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Background: Deletion of the mouse Brpf1 gene causes embryonic lethality, but the resulting defects await characterization.
Results: The vasculature, neural tube, and cell proliferation are abnormal in the mutant.
Conclusion: Brpf1 is important for embryo development and cell cycle control.
Significance: This study identifies a critical role of a multivalent chromatin regulator in embryogenesis and cell proliferation.

With hundreds of chromatin regulators identified in mam-
mals, an emerging issue is how they modulate biological and
pathological processes. BRPF1 (bromodomain- and PHD fin-
ger-containing protein 1) is a unique chromatin regulator pos-
sessing two PHD fingers, one bromodomain and a PWWP
domain for recognizing multiple histone modifications. In addi-
tion, it binds to the acetyltransferases MOZ, MORF, and HBO1
(also known as KAT6A, KAT6B, and KAT7, respectively) to pro-
mote complex formation, restrict substrate specificity, and
enhance enzymatic activity. We have recently showed that abla-
tion of the mouse Brpf1 gene causes embryonic lethality at E9.5.
Here we present systematic analyses of the mutant animals and
demonstrate that the ablation leads to vascular defects in the
placenta, yolk sac, and embryo proper, as well as abnormal neu-
ral tube closure. At the cellular level, Brpf1 loss inhibits prolif-
eration of embryonic fibroblasts and hematopoietic progeni-
tors. Molecularly, the loss reduces transcription of a ribosomal
protein L10 (Rpl10)-like gene and the cell cycle inhibitor p27,
and increases expression of the cell-cycle inhibitor p16 and a
novel protein homologous to Scp3, a synaptonemal complex
protein critical for chromosome association and embryo sur-
vival. These results uncover a crucial role of Brpf1 in controlling
mouse embryo development and regulating cellular and gene
expression programs.

Combinatorial modifications of histones form unique signal-
ing platforms important for governing chromatin structure and
function (1– 4). Such modifications are frequently recognized
by readers containing various structural modules, including the
bromodomain, chromodomain, PHD2 (plant homeodomain-

linked) zinc finger, and PWWP (Pro-Trp-Trp-Pro tetrapep-
tide-containing) domain (5–7). Some readers possess multiple
domains to recognize different modifications in a combinato-
rial fashion (5). BRPF1 (or BR140, for bromodomain protein of
140 kDa) is one such reader. Like the paralogs BRPF2 and
BRPF3, BRPF1 possesses an N-terminal PHD-zinc knuckle-
PHD (PZP) module, a central bromodomain, and a C-terminal
PWWP domain (8). The first PHD finger of BRPF1 or BRPF2
recognizes the unmodified N terminus of histone H3 (9, 10).
The bromodomain possesses acetyllysine binding ability (11),
and the PWWP domain has an affinity for methylated histone
H3 (12, 13).

Moreover, BRPF1 possesses two motifs similar to Drosophila
enhancer of polycomb (EPC) (14, 15). These two motifs flank
the PZP module. The N-terminal EPC-like motif interacts with
MOZ (monocytic leukemia zinc finger protein; also known as
KAT6A and MYST3) and MORF (MOZ-related factor; also
known as KAT6B and MYST4), whereas the C-terminal motif
associates with ING5 (inhibitor of growth 5) and EAF6 (homo-
log of yeast Esa1-associated factor 6) (14, 16). MOZ and MORF
do not interact with ING5 and EAF6 directly, so BRPF1 serves
as a scaffold to assemble tetrameric complexes containing
MOZ (or MORF), ING5, and EAF6 (16). The acetyltransferase
domain of MOZ/MORF is sufficient for interaction with
BRPF1, which enhances the acetyltransferase activity of MOZ
and MORF toward nucleosomal histone H3 (16). Recent stud-
ies have uncovered HBO1 complexes containing BRPF1/2,
ING5, and EAF6 (10, 17). Association with BRPF1 regulates the
substrate specificity of HBO1 (histone acetyltransferase bound
to ORC1) (10). Thus, BRPF1 is crucial for assembling multisub-
unit acetyltransferase complexes to control their enzymatic
activity and substrate specificity (18). An interesting issue is
how BRPF1 interacts with MOZ, MORF, and HBO1 under dif-
ferent biological and pathological contexts in vivo.

Of the pathological relevance, the MOZ gene was initially
identified as a fusion partner in a chromosomal translocation
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causing monocytic leukemia (19). It is fused to four different
partners in leukemia-associated chromosomal rearrange-
ments, and similar rearrangements have been reported for the
MORF gene (8, 20). Moreover, the MOZ gene is mutated in
esophageal adenocarcinoma (21), whereas the MORF gene is
disrupted in leiomyomata (22, 23), mutated in breast cancer
(24), and altered in castration-resistant prostate cancer (25). A
recent pan-cancer analysis of copy number variations has iden-
tified both genes as top-ranking targets amplified in different
cancers (26). Related to this, the mouse Moz gene is required for
optimal lymphoma development induced by Myc (27). In addi-
tion to cancer, the MOZ and MORF genes are mutated in mul-
tiple developmental disorders with the common characteristic
of intellectual disability (28 –35). Thus, both MOZ and MORF
are important in cancer and other diseases.

As a key partner of MOZ and MORF, BRPF1 may modulate
related pathogenesis. Moreover, the BRPF1 gene itself is recur-
rently mutated in pediatric cancers (36) and adult medulloblas-
toma (37). To understand these pathological processes, it is
important to know the normal biological functions of BRPF1.
However, little is known in this regard. To address this, we
recently deleted the mouse Brpf1 gene and found that it is
required for embryonic survival (38). Here, we present system-
atic analyses of the resulting developmental, cellular, and
molecular defects. These results reveal that Brpf1 regulates dif-
ferent developmental programs during embryogenesis and that
it is important for growth and proliferation of embryonic fibro-
blasts and hematopoietic progenitors. While two recent reports
are on the crucial function of Brpf1 in mouse forebrain devel-
opment (39, 40), this study identifies an essential role in regu-
lating developmental programs just before mid-gestation.
These new findings are unexpected from published genetic
studies of mouse Moz, Morf, and Hbo1 (41– 44).

MATERIALS AND METHODS

Animals—Mice were maintained in an animal facility at
McGill University, and all procedures involved in the use of
mice were performed according to guidelines and protocols
approved by the McGill Animal Use Committee. Brpf1l/� mice
were obtained from the European Conditional Mouse
Mutagenesis Program as described (38). A promoterless LacZ
cassette is located between two FRT sites, whereas two loxP
sites flank exons 4 – 6 of the Brpf1 gene (38). Crossing of
Brpf1l/� mice with EIIa-Cre mice (The Jackson Laboratory)
resulted in the heterozygote Brpf1l/�;EIIa-Cre (or Brpf1�/�)
(38), and subsequent intercrosses yielded the homozygote
Brpf1l/l;EIIa-Cre (or Brpf1�/�). Brpf1�/� mice were obtained
after consecutively mating Brpf1l/� mice with PGK1-FLPo and
EIIa-Cre strains (The Jackson Laboratory), and further inter-
crosses generated Brpf1�/� mice (38). Genotyping was carried
out as described (38). Brpf1f/�;ER-Cre mice were generated
after consecutive mating of Brpf1l/� mice with PGK1-FLPo and
UBC-Cre/ERT2 strains (The Jackson Laboratory).

Histology and Immunohistochemistry—Paraffin sections of
embryonic and extra-embryonic tissues were stained with
hematoxylin and eosin for histological examination. Benzidine
staining was performed to detect hemoglobin in yolk sac eryth-
rocytes as described (45), with minor modifications. Briefly,

dissected embryos with intact yolk sacs were fixed for 15 min in
12% glacial acetic acid containing 0.4% benzidine dihydrochlo-
ride (Sigma, B3383). The staining reaction was initiated by the
addition of hydrogen peroxide to a final concentration of 0.3%.
Incubation was �20 min at room temperature; color develop-
ment was carefully monitored. Stained embryos were immedi-
ately documented under a dissecting microscope (SteREO
Lumar.V12, Zeiss) linked to a digital camera.

Periodic acid Schiff staining on placental paraffin sections
was performed according to the manufacturer’s protocol
(Sigma, 395B). Whole-mount CD31 immunohistochemistry
was performed as described (46), except that primary and sec-
ondary antibodies were incubated overnight at 4°C. The re-
agents used were as follows: purified rat anti-mouse CD31 anti-
body (BD Biosciences, 550274, 1:100), biotin-SP-conjugated
AffiniPure donkey anti-rat IgG (H�L) antibody (Jackson
ImmunoResearch, 712-065-153, 1:50), ABC kit (Vector Labo-
ratories, PK-4001), and DAB substrate kit (Vector Laboratories,
SK-4100). Images were taken with a digital camera (AxioCam
MRc, Zeiss) linked to the dissecting microscope.

�-Gal Staining of Placental Sections—The staining proce-
dure was the same as described (38, 39, 47). Briefly, pregnant
mice were euthanized, and placentae were dissected out and
fixed in 1% paraformaldehyde at 4 °C for 1–2 h. After washing
with PBS, placentae were further cryoprotected in 30% sucrose
in PBS overnight at 4 °C, embedded in Tissue-Tek OCT com-
pound (Sakura Finetek, 4583) on dry ice, and stored at �80 °C.
Cryosections were cut at 15 �m on a Cryotome (Thermo Elec-
tron, 77200187).

Clonogenic Hematopoietic Progenitor Assays—Four pairs of
control and mutant yolk sacs were isolated from E9.5 embryos.
Yolk sac single-cell suspension was prepared by passing
through a cell strainer (StemCell Technologies, 27305, 40 �m),
and 3 � 104 cells were seeded in complete methylcellulose-
based medium (Stem Cell Technologies, M3434). Colonies
were counted after 8 days of culture at 37 °C in a CO2 incubator.

MEF Isolation and Culture—Primary MEFs derived from
embryos at E9.5 from Brpf1�/� intercross were cultured in MEF
medium (47) and monitored for cell growth by IncuCyte (Essen
Bioscience). Brpf1�/� MEFs failed to grow, so the UBC-Cre/
ERT2 strain was employed to generate Brpf1f/f;ER-Cre MEFs.
The Brpf1 gene was then inactivated in vitro after treatment
with 4-hydroxytamoxifen in vitro. The MEFs were obtained from
E15.5 embryos from crosses between Brpf1f/f and Brpf1f/�; ER-Cre
mice. Brpf1f/f;ER-Cre MEFs were isolated from three independent
litters and used at passage 2 or 3. MEF isolation was carried out as
described (47). The cells were cultured in MEF medium (47),
treated with vehicle (ethanol) or 400 nM of 4-hydroxytamoxifen
(Sigma, H7904, dissolved in ethanol) for 4 days, and then changed
to fresh MEF medium (47). For cell cycle analysis, MEFs with or
without 4-hydroxytamoxifen treatment were collected and
stained with propidium iodide solution (48) for subsequent data
acquisition on a BD LSRII flow cytometer and further analysis by
use of FlowJo software (Treestar). For analysis of daily cell growth,
MEFs were seeded at low density for live-cell monitoring by
IncuCyte for 1 week. For RT-qPCR and Western blotting, MEFs
grown to �80% confluency were used.
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Immunofluorescence Microscopy—For immunostaining of
whole conceptuses, paraffin sections were used. Genomic DNA
was isolated from each dewaxed embryo tissue, and genotyped.
Immunofluorescence microscopy was performed as described
(39, 49). Primary antibodies used were rabbit anti-cleaved
caspase 3 (Cell Signaling, 9661, 1:200), mouse anti-neuronal
class III �-tubulin (Tuj1) (Covance, MMS-435P, 1:500), mouse
anti-histone H3 phosphorylated at Ser-10 (USBiological Life
Sciences, H5110-13K, 1:100), goat anti-human SOX2 (R&D
Systems, AF2018, 1:200), goat anti-HBO1 (Santa Cruz Biotech-
nology, sc-13284, 1:50), and rabbit anti-�H2AX (phospho-
S139) (Abcam, ab2893, 1:500). Secondary antibodies were
Alexa Fluor 568-labeled goat anti-rabbit IgG (Invitrogen,
A11011, 1:500), Alexa Fluor 568-labeled goat anti-mouse IgG
(Invitrogen, A11031, 1:500), and Cy3-conjugated anti-goat IgG
(Molecular Probes, 1:500).

Frozen sections were used for placental immunostaining as
described except that the sodium citrate-based antigen
retrieval step was omitted (39). Primary antibodies were mouse
monoclonal Gcm1 (glial cell missing 1; Santa Cruz Biotechnol-

ogy, sc-101173, 1:200), rat anti-mouse CD31 (BD Biosciences,
550274, 1:200), goat placental lactogen I (Santa Cruz Biotech-
nology, sc-34713, 1:200), or rabbit anti-Esx1 antibody (extra-
embryonic-spermatogenesis-homebox protein 1; Santa Cruz
Biotechnology, sc-133566, 1:100). Secondary antibodies were
Alexa Fluor 568-labeled goat anti-rabbit IgG (Invitrogen,
A11011, 1:500), Alexa Fluor 568-labeled goat anti-mouse IgG
(Invitrogen, A11031, 1:500), Cy3-conjugated anti-goat IgG
(Molecular Probes, 1:500), and CFL 488-linked goat anti-rat
IgG (Santa Cruz, sc-362263, 1:500).

Microarray-based Gene Expression Profiling—Three pairs of
control and mutant E8.75 embryos were used to prepare total
RNA for microarray-based gene expression analysis as
described (39). The resulting gene list is included in supplemen-
tal Table S1.

RT-qPCR—The procedure was carried out as described (39)
using primers listed in Table 1.

Western Blotting—The procedure was the same as described
(16, 47). Primary antibodies were rabbit anti-histone H3
(Abcam, ab1791, 1:5000), anti-histone H3 (acetyl Lys-14) (Mil-

TABLE 1
RT-qPCR primers and validation of selected genes
RT-qPCR results are shown as the mean � S.D. ns, not statistically significant.

Target
genes

Primer sequence -Fold change
Primer

position
GenBankTM

accession no.5� 3�
E8.75

embryos
E15.5
MEFs

Brpf1-ex CAGTAAGATCACCAACCGCC GAGGAAAGGGGTCAGCTGCA 0.19 � 0.05a 0.03 � 0.01a 1711–2050 NM_030178.1
Brpf1-N CAGCCCCTCTGAAGTCTCAC CTAGTGCATTGGGGTCACCT 1.14 � 0.26 ns 0.24 � 0.05b 379–956 NM_030178.1
Brpf2 AACACTGACCTACGCACAAGC GCCTCTCGCTGTTCTCCTTATT 0.84 � 0.15 ns 1.24 � 0.29 ns 87–247 NM_001033274
Brpf3 ACAAGCTCAAGATGCTAGAAGGC TAGCTGGAAGTGACAAAGGCA 0.84 � 0.22 ns 1.42 � 0.27 ns 3485–3608 NM_001081315
Moz ATGGTAAAACTCGCTAACCCG CGTCCCGTCTTTGACGCTC 0.90 � 0.10 ns 0.91 � 0.16 ns 1–177 NM_001081149
Morf AGAAGAAAAGGGGTCGTAAACG GTGGGAATGCTTTCCTCAGAA 0.86 � 0.09 ns 1.02 � 0.11 ns 2474–2668 NM_017479
Hbo1 ATGCCGCGAAGGAAGAGAAAT TCTTGGGAACTCTGGCTTAGC 0.99 � 0.07 ns 1.16 � 0.12 ns 1–164 NP_808287
Mof CCGGATAGCACCTGGCATTC CATACTTCACTTTGGTGATC 1.14 � 0.12 ns 0.87 � 0.53 ns 211–550 NM_026370
Hoxa9 CCCCGACTTCAGTCCTTGC GATGCACGTAGGGGTGGTG 0.93 � 0.06 ns 0.84 � 0.26 ns 144–277 NM_010456
Rpls14 TGCCACATCTTTGCATCCTTC ACTCATCTCGGTCAGCCTTCA 0.76 � 0.07 ns 1.10 � 0.04 ns 91–205 NM_020600
Rps19 CAGCAGGAGTTCGTCAGAGC CACCCATTCGGGGACTTTCA 0.75 � 0.17 ns 31–102 NM_023133
Rpl10l ACCCAAAGTCCCGTTTCTGC CTCGTCCGACACCATGTGG 0.21 � 0.03c 1.03 � 0.49 ns 50–168 NM_001162933
Rpl26 ACTTCTGACCGAAGCAAGAAC CCGAATGGGCATAGACCGAA 0.72 � 0.17 ns 22–150 NM_009080
Rpl41 CATCTTCCTTGAGACTCCTGC CATCCCTCACTTCTGCTCC 0.78 � 0.20 ns 16–167 NM_018860
Rps29 GTCTGATCCGCAAATACGGG AGCCTATGTCCTTCGCGTACT 0.79 � 0.20 ns 86–154 NM_009093
p16 GGGTTTCGCCCAACGCCCCGA TGCAGCACCACCAGCGTGTCC 0.65 � 0.55 ns 2.16 � 0.14b 190 NM_001040654
p19 GTTTTCTTGGTGAAGTTCGTGC TCATCACCTGGTCCAGGATTC 0.55 � 0.57 ns 0.93 � 0.15 ns 134 NM_009877
p15 CCCTGCCACCCTTACCAGA CAGATACCTCGCAATGTCACG 1.36 � 1.01 ns 1.45 � 0.20 ns 204–372 NM_007670
p27 TGTCAGCGGGAGCCGCCAGG ATATCTTCCTTGCTTCATAA 0.65 � 0.08c 843–1182 NM_009875.4
p57 CCAAGCTGGACAGGACAAGC AGTCCCAGCGGTTCTGGTCC 1.27 � 0.41 ns 141–400 NM_001161624
p21 CACAGCGACCATGTCCAATC GCGGGGCTCCCGTGGGCACT 1.26 � 0.53 ns 201–680 U09507.1
Bax TGAAGACAGGGGCCTTTTTG AATTCGCCGGAGACACTCG 1.23 � 0.04b 59–198 NM_007527
Cxcl15 CAAGGCTGGTCCATGCTCC TGCTATCACTTCCTTTCTGTTGC 0.79 � 0.03 ns 1.12 � 0.28 ns 10–192 NM_011339
Fgf2 GCGACCCACACGTCAAACTA TCCCTTGATAGACACAACTCCTC 0.89 � 0.36 ns 164–225 NM_008006
Thpo GGCCATGCTTCTTGCAGTG AGTCGGCTGTGAAGGAGGT 0.73 � 0.28 ns 27–140 NP_033405
Thsd7a AGGTGCCCACCCTCTATCTG TGTATGTAACGTAGTCCAGCCT 0.51 � 0.22 ns 128–258 NM_001164805
Tailless GGGAAGCACTACGGGGTCTA GTGTCTTGTCTACGGGGCAT 0.33 � 0.14 ns 73–196 NM_152229
Fbxo40 TGCCTCAACTCTGAGTATGGC GAATGTTTCTGAGTCCACGTTTG 1.02 � 0.24 ns 193–330 NM_001037321
unknown AACCACCTGGGAAGACAGGA TCCCTTCACACACACAGCCT 1.08 � 0.65 ns 735–846 NR045476
Scp3l AGTGCCTTTTGTCAGCAACAG AGCGTGTCATTTGCCTGCTT 11.51 � 6.38c 3.20 � 0.71c 418–509 NM_001033423
Pax9 CGCACGCAGTGAATGGATTG GCTGGTGTAGGGTAAGGAGC 0.97 � 0.18 ns 716–845 NM_011041
Pcdhb22 TGTGATGGAGGAAACACCCAG GCTTCCCAGTCTGTAGATCCAG 1.32 � 0.02 ns 96–116 NM_053147
Fabp4 AAGGTGAAGAGCATCATAACCCT TCACGCCTTTCATAACACATTCC 1.55 � 0.70 ns 238–370 NM_024406
Tnfrsf13c TCTGGTGAGAAACTGCGTGTC GTCAGCGCCAGTATCAGTCC 1.19 � 0.52 ns 90–260 NM_028075
Pou2af1 CACCAAGGCCATACCAGGG GAAGCAGAAACCTCCATGTCA 0.92 � 0.36 ns 44–224 NM_011136
Hemgn GGAGGCAGACATCACAATGG CCTTTTGCTCCACGTTCCCTT 1.45 � 1.82 ns 146–256 NM_053149
Mecom AAGTAATGAGTGTGCCTATGGC AGTTGACTCTCGAAGCTCAAAC 0.73 � 0.21 ns 36–264 NP_067417
CD31 ACGCTGGTGCTCTATGCAAG TCAGTTGCTGCCCATTCATCA 1.12 � 0.74 ns 22–130 NP_032842
Inpp4a ACTCCATCGCTAGATCGAAAACC AGGCAATGCTGCTTAGAAAGAT 0.83 � 0.51 ns 169–307 NP_084542
Nek10 ATTACGTTCGTGATATTGGTGCT TGACCACTACGCTTTCTAACCT 0.78 � 0.26 ns 1418–1625 NM_001195229
Il22ra1 ATGAAGACACTACTGACCATCCT CAGCCACTTTCTCTCTCCGT 0.62 � 0.43 ns 1–198 NM_178257
Gapdh TGATGACATCAAGAAGGTGGTGAA TCTTACTCCTTGGAGGCCATGT as reference 814–1059 XM_001476707.3

a p � 0.001.
b p � 0.01.
c p � 0.05.
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lipore, 07-353, 1:4000), anti-histone H3 (acetyl Lys-9) (Abcam,
ab10812, 1:4000), anti-acetyl-histone H3 (Millipore, 06-599,
1:4000), and goat anti-HBO1 (Santa Cruz Biotechnology,
sc-13284, 1:200).

RESULTS

Brpf1 Loss Leads to Arrested Vasculogenesis in the Yolk Sac
and Embryo Proper—To determine the biological function of
Brpf1, we have recently characterized a mutant Brpf1l allele
containing a promoterless LacZ knockin cassette as an efficient
reporter (38). Using this reporter, we found that Brpf1 is highly
expressed in the placenta, yolk sac, and neural tube (38), sug-
gesting potentially important roles in related developmental
processes. We also generated two mutant alleles, Brpf1� and
Brpf1�, both of which are inactive (38). No viable embryos ho-
mologous for these alleles could be recovered after E9.5, indi-
cating that loss of Brpf1 causes embryonic lethality (38).

While dissecting the embryos, we noticed that from E9.5
onward the mutant yolk sac contained no visible blood vessels
(Fig. 1, A and B). Even in less severe cases, the mutant yolk sac
contained a nonhierarchial vasculature, as opposed to the large
vessels and small branches found in the control (Fig. 1C). More-
over, the blood vasculature was disorganized in the mutant
embryo (Fig. 1D). Hemorrhage occurred in the cephalic region
of the mutant embryos (Fig. 1D, right). Arrested vasculogenesis
was also found in the mutant chorionic plate at E10.5 (Fig. 1E).
H&E staining was used to compare control and mutant yolk sac
sections (Fig. 1F). Whereas nucleated red blood cells were
found in both control and mutant yolk sacs at E8.5 (Fig. 1F, top
two panels), this situation changed dramatically at E9.5. In
those severely affected mutant yolk sacs, only a few nucleated
erythrocytes could be found in serial sections (Fig. 1F, middle
two panels). Similarly, at E10.5, there were no nucleated eryth-
rocytes in the mutant yolk sac (Fig. 1F, bottom two panels).
These results suggest that embryonic lethality in Brpf1-defi-
cient embryos is at least partially due to global vascular defects
and massive hemorrhage.

To further characterize the vascular defects, we performed
whole-mount immunohistochemical analysis with an antibody
against CD31 (also known as platelet endothelial cell adhesion
molecule 1 (PECAM1)), a well known and widely used marker
for vasculature (50). As shown in Fig. 2, A and B, CD31� vascu-
lature was well formed in the control but not mutant embryo at
E9.5. Similar to what observed in the embryo proper, the vas-
cular network was well organized in the control but not mutant
yolk sac or chorionic plate (Fig. 2, C and D). Benzidine staining
was used to detect hemoglobin in erythrocytes and visualize
blood vessels. As shown in Fig. 2E, vasculogenesis was arrested
at the primitive plexus stage in the mutant yolk sac as opposed
to the hierarchical vascular feature observed in the control yolk
sac. In addition, staining was weaker in the mutant vasculature,
suggesting lower expression of hemoglobin and/or fewer eryth-

Control Brpf1-null

E9.5

E10.5

E9.5

E10.5

E10.5

A

B

E

*

*

C

D

F

E9.5

E10.5

*

E8.5

FIGURE 1. Aberrant blood vessels in Brpf1-deficient conceptuses. A and B,
gross morphology of control and knockout conceptuses at E9.5 and E10.5.
Note that the mutant yolk sacs were pale, without any visible vasculature. At
E8.75, mutant conceptuses appeared normal (data not shown). C, in a less
severe mutant yolk sac, a nonhierarchial vasculature was observed at E9.5,
compared with the large vessels (indicated by a green arrow) and small
branches of the control yolk sac. D and E, arrested vasculogenesis also
occurred in the embryo proper (D) and chorionic plate (E) at E10.5. Note the
hemorrhage in the mutant cephalic region and chorionic plate, marked with
black asterisks in D and E, respectively. F, H&E staining of control and mutant
yolk sac sections at E8.5 (top), E9.5 (middle), and E10.5 (bottom). At E8.5, nucle-

ated red blood cells were found in both control and mutant yolk sacs. At E9.5,
in those severely affected mutant yolk sacs, only a few erythrocytes could be
found in serial sections, whereas in the control yolk sacs, large vessels
(marked with a asterisk) were frequently seen. At E10.5, no erythrocytes
existed in the mutant yolk sacs. Scale bars, 400 �m (A–E) and 100 �m (F).
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rocytes. Together, these results support that Brpf1 is required
for vasculogenesis in the yolk sac and embryo proper.

Brpf1 Regulates Vasculature Formation in the Placenta—In
placental mammals, the placenta is an extraembryonic tissue
essential for gas and nutrient exchange between the embryonic
and maternal circulation systems (51–53). In mice, placental
development begins after fusion of the chorionic plate with

allantois around E8.5. Buds of allantoic cells including blood
vessel precursors invade the chorionic plate to initiate branch-
ing morphogenesis. With expansion of the trophoblast com-
partment, the labyrinthine space is established for gas and
nutrient exchange between the embryonic and maternal circu-
lation systems. The mutant placenta was smaller at E10.5. H&E
staining of sagittal sections at E9.5 and E10.5 revealed that there
was no branching of fetal blood vessels in the mutant labyrin-
thine layer, in contrast to the extensive intermingling of mater-
nal and embryonic blood spaces in the control placenta (Fig. 3,
A and B). The mutant labyrinth appeared devoid of fetal blood
vessels, and the labyrinthine layer was much thinner. Maternal
erythrocytes were still present in the blood sinus (Fig. 3C, right,
black arrows). Closer examination of the mutant placenta
revealed formation of initial buds (Fig. 3C, right, green arrows),
but further invasion into the labyrinth failed to occur. By con-
trast, no such defects were found in the mutant placenta lacking
Moz (data not shown), an acetyltransferase known to interact
with Brpf1 in vitro (14, 16), suggesting that Brpf1 may not act
through Moz during labyrinth formation.

Periodic acid Schiff staining is often used to detect glycogen-
rich trophoblasts (52, 53). Such staining of wild-type and
mutant placental sections also confirmed the defects in the lab-
yrinth (data not shown). Consistent with the defective labyrin-
thine structure in the homozygous mutant (Fig. 3A), Brpf1 was
highly expressed in the labyrinth of the placenta from the
heterozygous conceptuses (Fig. 3D, left). The �-galactosidase-
positive trophoblasts were well distributed within the labyrinth.
By contrast, in the placenta from homozygous mutant concep-
tuses, �-galactosidase-positive trophoblasts shrank severely in
the labyrinth (Fig. 3D, right). To gain mechanistic insights into
the observed placental defects, we performed immunofluores-
cence microscopy. Consistent with the vascular defects (Figs. 1
and 2), staining with the anti-CD31 antibody revealed defective
vasculature within the mutant labyrinth (Fig. 3E). Placental lac-
togen 1 (PL1) marks giant trophoblasts (53). As shown in Fig.
3F, the giant trophoblast layer (PL1�) remained roughly normal
in the mutant placenta, indicating that the placental defect is
specific to the labyrinth. The transcription factors Gcm1 and
Esx1 are important for placental development (54, 55). We thus
analyzed their expression and distribution. As reported (54),
Gcm1 expression was enriched in the spongiotrophoblast layer
of the control placenta (Fig. 3G, left). This distribution pattern
was altered in the mutant placenta (Fig. 3G, right). Esx1 was
relatively uniform in the control placenta, but its level deceased
dramatically in the mutant placenta (Fig. 3H). Therefore, Brpf1
inactivation disrupts labyrinthine organization in the placenta
and deregulates expression of Gcm1 and Esx1.

Brpf1 Loss Generates Abnormal Embryos with Severe Neural
Tube Defects—We next examined abnormalities in the mutant
embryos. From gross appearance, the mutant embryos began to
show subtle growth retardation at the head fold as early as E8.75
(Fig. 4, A and B). At E9.5, the defect in the cephalic region was
dramatic, and the neural tube failed to close, as opposed to that
of the control embryos (Fig. 4, C and D). The neurodevelop-
mental defect was the most obvious phenotype, including fore-
brain hypoplasia and an open neural tube in the cephalic region
but not in the trunk region (Fig. 4, C and D). At E10.5, the
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E9.5

E10.5

E10.5

C

D

E E9.5

B

FIGURE 2. Analysis of Brpf1-null conceptuses by immunohistochemistry
and benzidine staining. A, vascular networks in control and Brpf1�/�

embryos at E9.5 were visualized by whole-mount anti-CD31 immunohisto-
chemistry. The vascular network was hierarchically organized in the control
but not mutant embryos. B, enlargement of the region boxed in A). C and D,
similarly at E10.5, branching vessels were detected in the control but not
mutant yolk sac (C) and chorionic plate (D). As in A, vasculature networks were
visualized by whole-mount anti-CD31 immunostaining. E, benzidine staining
of erythrocytes in the E9.5 control and mutant yolk sacs. Scale bars, 200 �m.
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mutant embryos exhibited a significantly reduced size and were
characterized by balloon-like pericardial sacs and severe hem-
orrhage (Fig. 4, E and F). To further characterize the neural tube
defects, we carried out histological analysis of control and
mutant embryos. H&E staining indicated that despite some
slight differences, the neural tube was relatively normal at E8.75
(Fig. 4H). However, at E9.5, the cranial neural folds did not
converge at the dorsal midline, indicating an open neural tube
(Fig. 4I). At E10.5, the neural tube was still open, and the brain
was largely missing (Fig. 4J).

Neural tube defects could be due to several reasons, includ-
ing birth and migration of neurons. To examine this issue, we
first detected neuronal progenitors with an antibody specific to
Sox2 (56). As shown in Fig. 5A, there were two major differ-
ences between control and mutant neural tubes: 1) the popula-
tion of Sox2� stem cells or progenitors was obviously smaller
due to the reduced size of the neural tube, and 2) the relative
distribution appeared to be uneven in the mutant neural tube as
compared with the uniform distribution of wild-type Sox2�

cells. These differences suggest defective generation and/or
migration of these cells. To gain further insights we analyzed
embryo sections with an antibody against Tuj1, the neuron-
specific class III �-tubulin that marks post-mitotic neurons
(57). This analysis revealed a striking defect in neuron number
and migration pattern. As shown in Fig. 5, B and E, Tuj1� neu-
rons were concentrated at the outer rim of the wild-type neural
tube after migrating from the inner surface of the neural tube
where they were born. In the mutant sections there were fewer
Tuj1� neurons, and some of them migrated abnormally, indi-
cating that birth and migration of neurons are compromised in
the mutant embryos.

To delineate the underlying cellular mechanisms, we ana-
lyzed cell proliferation by immunofluorescence microscopic
analysis with an antibody recognizing histone H3 phosphory-
lated at Ser-10, a well known marker for mitotic cells (58). As
shown in Fig. 5, F and G, in the mutant embryo there were fewer
cells positive for the mark than those in the control embryo,
indicating that Brpf1 inactivation affects cell proliferation. We
also assessed whether Brpf1 inactivation induces apoptosis. For
this, we performed immunofluorescence microscopic analysis
of embryo sections with an antibody specific to the activated
form of caspase 3. As shown in Fig. 6, A–C, no evident apoptosis
was observed in the mutant embryo at E8.5 or E9.5, but marked
apoptosis was present at E10.5. As morphologic defects were
obvious at E9.5 (Fig. 4), we concluded that apoptosis is not the
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FIGURE 3. Vascular defects in Brpf1-null placenta. A and B, H&E-stained
sagittal sections of control and mutant placentae at E9.5 and E10.5. At E9.5 (A),
different layers were not so clearly separated in the mutant placenta as those
in the control. At E10.5 (B), the mutant placenta collapsed, containing sparse
giant cells and a thin layer of spongiotrophoblast cells. C, magnified views of
the areas boxed in B. In the control placenta (left), fetal blood vessels (green
arrows) and maternal blood sinuses (black arrows) intermingled with each
other, whereas in the mutant placenta (right), no blood vessels branched out
even though large buds of the fetal blood formed near the chorionic plate

(green arrow) and the maternal blood sinuses looked normal (black arrow). D,
�-galactosidase staining of E9.5 placental sections. In the Brpf1l/� placenta,
�-galactosidase activity (blue) was high in the labyrinth and chorionic plate
but moderate in the allantois. In the Brpf1�/� placenta, the labyrinth and
spongiotrophoblast layers shrank and were disorganized. E, CD31 immuno-
staining of E9.5 placental sections. The mutant labyrinth was structurally
abnormal and lacked fetal blood vessels. F, PL1 immunostaining of E9.5 pla-
cental sections. The giant trophoblast layer (PL1�) appeared roughly normal
in both control and mutant placenta. G and H, immunostaining of E9.5 pla-
cental sections for the labyrinth markers, Gcm1, and Esx1. In the mutant lab-
yrinth, Gcm1 expression was abnormally condensed (G, right), and Esx1
expression was almost abolished (H, right). Extraembryonic structures were
identified according to a published atlas (51, 89). Al, allantois; Ch, chorionic
plate; De, decidua; Gc, giant trophoblast cells; La, labyrinth; Sp, spongiotro-
phoblast layer. Scale bars, 100 �m (A–D) and 200 �m (E–H).
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reason for the neural tube defect observed at E9.5. In addition,
the control and mutant embryos showed no evident difference
in the number of cells positive for phosphorylation of H2AX at
Ser-139 (or the �H2AX form) (Fig. 6D), a well -known histone
mark for DNA damage and genomic instability (59). These
results indicate that neural tube defects caused by Brpf1 defi-
ciency may be due to compromised cell proliferation rather
than apoptosis or DNA damage.

Brpf1 Controls Primitive Hematopoiesis and Embryonic
Fibroblast Proliferation—H&E staining of control and mutant
yolk sac sections revealed striking defects in erythrocytes at
E9.5 and E10.5 (Fig. 1F). To determine whether hematopoietic
progenitors within the mutant yolk sac vasculature are still
functional, we performed colony formation assays in vitro using
methylcellulose-based media. As shown in Fig. 7A, mutant
hematopoietic progenitors formed fewer colonies than the con-
trol. The mutant colonies were also much smaller (data not
shown), suggesting defective cell growth and/or proliferation.
Thus, Brpf1 loss causes defective hematopoiesis.

Like hematopoietic progenitors, fibroblasts isolated from
mutant embryos at E9.5 did not proliferate in vitro (Fig. 7B). To
substantiate this, we sought to circumvent the failure to derive
MEFs from the mutant embryos. We thus prepared MEFs from
Brpf1f/f;ER-Cre embryos for inducible inactivation of the Brpf1
gene in vitro by treatment with 4-hydroxytamoxifen. Impor-
tantly, the induced inactivation inhibited growth (Fig. 8A) and
cell cycle progression (Fig. 8, B and C) of embryonic fibroblasts.
To examine the underlying molecular mechanisms, we per-
formed immunoblotting with various antibodies. As shown in
Fig. 8D, induced inactivation of the Brpf1 gene also decreased
acetylation of histone H3 at Lys-9 and Lys-14. Because loss of
Hbo1, but not Moz, yields a similar decrease in histone H3
acetylation (17, 44), we assessed Hbo1 expression. According to
fluorescence signal intensity, the Hbo1 protein level decreased
in the mutant embryos (Fig. 6E). However, different from this,
induced inactivation of the Brpf1 gene in vitro did not alter the
levels of different Hbo1 isoforms in MEFs (Fig. 8D). Brpf1 stim-
ulates acetyltransferase activity of Hbo1 (10), so it remains pos-
sible that its enzymatic activity is lower in mutant MEFs.

Brpf1 Regulates Gene Expression—The acetyltransferases
Moz, Morf, and Hbo1 interact efficiently with Brpf1 in cell-
based assays (10, 14, 16). Brpf1 is paralogous to Brpf2 and Brpf3
(14, 16). We thus analyzed whether Brpf1 affects transcript lev-
els of these five proteins. As shown in Fig. 9, A and B, the levels
were not affected in mutant embryos or MEFs. Because cell
growth and proliferation were impaired in Brpf1-deficient
mutant embryos and MEFs (Figs. 7 and 8), we measured levels
of different cell cycle inhibitors. The transcript levels of p16 and
p27 were affected in mutant MEFs (Fig. 9B). We also performed
microarray-based gene expression analysis of control and

mutant embryos at E8.75, when morphological defects were
still subtle (Fig. 4A). Among the genes selected for validation by
RT-qPCR (Table 1), we confirmed that Rpl10l (ribosomal pro-
tein L10-like) mRNA decreased, whereas Scp3l (synaptonemal
complex protein 3-like; or Gm773, for predicted gene 773)
mRNA increased in Brpf1-null embryos (Fig. 9A). A smaller
increase of Scp3l mRNA was also detected in mutant MEFs
(Fig. 9B). Thus, microarray analysis and RT-qPCR validation
indicate that Brpf1 loss perturbs expression of genes such as
Rpl10l, Scp3l, p16, and p27.

DISCUSSION

Brpf1 Regulates Mouse Embryogenesis—To extend previous
molecular studies (10, 14, 16) and determine the biological
functions of Brpf1, we have recently analyzed its spatiotempo-
ral expression during mouse development (38). This analysis
revealed that Brpf1 is dynamically expressed in different extra-
embryonic and embryonic tissues (38). Consistent with this,
inactivation of the gene led to embryonic lethality around E9.5
(38). Here, we have systematically analyzed the mutant animals
and identified severe vascular defects in the placenta, yolk sac,
and embryo proper (Figs. 1–3). Neural tube closure (Figs. 4 – 6)
and hematopoietic progenitors (Fig. 7A) were also compro-
mised. Related to the underlying cellular mechanisms, Brpf1
inactivation deregulates different cell programs, e.g. inhibiting
cell proliferation (Figs. 5, F and G, 7, and 8), hindering neuron
migration (Fig. 5, B and E) and reducing histone H3 acetylation
(Fig. 8D). In addition, erythrocytes and their progenitors were
affected (Figs. 1F and 7A). This may be an important factor
contributing to defective vasculature formation (Fig. 1) as
primitive erythroid cells are critical for vascular remodeling (for
review, see Ref. 60).

As for the underlying molecular mechanisms for the
observed defects, the microarray-based gene expression analy-
sis revealed that Brpf1 inactivation reduced the Rpl10l mRNA
level (Fig. 9A and supplemental Table S1). This was specific to
mutant embryos at E8.75 as no such reduction was observed in
cultured MEFs isolated from E15.5 embryos (Fig. 9B). Related
to this, specific inactivation of the Brpf1 gene in the forebrain
does not affect the Rpl10l mRNA level (39). The reduced tran-
scription of Rpl10l in mutant embryos at E8.75 is consistent
with the role of Brpf1 in promoting histone acetylation and
stimulating transcriptional coactivation in vitro (16). Rpl10l is
highly homologous to Rpl10 (61), so we can speculate about
Rpl10l functions from various studies of Rpl10, known to be
important for nuclear export and allosteric movement of the
60 S ribosomal subunit (62, 63). Human RPL10 mutations have
been detected in leukemia (64, 65) and implicated in abnormal
brain development leading to autism (66), intellectual disability
(67, 68), and microcephaly (69). Moreover, faulty translation

FIGURE 4. Neural tube defects in Brpf1-null embryos. A and B, mutant embryos had underdeveloped head folds (HF) but were otherwise relatively normal
at E8.75. C and D, at E9.5, the mutant embryos began to show obvious abnormalities. One feature with high penetrance was the open neural tube, especially
in the cephalic region. E and F, in addition to the neural tube defect, the mutant embryo at E10.5 showed other phenotypes, including pericardial effusion and
hemorrhage. No viable mutant embryos could be recovered at E11.5 (G). H–J, H&E staining of control and Brpf1 mutant embryos from E8.75 to E10.5. At E8.75
(H), the neural fold in the cephalic region was still open in both control and mutant frontal sections. At E9.5 (I), the open neural tube defect became obvious as
seen in transverse sections. Although they were closed in the control, the forebrain and hindbrain of the mutant embryo were still open. At E10.5 (J), no
compartmentation of the forebrain, midbrain, and hindbrain was observed in the mutant embryo (bottom). The mutant brain only had some residual tissues.
Embryonic structures were identified according to a published atlas (51, 89). Fb, forebrain; Mb, midbrain; Hb, hindbrain; HF, head fold; NE, neuroepithelium.
Scale bars, 200 �m.
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resulting from loss of other ribosomal proteins constitutes an
important pathogenic mechanism (69, 70) and causes diverse
developmental defects (71–73).

In addition, dramatically elevated transcription of Scp3l was
also observed (Fig. 9A and supplemental Table S1). This eleva-
tion was also detected in mutant MEFs (Fig. 9B). With a COR
(meiotic chromosome core) domain sharing 49% sequence
identity to that of Scp3 (74), Scp3l has been referred to as Xlr6
(X-linked lymphocyte-regulated protein 6) (75) and Slx2 (Scp3-
like X-linked 2) (76, 77). Scp3 is a meiosis-specific protein crit-
ical for meiotic chromosome segregation and embryo survival
(74). Some evidence suggests that Scp3l has a similar function
in meiotic chromosome segregation (75, 77). In addition, Scp3
is part of the Xlr family whose members also regulate the
immune system (78). It is presently unclear whether Scp3l is
involved in immune regulation. In light of its potential impor-
tance in chromosome segregation, up-regulation of Scp3l
mRNA may be detrimental to Brpf1-deficient embryos and
MEFs.

At the sequence level, BRPF proteins are conserved from
Caenorhabditis elegans to humans. There are no orthologs in
lower metazoans, yeasts, or plants. Although the biological
function of Drosophila Brpf remains elusive, C. elegans Lin-49
regulates neuron asymmetry, hindgut development, and fecun-
dity (79, 80). Deletion of zebrafish Brpf1 alters pharyngeal seg-
mental identity (81), and inactivation of medaka Brpf1 affects
craniofacial skeletons (82), so Brpf1 regulates skeletal develop-
ment in fish. Based on these genetic studies, it will be interesting
to investigate whether mammalian Brpf1 also plays a role in

skeletogenesis. However, these genetic studies would not pre-
dict our findings about the important roles of mouse Brpf1 in
the placenta, vasculature, and neural tube. Thus, the results
described herein are unexpected and provide novel insights
into biological functions of mammalian BRPF1.

In mammals, BRPF1 is paralogous to BRPF2 and BRPF3 (14,
16). Loss of mouse Brpf2 leads to embryonic lethality at E15.5,
with abnormal eye development and faulty erythropoiesis (17),
indicating that Brpf2 regulates mouse embryogenesis at a later
stage than Brpf1. No genetic studies have been reported for
mouse Brpf3, but the severe embryonic lethality of Brpf1 or
Brpf2 inactivation supports that both have unique functions
during mouse embryogenesis. It will be important to investigate
whether Brpf3 also plays a role in mouse embryos.

Cooperation of Brpf1 with Moz, Morf, and Hbo1 during
Embryo Development—Molecular studies have established that
human BRPF1 interacts with MOZ, MORF, and HBO1 to gov-
ern their acetyltransferase activities and substrate specificity
(10, 14, 16). Decreased Rpl10l expression is consistent with the
transcriptional activation ability observed for Moz, Morf, and
Brpf1 in vitro (Fig. 9C) (16, 83). Related to the elevated level of
Scp3l mRNA in Brpf1�/� embryos and MEFs, we have recently
reported that forebrain-specific loss of Brpf1 causes transcrip-
tional up-regulation of Hox genes and various other transcrip-
tion factors (39). Interestingly, Drosophila Hbo1 is required for
repression of Hox genes (84), suggesting interaction of Brpf1
with Hbo1 in silencing gene expression under certain develop-
mental contexts (Fig. 9C).

To gain insights into how Moz, Morf, and Hbo1 may mediate
the effects of Brpf1 on mouse embryo development, we need to
compare results from related genetic studies. Three mutant
strains have been engineered for mouse Moz. In one of them the
first coding exon was replaced with a neo cassette, and no pro-
tein was expressed (41). Homozygous mutant embryos survive
until E14.5. In another, the neo coding sequence is fused to that
for the N-terminal two-thirds of Moz (42). Although no Moz-
neo fusion protein is detectable, lethality occurs at birth (42). A
third strain contains a point mutation to abrogate acetyltrans-
ferase activity (85). This mutation causes shortened lifespan;
40% of the mutant mice die at 6 months of age, with lower body
weight, smaller thymus and spleen, and defective hematopoie-
sis (85). In addition to Moz, Morf was investigated in a gene-trap
strain possessing �10% residual mRNA. The mutant mice die
at weaning and display dwarfism, craniofacial abnormalities,
and cerebral defects (43). Thus, the phenotypes of the Moz and
Morf mutant mice do not predict the severe phenotypes
observed in Brpf1 knockouts.

There are several possible explanations. Moz and Morf are
paralogous (83) and may have overlapping functions in vivo, so
their double knockouts should lead to more severe phenotypes
than single knockouts. Moreover, Morf-deficient mice still
carry residual transcripts (43), and the total knock-out may
yield more dramatic phenotypes. As Brpf1 interacts with both
Moz and Morf, as suggested by cell-based studies (10, 14, 16), its
loss may affect the function of both to yield the severe pheno-
types observed. Alternatively, there are other binding partners
that may contribute to these defects.
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FIGURE 7. Importance of Brpf1 for proliferation of hematopoietic progen-
itors and embryonic fibroblasts. A, colony formation assay performed on
four pairs of control and mutant yolk sacs at E9.5. Burst forming unit-erythroid
(BFU-E), colony forming unit-granulocyte/monocyte (CFU-G/M), and granulo-
cyte, monocyte/granulocyte, erythrocyte, monocyte, and megakaryocyte
(CFU-GM/GEMM) were enumerated on day 8 after culturing in Methocult
M3434 media. B, MEFs were isolated from control and mutant embryos at E9.5
and cultured for 1 week to monitor confluency by IncuCyte. The values on day
7 were calculated and are shown here (n 	 9 for control and n 	 4 for mutant).
***, p � 0.001.
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One such candidate is Hbo1, whose loss leads to embryonic
lethality at E10.5, with developmental delay starting at �E8.5
(44). This lethality window is similar to that of Brpf1�/�

embryos (38). In addition, there are other similarities such as
neural tube and vascular defects between Brpf1 and Hbo1
mutants (Figs. 1 and 4) (44). Moreover, histone H3K14 acetyla-
tion is dramatically decreased in both Brpf1 and Hbo1 mutants
(Fig. 8D) (44). Along with the molecular interaction between
Brpf1 and Hbo1 (10), it is tempting to speculate that Brpf1
targets Hbo1 during mouse embryogenesis (Fig. 9C). However,
Brpf1 and Hbo1 mutants also display clear distinctions in pla-
cental and embryonic defects, indicating that Hbo1 may not be
the sole target in vivo. In support of this, Hbo1 expression is
ubiquitous (Fig. 6E) (44), whereas spatiotemporal expression of
Brpf1 is specific to different tissues and dynamic at different
developmental stages (38). Furthermore, Hbo1 is dispensable
for MEF growth and proliferation (44), but Brpf1 mutant MEFs
were difficult to derive at E9.5 (Fig. 7B), and induced Brpf1
inactivation in vitro led to proliferative defects (Fig. 8). Of rele-
vance, the human BRPF1 gene is mutated in pediatric cancers
(36) and adult medulloblastoma (37); no such mutations have
been identified in the HBO1 gene.

From the above discussions, it is clear that genetic studies of
mouse Moz, Morf, and Hbo1 (41– 44) indicate that loss of none
of them alone faithfully phenocopies the Brpf1 gene inactiva-
tion. One scenario is that all three contribute to Brpf1 function
during embryo development (Fig. 9C). Alternatively, Brpf1 may
also act independently of them (Fig. 9C). Related to this, three
other acetyltransferases, Gcn5, p300, and CBP, are worthy of
consideration because their loss also causes neural tube defects
(86, 87). It should be noted, however, that neural tube defects
described for Gcn5�/�, p300�/�, or Cbp�/� embryos (86, 87)
are different from those described here (Fig. 4). Interestingly, as
described here for Brpf1 (Figs. 1, 7, and 8), p300 loss causes
severe defects in vasculature and cell proliferation (87). Thus,
the relationship with different acetyltransferases in vivo may
not be as simple as demonstrated in vitro (10, 14, 16). Further
studies are needed to investigate how Brpf1 interacts with var-
ious histone acetyltransferases during embryo development
(Fig. 9C).

In conclusion, we have analyzed mouse embryos lacking
Brpf1 and identified its crucial role in vasculature formation
and neural tube development. The results also demonstrate
that Brpf1 loss deregulates cellular and gene expression pro-
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grams. Together with recent reports on its function in forebrain
development (39, 40), these new results reiterate the impor-
tance of mouse Brpf1 in different developmental processes. Of
relevance, Brpf2 (or Brd1, for bromodomain protein 1) regu-
lates embryogenesis around E13.5 and early thymocyte devel-
opment (17, 88). Therefore, despite their high sequence simi-
larity (14, 16), Brpf1 and Brpf2 are not redundant in vivo, and
both have important roles during mouse development.
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