterative random walks on the two networks as steps to
extend the CBG paths, and thus, introduces the flexibility to perform unbalanced left/right
walk to capture CBG patterns more precisely.

Related Work
BiRW is related to several other network-based algorithms for disease gene prioritization [9,
11–18]. CIPHER scores the association between a gene g and the phenotype p by computing
the correlation coefficient between the gene-phenotype profile of g and the phenotype similari-
ty profile of p [13]. The gene-phenotype profile of g is computed by a logistic function based on
the direct neighbors of g or the path length between g and causal genes of each phenotype.
PRINCE performs label propagation on the PPI network to prioritize disease genes [15]. The
initial probabilities on the gene nodes are normalized from the causative genes of the nearest
neighbors of the query phenotype p chosen by a logistic function. The initial scores are propa-
gated in the stochastic matrix normalized from the PPI network. After convergence, the unique
solution of label propagation is used to rank the genes. RWRH [16] runs the same label propa-
gation algorithm on the combined heterogeneous network of all the three networks to rank
genes for a query phenotype. MINProp [14] is based on a principled way to integrate three net-
works in an optimization framework and performs iterative label propagation on each individ-
ual subnetwork. MAXIF [18] maximizes the information flow in the phenome-genome
association network to identify the sink genes for a source phenotype.

These disease gene prioritization algorithms rank genes based on their predicted association
against a particular query phenotype p while BiRW is a global approach which identifies the
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missing associations of all the phenotypes simultaneously. Conceptually, BiRW is a multi-task
learning method for phenome-genome prediction while the previous methods are single-task
learning methods for phenotype-wise association prediction, which do not explore the relation
between the predicted associations across the phenotypes. The mathematical difference be-
tween BiRW and the other algorithms lies in the formulation of using the known associations
in A. CIPHER and PRINCE use the known associations to decide an initial set of genes that are
associated with a query phenotype. RWRH, MINProp and MAXIF directly use A as part of the
large network for random walk or maximum flow computation. BiRW treats the associations R
as the target variable and the known association A as a regularization of R, intuitively, because
A is only partially known and most of the zero entires of A are “unknown” instead of “no asso-
ciation”. Thus, using A as a regularization instead of directly as part of the network for graph
structure-based learning is probably a more rigorous modeling because the incompleteness of
the bipartite network might mislead the random walk.

Results
In the experiments, we first analyzed OMIM disease gene associations and MGI mouse pheno-
type-gene associations by reporting the statistics of CBG patterns in the networks. We then
performed cross-validation and test of an independent test set of OMIM associations to evalu-
ate the performance of BiRW. BiRW was also validated by cross-validation on the MGI mouse
phenotype-gene associations to test the applicability to mouse phenome-genome analysis. Sta-
tistical analysis was performed on randomized OMIM data to validate the statistical signifi-
cance of the results. Finally, we analyzed the predicted OMIM disease phenome-genome
association by examining association modules by each disease class.

Data Preparation
The OMIM disease phenotype network is an undirected graph with 5080 vertices representing
OMIM disease phenotypes, and edges weighted in [0, 1]. The edge weights measure the simi-
larity between two phenotypes by their overlap in the text and the clinical synopsis in OMIM
records, calculated by text mining [6]. The disease-gene associations are represented by an un-
directed bipartite graph with edges connecting phenotype nodes with their causative gene
nodes. Two versions (May-2007 Version and July-2014 Version) of OMIM associations were
used in the experiments. May-2007 Version contains 1393 associations between 1126 disease
phenotypes and 916 genes, and July-2014 Version contains 1987 associations between 1512
disease phenotypes and 1265 genes. Human protein-protein interaction (PPI) network was ob-
tained from HPRD [7]. The PPI network contains 34,364 curated binary interactions between
8919 genes.

The mouse phenotype similarity network was constructed by Mammalian Phenotype (MP)
ontology terms downloaded fromMGI [5]. As suggested by [27] that the most frequent anno-
tations are at level 5 in MP ontology, 2612 ontology terms at level 5 were selected from the
10271 MP ontologies in the OBO file. The similarity is calculated for each pair of phenotype
ontologies by Jaccard similarity coefficient. The mouse phenotype-gene associations were ex-
tracted from file “MGI_Geno_Disease.rpt” downloaded fromMGI website, in which 9798 phe-
notype-gene associations between 1261 phenotypes at level 5 and 815 genes were kept. Note
that to utilize the ontology structure, a level-5 phenotype is considered to be associated with a
gene if the phenotype node itself or any decedent node of the node is associated with the gene.
The mouse PPI network downloaded from BioGrid [28] (version 3.2.113) was used as the gene
network, which contains 19,402 PPIs between 8006 genes.

Network-based Phenome-Genome Association Prediction
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Analysis of OMIM and MGI Associations by CBG Statistics
To analyze the CBGs in the OMIM disease phenome-genome association network, we calculat-
ed the frequencies of the CBG patterns in OMIM (July-2014) phenotype-gene association net-
work. In the phenotype similarity network, the five nearest nodes of each node were selected as
neighbors [16]. We first report the percentage of the 1987 OMIM associations covered in
CBGs categorized by the path length in Fig 2. Only 34.68% of the associations are covered by
CBG patterns of path length 1 (Fig 2A). When larger CBGs are considered, the percentage is
significantly higher. Specifically, 62% of the associations are covered by CBG patterns of path
length up to 2 and 87.72% of the associations are covered by CBG of path length up to 3. When
we randomly created 1987 links between 5080 disease phenotypes and 8919 genes, there is 4.1
average occurrences of CBG of path length 1 in 1000 runs (S1 Table). The significance is ex-
pected because the diameter of the phenotype network is 33, and there are many components
in the PPI network with the largest diameter 14.

To further analyze the relation between CBGs and disease phenotypes, we calculated the
CBG statistics for the 21 disease phenotype classes that are manually curated by [29]. The sta-
tistics are reported in Table 1. Some of the classes such as bone diseases and cancers have a
high CBG coverage on their OMIM associations while some other classes such as metabolic
diseases, ear-nose-throat diseases and psychiatric diseases have lower coverage. For example,
above 98% associations in cancers, nutritional diseases and bone diseases, are covered by CBGs
with path length up to 3, while only 63.41% of those in metabolic disease are covered. A more

Table 1. CBGs in OMIM phenotype-gene associations.OMIM associations in 21 disease classes that are covered by CBGs up to a certain length (1–3).
The coverage by percentage and the AUC in cross-validation are reported.

Disease Classes CBG Len = 1 CBG Len � 2 CBG Len � 3 Assoc # Coverage CBG1 * 2 Coverage CBG1 * 3 Pheno # AUC1000

Bone 21 33 40 40 82.50% 100.00% 31 0.8236

Cancer 93 192 215 219 87.67% 98.17% 67 0.8218

Cardiovascular 25 57 86 88 64.77% 97.73% 58 0.6475

Connectivetissue 11 25 31 33 75.76% 93.94% 24 0.6731

Dermatological 50 61 77 83 73.49% 92.77% 66 0.7565

Developmental 15 24 33 36 66.67% 91.67% 26 0.6442

Ear, Nose, Throat 6 8 19 23 34.78% 82.61% 20 0.5771

Endocrine 33 49 72 79 62.03% 91.14% 47 0.6276

Gastrointestinal 10 16 18 23 69.57% 78.26% 16 0.6692

Hematological 31 48 60 66 72.73% 90.91% 55 0.6388

Immunological 24 52 68 72 72.22% 94.44% 41 0.4695

Metabolic 35 46 78 123 37.40% 63.41% 114 0.2948

Muscular 43 56 64 68 82.35% 94.12% 54 0.7451

Neurological 61 104 162 186 55.91% 87.10% 150 0.5216

Nutritional 8 13 17 17 76.47% 100.00% 3 0.5381

Ophthamological 25 42 51 71 59.15% 71.83% 68 0.6356

Psychiatric 0 8 18 25 32.00% 72.00% 10 0.3610

Renal 16 25 33 38 65.79% 86.84% 33 0.5606

Respiratory 10 18 25 28 64.29% 89.29% 8 0.3523

Skeletal 28 45 53 59 76.27% 89.83% 54 0.8236

Multiple 48 83 117 124 66.94% 94.35% 108 0.6256

doi:10.1371/journal.pone.0125138.t001
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detailed break-down of the CBGs in each disease class by lengths is also given in a table in
S2 Fig.

The frequencies of the CBG patterns were also calculated in the MGI mouse phenome-ge-
nome association network. When ten nearest nodes of each phenotype node were selected as
neighbors, 25.48%, 51.42% and 65.67% of the associations are covered by CBGs of length up to
1, 2 and 3 respectively (Fig 2A), with respect to an average of 3.17%, 10.22% and 20.41% in the
networks with randomized phenotype-gene associations. Although lower than the OMIM as-
sociations, the statistics still suggest significant enrichment of CBGs (S11 Table).

Comparison with Other Methods by Phenotype-gene Association
Prediction
BiRW was compared to CIPHER [13], PRINCE [15] and RWRH [16] in a 100-fold cross-vali-
dation on the OMIMMay-2007 Version, and prediction of the associations in an independent
set of associations added into OMIM between May-2007 and July-2014. The three algorithms
were applied to predict the disease genes for each phenotype and the predictions are compared
with the results of BiRW phenotype-wise. The 1126 disease phenotypes with at least one
known causal gene in OMIM version May-2007 were randomly divided into 100 folds. In each
cross-validation trial, the OMIM associations of the 1% disease phenotypes in a subset were re-
moved, and then used as queries to rank the candidate genes.

AUCs (Area Under the Curve of Receiver Operating Characteristic) was used as the global
performance measure. The higher the target genes of a query phenotype in the ranking, the bet-
ter the performance. We reported the AUC with up to 50, 100, 300, 500 and 1000 false positives
since the top part of AUC is more important. In addition, we also report the recall of the test
phenotypes, which measures how many target genes are ranked within top k. For more detail
of the experiment setup, see supplementary document and [22].

The results produced by the best parameters in the cross-validation of each method is re-
ported in Fig 4A (l = 4, r = 4 and α = 0.8 for BiRW; α = 0.1 for PRINCE; (0.5,0.7,0.5) for
RWRH). The detailed parameter tuning for BiRW, PRINCE and CIPHER are given in S2–S4
Tables. The recall are reported in the left plots in Fig 4 and the complete results measured by
AUCs up to different false positives are reported in the right plots in Fig 4 and S5 Table. We
also measured the statistical significance of the difference in AUC50 and AUC100 by paired t-
test. The p-values are reported in S7 Table. Clearly, BiRW performs significantly better than all
the other methods at the significance level 0.05. PRINCE also gave decent prediction perfor-
mance although BiRW consistently outperformed PRINCE in all the measures. RWRH, CI-
PHER DN (direct neighbor) and SP (shortest path) produced inferior results in this
experiment. The possible reason for the worse results of CIPHER might be because the associa-
tions of the test phenotypes were all removed (called ab initio experiment) and each cross-vali-
dation held out a significant number of known associations. Thus, no direct neighbors are
available for the correlation calculation for many phenotype queries by CHPHER. PRINCE,
RWRH and BiRW worked much better than CIPHER SP and CIPHER DN because label prop-
agation and bi-random walk both explore more global information of the networks. In the last
column of Table 1, the average AUC of the phenotypes in each disease class by BiRW are also
reported. As expected, there is a strong correlation (Pearson’s correlation = 0.798 between
AUC and CBG2 coverage) between the CBG coverage and the AUCs. For example, the cancer
and bone classes have both high coverage and AUC, while psychiatric and metabolic classes
have both low coverage and AUC.

With the best parameter from cross-validation, the methods were used to predict the new
associations of 656 phenotypes in OMIM July-2014 Version. The results are reported in Fig 4B.

Network-based Phenome-Genome Association Prediction
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BiRW consistently outperformed the other methods although RWRH performed better on the
holdout set than the cross-validation. Interestingly, PRINCE performed worse in the test than
the cross-validation, which might suggest a possible bias when the neighbors’ disease genes are
directly initialized as true disease genes. CIPHER DN and SP performed better on the test set
since the test cases have other known disease genes and thus, are not as difficult as those in
cross-validation. A more detailed comparison of BiRW, RWRH, PRINCE and CIPHER by
AUCs is given in S6 Table. The p-values by paired t-test are reported in S8 Table. Clearly,
BiRW and RWRH performed significantly better than all other methods while BiRW performs
better at the the starting part of the AUCs.

The same 100-fold cross-validation was performed to test BiRW and PRINCE with mouse
phenotype-gene network. The best parameters are α = 0.7, l = 5, r = 1 for BiRW and α = 0.1 for
PRINCE based on a grid search (S9 and S10 Tables). The performance of predicting the mouse
phenotype-gene associations are shown in Fig 5. BiRW clearly outperforms PRINCE in all
measures. The prediction performance in mouse data is comparable to or better than the re-
sults in human data when larger number of false positives are allowed. The AUC50 and AUC100

are much lower in the mouse data which indicates that the lower CBG coverage in the MGI
phenome-genome association network plays a role (Fig 2). In the last column of Table 2, the
average AUC of the phenotypes in each branch at MPO level one by BiRW are also reported.

Fig 4. Performance of predicting OMIM associations. The plots compare the performance of all the methods on predicting the target genes of query
phenotypes in cross-validation (A) and testing on the test set (B). The left plots show the recalls at different top-k cutoff. The right plots compares the average
AUCs across all the test phenotypes by the compared methods.

doi:10.1371/journal.pone.0125138.g004
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The Pearson’s correlation = 0.38 between the CBG coverage and AUC, which is lower than the
human data.

Robustness Analysis with Unbiased PPI Network
It is known that well-studied disease proteins tend to have more interactions in the PPI net-
work and this degree bias could potentially lead to the good performance of the network-based
methods. To test whether the methods are robust to the degree bias, we repeated the experi-
ments on an extended PPI network. The extended PPI network with the same degree of inter-
actions for each protein was generated to assess the influence of the degree bias. The extended
PPI network was combined from HPRD, OPHID, BIND, and MINT database contain 72,431
undirected binary interactions between 14,433 human proteins [13]. The results are reported
in Fig 6 and Table 3. The BiRW algorithm consistently outperformed the baselines. With the
replacement by the unbiased PPI network, all the methods performed actually similarly as in
the original experiment. This experiment on the extended PPI network suggests that BiRW is
also robust to the degree bias in the networks.

Analysis of Gastrointestinal Disease-gene Modules
Identification of the essential biological processes of diseases can lead to new insights into pos-
sible pathogenic mechanisms, and development of efficient targeted therapeutics. However, the
current known associations between human disease traits and genes are too sparse to support
such studies. BiRW identifies the essential associations for similar disease phenotypes and tend
to generate bi-modules for a collection of phenotypes in the same disease class. Such bi-mod-
ules could help discover the core biological mechanisms underlying the human disease classes.
To derive such bi-module for a disease class, we collected the known disease genes and the top
3% high-association genes (e.g. top 74 genes) of each phenotype in the predicted phenome-ge-
nome association, from which those genes that occurred as a disease gene of at least five pheno-
types in the disease class (or all the phenotypes if the disease class contains less than five
phenotypes) were included in the module. The genes associated with only a few phenotypes in
the disease class were filtered to keep the modules dense. Each disease-gene association module
describes the associations between the phenotypes in a disease class and the predicted frequent
disease genes of the phenotypes. We focused on the analysis of the gastrointestinal disease-

Fig 5. Performance of predictingmouse phenotype-gene associations. The plots compare the performance of BiRW and PRINCE on predicting the
target genes of query mouse phenotypes in 100-fold cross-validation. The left plot shows the recalls at different top-k cutoff. The right plot compares the
average AUCs across all the test phenotypes by the compared methods.

doi:10.1371/journal.pone.0125138.g005

Network-based Phenome-Genome Association Prediction

PLOS ONE | DOI:10.1371/journal.pone.0125138 May 1, 2015 11 / 18



Table 2. CBGs in mouse phenotype-gene association network. Phenotype-gene associations grouped by 26 MPO terms at level 1 that are covered by
CBGs up to a certain length. The coverage by percentage and the AUCs in cross-validation are reported.

MPO Terms in Level 1 CBG
Len = 1

CBG
Len � 2

CBG
Len � 3

Assoc
#

Coverage
CBG1 * 2

Coverage
CBG1 * 3

Pheno
#

AUC1000

pigmentation pheno. 8 14 19 35 40.00% 54.29% 4 0.7350

tumorigenesis 44 104 129 188 55.32% 68.62% 5 0.6802

nervous sys. pheno. 180 407 562 940 43.30% 59.79% 141 0.7478

renal/urinary sys. pheno. 85 188 266 410 45.85% 64.88% 89 0.7474

muscle pheno. 99 127 147 199 63.82% 73.87% 45 0.7623

liver/biliary sys. pheno. 9 42 71 98 42.86% 72.45% 15 0.7189

limbs/digits/tail pheno. 94 121 141 185 65.41% 76.22% 22 0.8074

adipose tissue pheno. 19 44 51 71 61.97% 71.83% 22 0.7547

homeostasis/metabolism
pheno.

174 418 572 858 48.72% 66.67% 127 0.7707

hearing/vestibular/ear pheno. 78 124 161 259 47.88% 62.16% 40 0.8053

growth/size/body pheno. 55 150 186 332 45.18% 56.02% 8 0.6964

endocrine/exocrine gland
pheno.

61 169 228 324 52.16% 70.37% 58 0.7518

embryogenesis pheno. 28 58 82 128 45.31% 64.06% 49 0.7644

digestive/alimentary pheno. 47 97 131 195 49.74% 67.18% 47 0.7247

craniofacial pheno. 65 153 220 350 43.71% 62.86% 25 0.7261

cellular pheno. 36 88 119 209 42.11% 56.94% 48 0.7618

cardiovascular sys. pheno. 210 414 520 788 52.54% 65.99% 115 0.7709

behavior/neurological pheno. 222 436 534 873 49.94% 61.17% 71 0.7777

immune sys. pheno. 377 656 784 1092 60.07% 71.79% 83 0.7747

respiratory sys. pheno. 21 56 83 150 37.33% 55.33% 37 0.7447

reproductive sys. pheno. 136 229 263 322 71.12% 81.68% 36 0.7741

skeleton pheno. 175 357 459 664 53.77% 69.13% 76 0.8005

vision/eye pheno. 103 159 190 286 55.59% 66.43% 44 0.7790

hematopoietic sys. pheno. 39 143 184 298 47.99% 61.74% 16 0.7596

mortality/aging 107 232 267 432 53.70% 61.81% 10 0.7269

integument pheno. 25 52 65 112 46.43% 58.04% 28 0.7819

doi:10.1371/journal.pone.0125138.t002

Fig 6. Performance of predicting OMIM associations with the unbiased PPI network in OMIM July-2014.

doi:10.1371/journal.pone.0125138.g006
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gene module as an example. Note that this analysis was only performed by all the associations
available in May, 2010.

The known disease phenotype-gene associations in the gastrointestinal disease class are very
sparse; therefore, no enriched GO biological processes (corrected p-value< 0.05) were found
with standard gene set enrichment analysis. Indeed, most gastrointestinal disease phenotypes
do not share any disease causative genes in common in OMIM. This observation agrees with
the findings from recent studies in GWAS [30, 31], which reported that phenotypically similar
diseases that are gastrointestinal-related do not tend to share their disease genes. These previ-
ous studies also hypothesized that, due to the unique topological characteristics of the gastroin-
testinal disease susceptibility genes, the existing network-based methods would also fail to
reveal any common disease genes for understanding the underlying biological mechanisms of
gastrointestinal diseases.

On contrary, BiRW identified a gastrointestinal disease-gene module that shows many com-
mon genes across the phenotypes in the disease class in Fig 7. Some interesting examples are
IL6, TP53, and PIK3CA. IL6 is a previously known causative gene of inflammatory bowel dis-
ease but not other gastrointestinal disease phenotypes. However, recent studies discovered that
IL6 is involved with other gastrointestinal related disease phenotypes including pancreatitis
[32], polycystic liver disease [33], salivary glands [34], congenital diarrhea [35], pancreatic
agenesis [36] and gallbladder disease [37]. TP53 and PIK3CA are also not known for associa-
tion with any gastrointestinal-related disease phenotype but it was recently determined that
TP53 and PIK3CA play a role in developing gallbladder [38], pancreatic agenesis [39] and in-
flammatory bowel disease [40, 41].

We further studied the functional roles of the predicted disease genes in each module with
enrichment analysis against Gene Ontology biological processes [42] using DAVID [43]. The
enrichment p-values were adjusted by Bonferroni correction for multiple testing. The GO

Table 3. AUC scores of predicting new disease genes in OMIM July-2014 with the unbiased PPI network.

AUC50 AUC100 AUC300 AUC500 AUC1000 AUC

BiRW(0.8, 4, 4) 0.1736 0.2127 0.2787 0.3135 0.3729 0.7375

PRINCE(0.1) 0.1444 0.1758 0.2297 0.2615 0.3145 0.7212

CIPHER SP 0.1072 0.1404 0.2168 0.2583 0.3230 0.7034

CIPHER DN 0.0958 0.1290 0.1880 0.2214 0.2791 0.6721

doi:10.1371/journal.pone.0125138.t003

Fig 7. Gastrointestinal disease phenotype-gene association module. The predicted gastrointestinal disease module of associations (grey color)
between 64 disease genes including the 22 known disease genes associated with 16 gastrointestinal disease phenotypes.

doi:10.1371/journal.pone.0125138.g007
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biological processes enriched by the predicted disease genes in each module with p-
value� 0.05 are reported in S3 Fig. Across 19 human disease classes. Nutritional, and Ear,
Nose, Throat disease classes were left out since there was no predicted frequent disease genes
that passed the selection criteria. Many GO biological process terms known for relevance with
the disease classes are significantly enriched, such as “cell migration”, “cell proliferation”, and
“homeostatic process” for gastrointestinal diseases, and “cell proliferation”, “programmed cell
death”, and “apoptosis” for cancers, while these biological process terms cannot be readily
identified by very sparse existing disease-gene associations. Another notable example is the en-
richment of “behavior”, “synaptic transmission”, and “transmission of nerve impulse” by the
causative genes of psychiatric diseases. Recent studies showed that regulation of synaptic trans-
mission and transmission of nerve impulse are associated with psychiatric disease phenotypes
such as autism [44].

Discussion
Description of the full collection of phenotypes (called phenome) such as PhenomicDB, Phe-
noGO and Gramene Ontologies are now becoming more stabilized and systematic. The next
step is to develop computational techniques for a global inference phenome-genome associa-
tion based on the previous discoveries and the phenome information. Towards this goal, we
analyzed the patterns of OMIM and MGI phenotype-gene associations by correlating the asso-
ciations with phenotype similarity network and gene network. We showed that majority of the
known associations are part of short circular bigraphs. This non-random pattern provides the
foundation for deriving new associations based on the linkages in the networks. The BiRW al-
gorithm is specifically designed to capture the circular bigraphs, and thus, can more reliably re-
construct the complete phenome-genome association. Functional analysis of the reconstructed
phenome-genome association by disease classes revealed a global map between GO biological
processes and human disease classes. In future, we plan to further investigate the relation be-
tween disease classes and the GO biological processes to understand the common molecular
mechanisms of human diseases.

The experiments in 100-fold cross-validation are designed to mimic the environment of
phenome-genome prediction, where associations with genes are missing for multiple pheno-
types. We demonstrated that BiRW will handle the phenome-genome prediction better than
algorithms that prioritize genes for each individual phenotype. The results in the study on
mouse data suggest that network-based phenotype-gene association analysis is generally appli-
cable to other species. The major challenge lies in the selection and preparation of phenotype
and phenotype-gene association data. For example, most of the phenotypes are organized in an
ontology and representing phenotype relations as a network for random walk is not optimal.
In future, we plan to design better algorithms to integrate ontologies in the same analyses.

A challenge of applying BiRW is the choice of the random walk steps in the two coupled
networks. Prior knowledge is always helpful in determining the effective steps. For example, in
the PPI network less than five steps are enough for gene function prediction. In general, the op-
timal steps depends on the density of the networks and the density of the node cluster neigh-
borhoods. In the future, we also plan to investigate the general strategies for choosing the
number of steps.

The major limitation of network-based phenotype-gene association methods including
BiRW is the strong dependence on the network connections. For sparse networks with many
isolated small components, random walk or network propagation are less useful since no global
information can be introduced into the small components. As such, when a novel association is
between a phenotype and a gene in a small component with no known phenotype associations,
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no prediction can be made. To overcome the limitation, one possibility is to integrate other ge-
nomic data such as gene expressions or SNPs in a patient cohort or a population as features to
classify the genes. In the future, we plan to develop new methods that can incorporate these ad-
ditional genomic data.

Another potential limitation of BiRW is the weak assumption on clusters. BiRW relies on
small graph patterns which are not necessarily equivalent to clusters in the phenome-genome
network. The interpretation of the bi-random walk result is not as straight-forward as those
based on propagations on node values. For example, previous studies [10, 19] using protein
complexes to group proteins can naturally identify protein complexes associated with a disease
phenotype as disease gene modules. A possible extension of BiRW is to impose a complex-phe-
notype relation as constraints on the bi-random walk to introduce local clusters for
better interpretation.

Supporting Information
S1 Fig. Examples of circular bigraphs in OMIM disease phenotype-gene association net-
work. Each circular bigraph is named by ‘CBG l:r’, where l is the length of the phenotype path
and r is the length of the gene path.
(TIFF)

S2 Fig. Circular bigraphs in 21 disease categories. The associations in each disease class are
categorized by the length of the CBGs covering the association.
(TIFF)

S3 Fig. The genetic landscape of human diseases. Association between GO biological process-
es and 19 human disease classes. The gray entries incidence a biological process and a disease
class if the biological process is significantly enriched by the causative genes of the disease class.
(TIFF)

S1 Table. CBG statistics on human phenome-genome network (July 2014). CBG analysis
with randomized phenotype-gene network are reported for comparison.
(PDF)

S2 Table. Parameter tuning for BiRW with 100-fold cross-validation on OMIMMay-2007.
(A) This table reports the average AUCs across all the phenotypes by converged balanced
BiRW(l = r) with different parameter α. The number of phenotypes with AUC more than 0.9
and 0.7 are also reported. The chosen α = 0.8 is among the best αs.
(B) The tables report the AUC50, AUC100 and AUC300 by BiRW with the step parameter l and r
(range from 1 to 5), where the parameter α is fixed as 0.8 based on the result in Fig 1A. The
bold AUC scores are the best ones. Based on the results, the BiRW parameters are chosen as α
= 0.8, l = 4 and r = 4 in 100-fold cross-validation.
(PDF)

S3 Table. Parameter tuning for PRINCE in 100-fold cross-validation on OMIMMay-2007.
This table reports the average AUCs across all phenotypes for PRINCE with the balance pa-
rameter α.
(PDF)

S4 Table. Performance of CIPHER by 100-fold cross-validation on OMIMMay-2007. The
table reports the average AUCs across all phenotypes for CIPHER SP (shortest path in PPI)
and CIPHER DN (direct neighbor).
(PDF)
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S5 Table. AUCs of the cross-validation on OMIMMay-2007. The table reports a comparison
of the ranking results by BiRW and four other methods, PRINCE, RWRH, CIPHER SP and CI-
PHER DN. The parameters α, l and r of BiRW are set by the experimental results in 100-fold
cross-validation. AUCs up to 50, 100, 300, 500, 1000 and all false positives are reported.
(PDF)

S6 Table. AUCs of the prediction of the new disease genes in OMIM July-2014. The table re-
ports a comparison of the ranking results by BiRW and 4 baselines, PRINCE, RWRH, CIPHER
SP and CIPHER DN. The parameters α, l and r of BiRW are set by the experimental results in
100-fold cross-validation. AUCs up to 50, 100, 300, 500, 1000 and all false positives
are reported.
(PDF)

S7 Table. A pairwise comparison by paired t-test of the ranking results in 100-fold cross-
validation based on AUCs.
(PDF)

S8 Table. A pairwise comparison by paired t-test of the ranking results in test based on
AUCs.
(PDF)

S9 Table. Performance of BiRW with 100-fold cross-validation on mouse phenome-ge-
nome network. The parameters α, l and r of BiRW are tuned, and the best AUCs(up to 50,
100, 300, 500, 1000 and all false positives) with parameter α are reported. Based on the AUC50

results, the BiRW parameters for mouse are chosen as α = 0.7, l = 5 and r = 1 in 100-fold cross-
validation
(PDF)

S10 Table. AUCs of PRINCE in 100-fold cross-validation on mouse phenome-genome net-
work. Parameter α ranges from 0.01 to 0.9 for tuning better. AUCs up to 50, 100, 300, 500,
1000 and all false positives are reported.
(PDF)

S11 Table. CBG statistics on mouse phenome-genome network. CBG analysis with random-
ized phenotype-gene network are reported for comparison.
(PDF)
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