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Zinc Inhibits Hedgehog Autoprocessing
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Background: In many types of cancers zinc deficiency and overproduction of Hedgehog (Hh) ligand co-exist.
Results: Zinc binds to the active site of the Hedgehog-intein (Hint) domain and inhibits Hh ligand production both in vitro and

in cell culture.
Conclusion: Zinc influences the Hh autoprocessing.

Significance: This study uncovers a novel mechanistic link between zinc and the Hh signaling pathway.

Zinc is an essential trace element with wide-ranging biologi-
cal functions, whereas the Hedgehog (Hh) signaling pathway
plays crucial roles in both development and disease. Here we
show that there is a mechanistic link between zinc and Hh sig-
naling. The upstream activator of Hh signaling, the Hh ligand,
originates from Hh autoprocessing, which converts the Hh pre-
cursor protein to the Hh ligand. In an in vitro Hh autoprocessing
assay we show that zinc inhibits Hh autoprocessing with a K; of 2
pM. We then demonstrate that zinc inhibits Hh autoprocessing
in a cellular environment with experiments in primary rat astro-
cyte culture. Solution NMR reveals that zinc binds the active site
residues of the Hh autoprocessing domain to inhibit autopro-
cessing, and isothermal titration calorimetry provided the ther-
modynamics of the binding. In normal physiology, zinc likely
acts as a negative regulator of Hh autoprocessing and inhibits
the generation of Hh ligand and Hh signaling. In many diseases,
zinc deficiency and elevated level of Hh ligand co-exist, includ-
ing prostate cancer, lung cancer, ovarian cancer, and autism.
Our data suggest a causal relationship between zinc deficiency
and the overproduction of Hh ligand.

Hedgehog (Hh)? signaling pathway regulates cell prolifera-
tion, tissue polarity, and cell differentiation during normal
development (1). Abnormal signaling of this pathway has been
reported in a variety of human diseases, including cancer and
neurodevelopmental diseases. For example, chronic Hh path-
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way stimulation is observed in prostate cancer (2—4), lung can-
cer (5, 6), and ovarian cancer (7, 8) in a Hh ligand-dependent
manner. Recently, serum levels of Hh ligand protein were found
to be significantly higher in children with autism spectrum dis-
order (ASD) and the levels of Hh ligand were correlated with
the severity of autism (9). However, the mechanisms of Hh
ligand overproduction in these diseases are poorly understood.

Hh ligand is generated from a precursor protein composed of
an N-terminal signaling domain (HhN) and a C-terminal auto-
processing (HhC) domain (Fig. 14), through intein-like chem-
istry catalyzed by the Hint (Hedgehog/intein) domain within
HhC. During Hh autoprocessing, HhC cleaves HhN from the
precursor and covalently links a cholesterol molecule to the C
terminus of HhN. HhN is also palmitoylated at the N terminus
by the Hedgehog acyl transferase (10). The double lipidation of
HhN is required for proper Hh ligand transportation and
downstream signaling (11). Because zinc inhibits intein-medi-
ated protein splicing (12) and HhC is homologous to inteins
(13), we reasoned that zinc may also suppress Hh autoprocess-
ing and the generation of Hh ligand.

Interestingly, zinc deficiency has been well documented in
many diseases with elevated level of Hh ligand (14 —-21) both in
patient serum and affected tissues. If zinc normally inhibits Hh
autoprocessing, low zinc level can potentially enhance Hh auto-
processing and increase the level of Hh ligand in these diseases,
contributing to their pathogenesis. However, the mechanistic
link between zinc and Hh signaling has not been characterized
previously. In this study we demonstrate that zinc binds directly
to the active site of Hint domain and inhibits the autoprocess-
ing of Hh precursor both in vitro and in cell culture, uncovering
a novel connection between two essential pathways in many
physiological and pathological processes.

EXPERIMENTAL PROCEDURES

DNA Constructs—The expression plasmid, pET22b-SHhN-
DHhC, encoding HhN of human Sonic Hh fused to HhC of
Drosophila melanogaster was prepared by ligating the corre-
sponding synthetic gene fusion (Genscript) into pET22b
(Novagen) using unique Ndel and HindIII sites (Fig. 1B). For
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pET45b His,-shortened Hh precursor, the coding sequence for
D. melanogaster HhC fragment was PCR-amplified from
genomic DNA, digested with Kpnl and HindIII, and ligated into
pET45b to generate an N-terminal His-tagged construct (see
Fig. 3A). Primers sequences, with restriction sites underlined
were as follows: forward, TTTCACGTGGGTACCGGTGAA-

AACCTGTATTTTCAGGGCTCGACGGTGCATGGCTGC-
TTC; reverse, TTTAAGCTTAATCGTGGCGCCAGCTCT-
GCGGCAGAACG.

Protein Expression and Purification—All non-labeled cells
were grown at 37 °C in Escherichia coli strain BL21 (DE3) and
induced with 1 mm isopropyl B-p-1-thiogalactopyranoside at
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an Agy, of ~0.5 and then incubated at 20 °C overnight. Cells
were lysed by B-per lysis buffer (Thermo Scientific, Waltham,
MA) and purified by nickel-nitrilotriacetic acid chromatogra-
phy. Hint domain was cleaved from the shortened precursor
with 200 mwm dithiothreitol (DTT) at 25 °C overnight. Affinity
chromatography was utilized again to trap the His, tag, and
uncleaved fusion protein and flow-through fractions were
pooled. The pure protein was exchanged by dialysis into a
buffer containing 50 mm Tris, pH 7.1, 100 mm NaCl, and con-
centrated by ultrafiltration with Amicon Ultra Centrifugal Fil-
ter Devices (Millipore Corp.; 10-kDa molecular weight cutoff).
NMR sample preparation for Hint was described previously
(22).

In Vitro Autoprocessing Assays and Zinc Treatment—Auto-
processing reactions contain ~0.16 mg/ml SHhN-DHhC pre-
cursor in incubation buffer (50 mm Tris, 100 mm NaCl, pH 7.1)
with or without cholesterol (500 uMm final concentration). The
reactions were incubated at 25 °C and were stopped after 1 h by
adding SDS-PAGE sample buffer (without B-mercaptoetha-
nol). The samples were separated by SDS-PAGE. N-S acyl shift
reactions contained ~0.25 mg/ml shortened Hh precursor,
composed of a His tag, four HhN residues, HVHG, and Droso-
phila-Hint (see Fig. 3A4) in incubation buffer (50 mm Tris, 100
mwm NaCl, pH 7.1) with or without hydroxylamine (HA) (200
mM final concentration). The reactions were incubated at 25 °C
and were stopped after 3 h by adding SDS-PAGE sample buffer
(without B-mercaptoethanol). The samples were analyzed by
SDS-PAGE.

For zinc inhibition assay on cholesteroylation, the Hh pro-
tein was incubated with cholesterol (500 uM final concentra-
tion) and various concentration of zinc (0.5-100 uMm ZnCl,) at
25°C for 1 h. EDTA was used to as the chelator for zinc. Hh
autoprocessing was monitored by SDS-PAGE. For the zinc
inhibition assay on N-S acyl shift, the shortened Hh precursor,
as depicted in Fig. 34, was incubated with 200 mm HA and
various concentrations of zinc (3—-75 um ZnCl,) at 25 °C for 3 h.
EDTA was used to as the chelator for zinc. Hh N-S acyl shift was
monitored by SDS-PAGE.

Dose-response curves and K; values for both cholesteroyla-
tion and N-S acyl shift were determined by fitting the data with
four parameter logarithmic nonlinear regression analysis with
KaleidaGraph software. The dose-response equation we used
was,

Activity,c = (max X [Zn*"])/(K; + [Zn**]) (Eq. 1)

Zinc Inhibits Hedgehog Autoprocessing

Liquid Chromatography (LC)-Mass Spectrometry—Protein
samples were diluted to 25 ug/ml and analyzed using an Agilent
1200-Series LC system coupled to an LTQ-Orbitrap mass spec-
trometer (Thermo Scientific). For Fig. 1F, the LC system was
equipped with a 2.1-mm inner diameter, 100-mm HPLC col-
umn packed with 5 wm BioBasic, C18, 300 A resin (Thermo
Scientific). Elution was achieved with a gradient of 5-90% B
(98% acetonitrile in 1% formic acid) in 15 min. The flow rate was
0.2 ml/min.

ITC Titrations—Isothermal titration calorimetry measure-
ments were obtained at 25 °C with an ITC200 MicroCal MCS
titration microcalorimeter. Typically, 30 or 50 portions of 5 ul
of ZnCl, solution were injected into the protein in the sample
cell during each titration. The delay between injections (300 s)
was sufficiently long for the thermal equilibrium before the
next injection. The heat released by the interaction was mea-
sured by the instrument. Heat of dilution was obtained from a
control titration of zinc into buffer alone under the same con-
ditions. All experiments were repeated three times. Integrated
heat data corrected for heats of dilution were fitted with a non-
linear least-squares minimization algorithm to a theoretical
titration curve, with the Origin software package supplied by
MicroCal. The ITC data are presented by showing the baseline-
adjusted experimental titration (heat flow versus time) on the
top and the peak-integrated concentration-normalized molar
heat flow per aliquot versus the titrant-to-sample molar ratio on
the bottom (Fig. 3). The solid line in the bottom plot represents
the best fit of the data to the one-site equilibrium binding
expression.

NMR Spectroscopy—All NMR experiments were carried out
at 298 K on a Bruker 800 MHz spectrometer equipped with a
cryogenic probe. Spectra were processed with nmrPipe soft-
ware (23) and analyzed using Sparky (T. D. Goddard and D. G.
Kneller, SPARKY 3, University of California, San Francisco,
CA). The 'H chemical shifts were referenced relative to DSS
(2,2-dimethyl-2-silapentanesulfonic acid), and the >N and '*C
chemical shifts were referenced indirectly. The complete back-
bone and aliphatic side chain assignment of Hint has been pub-
lished (22). The assignment of histidines were based on the
(HB)CB(CyCs)Hb spectrum, which connects CB to Hé in the
imidazole ring.

Chemical shift perturbation on backbone was monitored
using 'H,"’N-HSQC spectra at increasing molar ratios of zinc
to Hint. To monitor the zinc binding on cysteines (Cys-1 and

FIGURE 1. Zinc inhibits Hh autoprocessing in vitro. A, Hh autoprocessing mechanism. Hh is composed of two domains, the N terminus signaling domain
(HhN) and C terminus autoprocessing domain (HhQ). In the first step N-S acyl shift, the thiol group of Cys-1 initiates a nucleophilic attack on the carbonyl carbon
of the preceding residue, Gly-(—1). This attack results in replacement of the peptide bond between Gly-1 and Cys-1 by a thioester linkage. In the second step
cholesteroylation, the thioester is subject to a second nucleophilic attack from the hydroxyl group of a cholesterol molecule bound by the sterol recognition
region (SRR) within HhC, resulting in a cholesterol-modified HhN and a free HhC. B, schematic diagram of the construct for cholesteroylation assay, composed
of both HhN and HhC. It is a chimera fusion protein that contains SHhN at its N terminus and Drosophila melanogaster HhC at its C terminus. C, zinc inhibits Hh
cholesteroylation in vitro. HA can induce the N-S acyl shift and initiate the cleavage of Hh. Chol, cholesterol; Zn>*: ZnCl,. D, quantitative analysis of zinc
inhibition on Hh autoprocessing in vitro. The experiments were repeated 3 times, and the K; was 2.3 = 0.2 um. E, EDTA reversal of zinc inhibition in cholester-
oylation assay. F, LC/electrospray ionization-MS analysis of the products of the autoprocessing assay, cleaved HhC and cholesteroylated HhN. The upper portion
shows one of the reaction products, the Drosophila melanogaster HhC. The calculated average mass (Mass,erage = 24867.29 Da) is between the two most
abundant peaks in our experimental spectrum. The bottom portion shows the correct mass for cholesterol-modified SHhN (mass,¢rage = 20377.15 Da). These
data proved the cholesteroylation of HhC in our assay. G, zinc inhibits HA-induced N-S acyl shift at 25 °C for 3 h. HA can cleave the thioester formed by N-S acyl
shift in shortened Hh precursor, which lacks sterol recognition region. Lane 1 is the precursor at 4 °C, and lane 2 is the precursor at 25 °C, which shows the
precursor is stable at both temperatures for at least 3 h. H, quantitative analysis of zinc inhibition on Hh N-S acyl shift. The experiments were repeated 3 times,
and K; was calculated to be 14 = 1 um. I, EDTA reversal of zinc inhibition in N-S acyl shift.
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FIGURE 2. Zinc inhibits Hh autoprocessing in primary astrocyte cell culture. A, zinc inhibits Hh autoprocessing in astrocytes. Immunoblotting for GAPDH
was used as a loading control. B, quantitative analysis was performed with ImageJ. The amounts of proteins were normalized to those of GAPDH. C, dose-
response curve for percentage of dead rat primary astrocyte cells by varying concentrations of environmental zinc. Cultures were exposed to 0-600 um zinc
and 100 um H,0, for 40 h. The cell viability was assessed using the Live/Dead cell imaging kit, and the percentage of dead cells was determined by the Spot
Detector BioApplication. Results are expressed as the mean derivations =+ S.D. for two cultures. D, a representative figure for each condition. In each figure
green fluorescence represents live cells and red fluorescence represents dead cells.

Cys-143), aspartic acid (Asp-46), and histidine (His-72) side
chains, *C,"H-HSQC, two dimensional HB(CB)CO, and aro-
matic "*C,"H-HSQC spectra were acquired separately.
Culture of Primary Astrocytes—Primary astrocyte cultures
were prepared from the cerebral cortex of newborn Sprague-
Dawley rats as previously described (24, 25). All animal proce-
dures in this study strictly adhered to the National Institutes of
Health Guidelines for the Care and Use of Laboratory Animals
and were approved by the Institutional Animal Care and Use
Committee of Rensselaer Polytechnic Institute. Postnatal
1-day-old rat pups were euthanized by rapid decapitation. The
cerebral cortices were separated from the meninges, hip-
pocampi, and basal ganglia. The cortical tissue from four ani-
mals was dissociated in Opti-MEM (Invitrogen) and trans-
ferred into a solution containing a 1:1 mix of recombinant
protease TrypLE and Opti-MEM (Invitrogen). Cells were sep-
arated from the tissue using three 10-min incubations with
TrypLE/Opti-MEM supplemented with 1 mg/ml DNase I
(Sigma). The second and third extractions were combined with
Dulbecco’s minimal essential medium (Invitrogen) containing
10% heat inactivated horse serum (Invitrogen) and 50 units/ml
penicillin plus 50 pg/ml streptomycin (Invitrogen). Cells were
pelleted using centrifugation (0.5 relative centrifugal force for 5
min), resuspended in media, and plated on poly-p-lysine-
coated T75 culture flasks at a density of 200,000 cells/flask. The
astrocytes were cultured until reaching confluency and used for
subsequent procedures as described below. Purity of astrocyte
cultures (>95% pure) was periodically verified using immuno-
cytochemistry staining protocols with an antibody against
astrocytic marker glial fibrillary acidic protein (Dako, Glostrup,
Denmark). The density of confluent astrocytes was ~1 X 10°

11594 JOURNAL OF BIOLOGICAL CHEMISTRY

cells/cm?, which were subsequently used for Western blot
analysis.

H,O, and Zinc Treatment in Astrocytes—Astrocytes were
incubated in a serum-free medium for 3 h before exposure to
H,0,. H,0, (100 uMm) (Sigma) was used to induce oxidative
stress and hence enhance the Hh signaling pathway. Astrocytes
then were treated by 0, 50, 100, and 150 um ZnCl, for 40 h,
where minimal zinc toxicity was observed in Live/Dead assay
(Fig. 2, Cand D).

Immunoblotting—Astrocytes were lysed on ice for 40 min in
lysis buffer radioimmune precipitation assay buffer supple-
mented with PMSF and protease inhibitors (Cell Signaling).
The lysate was centrifuged for 10 min at 4 °C and 10,000 X g,
and then the supernatant was collected. For the culture medium,
the cellular debris was separated by centrifuge at 8000 X g for 5
min, and then the proteins were concentrated by Centricon cen-
trifugal concentrators (10-kDa cutoff, Amicon). The samples were
mixed with SDS-PAGE sample buffer and separated by SDS-
PAGE followed by immunoblotting on PVDF membrane. The
membranes were blocked and incubated with a 1:100 dilution of
HhN antibody (N-19, Santa Cruz Biotechnology). GADPH was
used as a loading control by probing the GADPH portion of the
blot in parallel with the portion containing Hh.

The autoprocessing efficiency was calculated by the follow-
ing equation.

Autoprocessing efficiency = (lypn/M, yaw)/ (and M, iy

+ Iprecursor/Mrprecursor) (Eq 2>

where I represents the gel band intensity quantified by Image],
and M, is molecular weight.
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Cell Viability—Live/Dead assays were done in primary astro-
cyte cell culture to examine the toxicity of zinc to astrocyte
cultures. Cells were incubated with 0—600 um ZnCl, for 40 h
together with 100 um H,O,. Then cell viability was assessed
using the Live/Dead cell imaging kit (Invitrogen #R37601)
according to the manufacturer’s directions. Stained cells were
imaged using the Thermo Scientific ArrayScan XTI HCA infin-
ity and analyzed by the Spot Detector BioApplication.

RESULTS

Zinc Inhibits Hh Autoprocessing In Vitro—Hh autoprocess-
ing consists of two steps (Fig. 1A4). The first step is an N-S acyl
shift, where Cys-1 of HhC carries out a nucleophilic attack at
the carbonyl of the last residue of HhN, resulting in a thioester
intermediate. Step two is cholesteroylation, where a cholesterol
molecule bound to the sterol recognition region of HhC acts as
a nucleophile and attacks the thioester, cleaving HhN and
forming a covalent bond between the cholesterol and the C
terminus of HhN. The cholesterol modification of HhN
together with N-terminal palmitoylation is required for the
proper secretion, transportation, and signaling of Hh ligand
(26). The double-lipidated HhN binds to the membrane recep-
tor Patched (PTCH) and activates the Hh signaling pathway (1,
27). We used a construct composed of human HhN and Dro-
sophila HhC as the precursor (SHhN-DHhC) (Fig. 1B), which
has been previously used to characterize inhibitors of Hh auto-
processing (28). The autoprocessing reaction was carried out at
pH 7.1, the physiologic pH in endoplasmic reticulum where Hh
autoprocessing occurs (29). In the absence of cholesterol, most
precursors (HhN-HhC) remain stable, with minimal nonspe-
cific autoprocessing (Fig. 1C). In the presence of cholesterol,
significant amounts of separate HhN and HhC bands are
observed, indicating precursor autoprocessing. The covalent
attachment of cholesterol to HhN has been confirmed by
LClelectrospray ionization-MS (Fig. 1F). With increasing con-
centration of zinc, more and more HhN-HhC precursor
remains unprocessed, whereas less and less HhC and HhN-
cholesterol is generated, demonstrating the inhibitory effect of
zinc on Hh autoprocessing. Quantitation of the gel bands by
Image] (30) and curve-fitting yields a K; of 2.3 = 0.2 um (Fig.
1D). As expected, this inhibitory effect by zinc is reversed by
EDTA, a chelating agent for divalent metal (Fig. 1E). We also
observed that zinc can inhibit Hint mediated N-S acyl shift with
about K of 14 um (Fig. 1, G, H, and ]), indicating zinc binding to
Hint plays a major role in inhibiting cholesteroylation of the full
precursor.

Zinc Inhibits Hh Autoprocessing in Cell Culture—To test if
zinc can inhibit Hh autoprocessing in cellular environment, we
used rat primary astrocytes. Astrocytes are the most abundant
glial cells in the brain (31), producing Hh ligands crucial for
brain development and adult neurogenesis (31-33), whereas
zinc is an important signaling molecule in the nervous system
(34). The Hh precursor and HhN were detected in cell lysate
and in the culture medium by Western blot, respectively.
Immunoblotting for GAPDH was used as a control. We found
that the Hh precursors are stably expressed, but there is no
observable autoprocessing (Fig. 2A) in primary astrocyte cul-
ture. In agreement with Xia et al. (31), incubation with 100 um
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FIGURE 3. Thermodynamics of zinc-Hint binding. A, schematic diagram of
the shortened precursor construct used for producing Hint sample in ITC and
NMR studies. It contains a His tag and four native residues (HVHG) from HhN C
terminus followed by Drosophila melanogaster Hint domain. The Hint domain
is obtained after DTT induced cleavage from the precursor. B, ITC data for the
titration of Zn?" into Hint at 25 °C. The upper portion contains the baseline-
corrected raw data, and the lower portion indicates the concentration normal-
ized heat from titration at the molar ratio of Hint.

H,O, results in the secretion of HhN into the medium, whereas
Hh precursor is much weaker in cell lysate (Fig. 24), indicating
the autoprocessing of Hh precursor under oxidative stress. In
the presence of H,O,, with increasing concentrations of zinc up
to 150 uMm, increasing amounts of precursor remained unpro-
cessed, whereas decreasing the amount of HhN was released
into cell culture medium (Fig. 2A4), demonstrating the concen-
tration-dependent inhibitory effect of zinc on Hh autoprocess-
ing in astrocytes (Fig. 2B). Therefore, an increase in environ-
mental concentration of zinc can inhibit Hh autoprocessing in
cells.

To examine the zinc toxicity, we carried out Live/Dead assays
on astrocyte cultures under 0— 600 um ZnCl, treatment. When
zinc concentrations were 150 wM or smaller, cell viabilities were
largely unchanged. Zinc concentrations of 200 uMm and above
caused substantial cell death, which is consistent with previous
reports (Fig. 2, C and D) (35, 36).

Thermodynamics of Zinc-Hint Binding—This has been
determined with ITC (Fig. 3B). Because zinc most likely binds
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FIGURE 4. Structural basis of zinc-Hint binding. A, 'H,"°N-HSQC signal intensity changes of Zn®" binding to Hint at 25 °C. The residues with the biggest
changes are labeled. B, chemical shift perturbation analysis for His-72 backbone in *N-labeled Hint upon zinc binding. With increasing amount of zinc, the
amide peak intensities of His-72 decreased during the titration. Adding 2 mol eq of EDTA resulted in the complete reappearance of the missing signals. C,
structural model of Hint binding site of Zn?* mapped onto the x-ray structure (PDB ID 1ATO0) based on the NMR signal intensity change. Blue residues are the
direct coordination sites, which have the biggest signal decrease, whereas green residues, with less signal reduction, likely play a secondary role in zinc binding.

to the Hint domain of Hh, the ITC is carried out with the Dro-
sophila Hint domain at pH 7.1 at 298 K. Fitting of the isotherm
in Fig. 3B resulted in the binding stoichiometry (1) of 1.06 =
0.02 and K, of 11 = 2 pm from three repeated measurements.
The values of the AH (—5.2 * 0.2 kcal mol %) and TAS (1.5 +
0.2 kcal mol ™) indicate zinc binding to Hint is both enthalpi-
cally and entropically favorable, with AH being the main driving
factor.

Zinc Binds to Active Site Residues in Hint—We mapped the
zinc binding sites in Hint domain with 'H,'>N-HSQC spectra of
Hint (Fig. 4, A and B), as Hint contains the key catalytic residues
for Hh autoprocessing (13). The complete backbone and ali-
phatic side chain assignment of Hint has been published (22).
The NMR signals of many amides decreased with the zinc titra-
tion (Fig. 4, A and B), such as Phe-2, Thr-3, Asp-46, Asn-54,
Phe-55, Thr-69, His-72, Phe-88, Val-124, Ala-126, and Ala-141,
due to chemical exchange broadening. The peaks with strong-
est reduction in peak intensity are likely at or close to the zinc

11596 JOURNAL OF BIOLOGICAL CHEMISTRY

coordination sites. When mapped onto the three-dimensional
structure of Hint (13), all the residues with the largest signal
reductions were close to three conserved catalytic residues
Cys-1, Asp-46, and His-72 (Fig. 4C). Cysteine, aspartate, and
histidine residues are the most common sites for zinc coordi-
nation in proteins (37). To further confirm the coordination
role of these three residues, we also conducted zinc titration
with "*C,'"H-HSQC. Because Cys-1 is the first residue at the N
terminus of Hint and has a very fast exchange rate with the
solvent, the Cys-1 amide is not detectable with 'H,"*N-HSQC.
In '3C,"H-HSQC, we observed strong NMR signals for Cys-1
side chain (Fig. 54), which disappeared upon zinc binding (Fig.
5A). Similar signal reductions upon zinc binding were also
observed for Asp-46 and His-72 side chains (Fig. 5, Band C). In
all experiments, the NMR signals affected by zinc reappeared
upon the addition of EDTA (Fig. 5). These results establish that
the Cys-1, Asp-46, and His-72 are likely zinc coordination sites
in Hint. Because these three residues play a key role in Hh auto-
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FIGURE 5. NMR studies of side-chain binding to zinc using >C NMR experiments. A, the effect of Zn?" titration on the Cys-1 side chain monitored by
"3C-aliphatic HSQC, which can be reversed by adding EDTA. B, the effect of Zn*" titration on the Asp-46 side chain by "*C-aliphatic HSQC, which can be reversed
by adding EDTA. C, the effect of Zn?* titration on the His-72 side chain by '*C-aromatic HSQC, which also can be reversed by adding EDTA.

processing (13), when zinc binds to these three residues, the
active site geometry and mobility will be perturbed, compro-
mising their catalytic efficiency.

DISCUSSION

Zinc is an essential trace element, acting as a co-factor for
>300 enzymes that regulate a variety of cellular processes and
signaling pathways (38). Zinc is also a signaling molecule and
can modulate synaptic activity (39). The imbalance of zinc
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homeostasis has been established in many pathological condi-
tions (14-21), including many types of cancer and autism.
However, the mechanistic role of zinc deficiency in these dis-
eases remains poorly understood.

Based on our data, we propose that there is a mechanistic link
between zinc deficiency and Hh-ligand-dependent activation
of the Hh signaling pathway in three types of cancers, prostate
cancer, lung cancer, and ovarian cancer. Lung cancer is the
leading cause of death. Prostate cancer is the second most com-
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Smoothened in turn activates Gli transcription factors, turning on the transcriptions of Hh target genes. The low zinc-high Hh axis may contribute to the

pathogenic mechanisms of many types of cancer and ASD.

mon cancer in man, whereas ovarian cancer is the leading cause
of death from gynecologic malignancy. In these three cancers
Hh ligand is overproduced resulting in abnormal activation of
Hh signaling pathway (2—8), whereas zinc deficiency has also
been clearly established (14 —21). The zinc level in the human
prostate is the highest among any soft tissue in the healthy
body. Decrease in zinc is observed early in the course of prostate
cancer development, and the trend continues toward castra-
tion-resistant disease (40). Several studies showed the depres-
sion of zinc concentration in the cancerous human lung tissues,
especially in the small cell lung cancer, the most malignant form
in lung cancer (17, 19, 41). For ovarian cancer, serum zinc
decreased in patients subsequently diagnosed with ovarian can-
cer, whereas in tumor tissue, the concentration of zinc also
decreased (20, 21). However, the precise pathogenic role of zinc
deficiency is not known in these cancers. Our in vitro and cell
culture experiments (Figs. 1 and 2) demonstrated that zinc
inhibits Hh autoprocessing. These data suggest that low zinc in
tissues can enhance Hh autoprocessing and generate more Hh
ligand; thus, zinc deficiency can be a novel mechanism of Hh
ligand overproduction in these cancers. Hh pathway inhibitors
targeting the downstream receptor Smoothened (SMO) have
recently generated much excitement as a novel type of therapy
for cancer (11). However, drug resistance to SMO inhibitors is
already emerging (42), and SMO inhibitors are not effective
against tumors driven by overproduction of Hhligand (11). Our
data suggest targeting the upstream autoprocessing of Hh may
be an important alternative for inhibiting Hh pathway in dis-
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eases, particularly those driven by high levels of Hh ligand. Our
biophysical studies of zinc-Hh interaction will contribute to
rational design of inhibitors of Hh autoprocessing.

ASD, with an astounding prevalence of ~2% (43), is charac-
terized by abnormal social interaction, communication, and
stereotyped behaviors in affected children. The etiology of ASD
is poorly understood, but both oxidative stress (44) and low zinc
status have been reproducibly associated with ASD (16, 45). In
astrocyte culture, Hh autoprocessing is promoted by H,O, and
low zinc level (Fig. 2A4), offering a plausible mechanistic expla-
nation for the recent observation of increased serum level of
sonic Hh ligand in ASD (9). The resulting higher level of
secreted Hh ligand may lead to the abnormal activation of Hh
signaling pathway in both neurons and glial cells in the devel-
oping brain. A clinical feature of ASD, macrocephaly, also
implicates Hh activation (46 —48). Hh plays an important role
in the early expansion of the developing brain and in regulating
the cerebral cortical size (49, 50). In contrast, the opposite clin-
ical feature, microcephaly, is observed in holoprosencephaly
(51), which can be caused by mutations in the Hh autoprocess-
ing domain (HhC) that reduce Hh ligand production (51-54).
The abnormal activation of Hh pathway, even transiently by
fluctuations in zinc level, may cause brain overgrowth, disrupt-
ing the proper development of neuronal network for language
and social interactions. We, therefore, hypothesize that in ASD
low zinc status promotes Hh autoprocessing and the generation
of higher level of Hh ligand. Coupled with oxidative and/or
genetic defects in other Hh signaling components, low zinc sta-
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tus may lead to abnormal activation of Hh signaling pathway
during brain development, contributing to the complex etiol-
ogy of ASD.

There is an apparent discrepancy between nanomolar levels
of concentration of free zinc in cytosol and endoplasmic retic-
ulum (55-58) where Hh autoprocessing occurs, and the um K;
of zinc inhibition of Hh autoprocessing measured in vitro. A
similar unresolved conundrum exists in many zinc transporters
whose measured K, values are in the um range (59-63). Yet
they have to transport zinc in an environment with ~nm free
zinc concentration. For Hh autoprocessing, one possibility is
that the local concentration of zinc near plasma membrane is
much higher than the measured values. The spatial and tempo-
ral distribution of zinc within endoplasmic reticulum is likely to
be uneven and dynamic. Hh precursor, bound to the hydropho-
bic cholesterol is likely to be close to or associated with organ-
elle membrane, where active zinc transport occurs and avail-
able zinc is enriched. In addition, HhN also binds zinc (64),
further increasing the effective concentration of Zn for the inhi-
bition of Hh autoprocessing. Alternatively, the endoplasmic
reticulum environment may decrease K; dramatically through
an unknown mechanism. Lastly, we cannot completely rule out
the possibility that zinc inhibits Hh autoprocessing through an
indirect signaling effect because of the ubiquitous presence of
zinc in many proteins and its signaling roles.

In summary, we have linked Hh signal transduction path-
ways, important in both development and diseases, with a ubiq-
uitous trace element zinc through the novel discovery that zinc
binds directly to the Hint domain and inhibits Hh autoprocess-
ing, as shown both in vitro and in cell culture. Because both zinc
and Hh play crucial roles in many aspects of human physiology
and diseases, the implication of our finding is profound. When
zinc levels are low, Hh autoprocessing may be enhanced, lead-
ing to overproduction of Hh ligand and potentially abnormal
activation of Hh signaling pathway. This low zinc-high Hh axis
may contribute to the pathogenic mechanisms of many types of
cancer and ASD (Fig. 6). Our data not only provide novel etio-
logical insights for these diseases but also point to new ways to
diagnose and treat diseases by combined measurement and
manipulation of zinc level and Hh autoprocessing. Future
directions include in-depth investigation of the correlation
between zinc level and Hh autoprocessing in selected diseases
and further clarification of zinc binding and inhibition mecha-
nism with mutagenesis and structure determination.
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