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Background: The formation of Hsp60 complexes is poorly understood.
Results: The biogenesis of Hsp60 complexes depends on mitochondrial (mt) Hsp70 and Hsp10.
Conclusion: MtHsp70 interacts with Hsp10 to promote Hsp60 biogenesis.
Significance: Coupling to partner proteins like Hsp10 modifies the functional specificity of mtHsp70.

Mitochondrial Hsp70 (mtHsp70) mediates essential func-
tions for mitochondrial biogenesis, like import and folding of
proteins. In these processes, the chaperone cooperates with
cochaperones, the presequence translocase, and other chaper-
one systems. The chaperonin Hsp60, together with its cofactor
Hsp10, catalyzes folding of a subset of mtHsp70 client proteins.
Hsp60 forms heptameric ring structures that provide a cavity for
protein folding. How the Hsp60 rings are assembled is poorly
understood. In a comprehensive interaction study, we found
that mtHsp70 associates with Hsp60 and Hsp10. Surprisingly,
mtHsp70 interacts with Hsp10 independently of Hsp60. The
mtHsp70-Hsp10 complex binds to the unassembled Hsp60 pre-
cursor to promote its assembly into mature Hsp60 complexes.
We conclude that coupling to Hsp10 recruits mtHsp70 to medi-
ate the biogenesis of the heptameric Hsp60 rings.

Heat shock proteins of 70 kDa (Hsp70) fulfill several essential
functions in prokaryotic and eukaryotic cells, like protein fold-
ing and transport. Hsp70 proteins prevent the aggregation of
misfolded proteins and facilitate the removal of protein aggre-
gates. To perform these various tasks, the chaperones bind
transiently to hydrophobic patches exposed in non-native con-
formations of their client proteins (1–3).

Mitochondrial Hsp70 (mtHsp70)2 plays a central role in
mitochondrial biogenesis (2, 4). In baker’s yeast (Saccharomy-
ces cerevisiae), the major mtHsp70 is encoded by SSC1 and is
essential for yeast survival (5). MtHsp70 dynamically binds to
the presequence translocase (TIM23 complex) of the mito-
chondrial inner membrane to drive the import of precursor

proteins into the matrix by an ATP-dependent cycle of pre-
cursor binding and release (6 –12). The chaperone is the core
component of the presequence translocase-associated motor.
Tim44 forms the docking site for the chaperone at the TIM23
complex (13–16). The J domain-containing protein Pam18/
Tim14, together with its partner protein Pam16/Tim16 and the
nucleotide exchange factor Mge1, regulates the activity of
mtHsp70 (17–24). In addition, the chaperone associates with
the J protein Mdj1 and Mge1 to promote the folding of nucleus-
encoded and mitochondrially encoded proteins in the matrix
(25–31). Recent data identified further interactors of the chap-
erone. Zinc finger motif protein of 17 kDa (Zim17, also termed
mtHsp70 escort protein 1 (Hep1)) supports the folding and
function of the chaperone (32–37). Furthermore, mtHsp70
interacts with Mss51 and Cox4 to promote the biogenesis of the
cytochrome c oxidase (complex IV of the respiratory chain) (38,
39). MtHsp70 cooperates with other chaperone systems to
maintain protein homeostasis. It functions together with
Hsp78 in protein disaggregation and proteolytic removal of
misfolded proteins (40, 41). MtHsp70 also cooperates with the
mitochondrial chaperonin system, consisting of Hsp60 and
Hsp10, to promote the folding of a subset of client proteins
(42– 44).

Mitochondrial Hsp60 exists in single and double ring confor-
mations, with one ring being composed of seven subunits (45–
48). Detailed structural and mechanistic insights have been
obtained for the bacterial counterpart GroEL and its Hsp10
homolog GroES (1, 3). The ring structure of the chaperonin
provides a central cavity for folding of the enclosed client pro-
tein. The activity of the Hsp60 rings is driven by ATP-depen-
dent conformational changes of the Hsp60 monomers. The
heptameric Hsp10 ring forms the lid of the cavity and regulates
the ATP-dependent reaction cycle of Hsp60 (47, 49, 50).
Although Hsp60 is essential for cell survival (51), the assembly
of the ring structures is poorly understood. MtHsp70 promotes
the import of the Hsp60 precursor into the mitochondrial
matrix (43). The subsequent formation of the Hsp60 ring struc-
tures depends on a pre-existing Hsp60 oligomer (44, 52, 53).
Whether other factors support the formation of Hsp60 com-
plexes is not known.
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Despite its central role in mitochondrial biogenesis, compre-
hensive studies of the interaction partners of mtHsp70 are
missing up to now. Here we performed affinity purification of
His-tagged mtHsp70 and analyzed its binding partners by
SILAC-based mass spectrometry. We found that mtHsp70
interacts with Hsp60 and Hsp10. Surprisingly, an mtHsp70-
Hsp10 complex forms independently of Hsp60. We found that
assembly of the Hsp60 precursor into the mature complexes is
impaired in mutants of mtHsp70 and Hsp10. The unassembled
Hsp60 precursor binds to both mtHsp70 and Hsp10. Therefore,
we propose that coupling to Hsp10 enables mtHsp70 to pro-
mote the formation of the mature Hsp60 ring structures.

EXPERIMENTAL PROCEDURES

Yeast Strains and Growth Conditions—The yeast wild-type
strains YPH499, YPH499 arg4�, and JK9 –3d (the wild type for
hsp10ts and hsp60ts); the wild-type strain for ssc1– 42; and the
mutant strains mtHsp70His, ssc1– 42, hsp10ts, and hsp60ts have
been described before (39, 44, 54). For SILAC-based mass spec-
trometric analysis of mtHsp70His purification, a kanMX4 cas-
sette was integrated into the ARG4 locus by homologous
recombination in the yeast strain expressing mtHsp70His. For
biochemical studies, yeast cells were grown to logarithmic
growth phase at 23 °C or 30 °C on YPG medium (1% (w/v) yeast
extract, 2% (w/v) bacto peptone, and 3% (v/v) glycerol). For
cycloheximide treatment, yeast cells were grown at 30 °C in the
presence of 50 �g/ml cycloheximide for 2 h. For in vivo heat
shock, hsp60ts, hsp10ts, and wild-type strain cells were shifted
to 37 °C for 2 h (44).

Isolation of Mitochondria and in Vitro Protein Import
Assays—Mitochondria were isolated by differential centrifuga-
tion following a published procedure (39). Mitochondria were
stored in SE buffer (10 mM MOPS/KOH (pH 7.2), 1 mM EDTA,
and 250 mM sucrose) in a protein concentration of 10 mg/ml at
�80 °C until use. To generate 35S-labeled precursor proteins,
we used cell-free in vitro translation on the basis of rabbit
reticulocyte lysate in the presence of 35S-labeled methionine
(Promega). Standard import reactions were performed follow-
ing established assays (39, 55). In brief, 35S-labeled precursors
(5–10% of the reaction volume) were incubated with isolated
mitochondria at 25 °C in import buffer (3% (w/v) BSA, 250 mM

sucrose, 5 mM methionine, 80 mM KCl, 5 mM MgCl2, 10 mM

MOPS/KOH (pH 7.2), and 2 mM KH2PO4). Energy was added
to the reaction mixture in the form of 2 mM ATP and 2 mM

NADH (final concentration). The import reaction was stopped
by addition of an AVO mixture (8 �M antimycin A, 1 �M valino-
mycin, and 20 �M oligomycin, final concentrations) to dissipate
the membrane potential. In the indicated control samples, the
AVO mixture was added prior to import. For SDS-PAGE anal-
ysis, non-imported precursor proteins were removed by incu-
bation with 50 �g/ml proteinase K for 15 min on ice. Subse-
quently, mitochondria were reisolated, washed with SE buffer,
and lysed with SDS-PAGE loading buffer. When the import
reaction was studied by blue native electrophoresis, mitochon-
dria were washed with SE buffer and solubilized under non-
denaturing conditions using the non-ionic detergent digitonin
to 1% (w/v) final concentration in lysis buffer (20 mM Tris-HCl
(pH 7.4), 50 mM NaCl, 10% (v/v) glycerol, and 0.1 mM EDTA).

Affinity Purification of mtHsp70His—Mitochondria from wild-
type and mtHsp70His cells were isolated and lysed with lysis
buffer containing 1% (w/v) digitonin and 10 mM imidazole at a
final protein concentration of 1 mg/ml. Lysis was performed for
15 min on ice. When indicated, solubilization was performed in
the presence of 10 mM ADP or ATP in buffer A (20 mM Tris-
HCl (pH 7.4), 50 mM KCl, 10 mM MgCl2, and 10% (v/v) glycerol)
containing 1% (w/v) digitonin. In all cases, unsoluble material
was removed by centrifugation. The mitochondrial lysate was
incubated with Ni2�-NTA-agarose (Qiagen) under constant
rotation for 1 h at 4 °C. Unbound proteins were discarded, and
the Ni2�-NTA-agarose beads were washed intensively with
lysis buffer containing 0.1% (w/v) digitonin and 40 mM imidaz-
ole. To elute bound proteins, the Ni2�-NTA-agarose beads
were incubated with lysis buffer containing 250 mM imidazole
and 0.1% (w/v) digitonin.

For characterization of the binding of precursor proteins to
mtHsp70His, a 5-fold standard import reaction with the 35S-
labeled precursor was performed before affinity purification via
Ni2�-NTA-agarose. The affinity purification followed the pro-
cedure described above. In the case of detection of protein com-
plexes by blue native electrophoresis, bound proteins were
eluted by addition of buffer A containing 20 mM ATP.

SILAC-based Affinity Purification—YPH499 arg4� (wild-
type) and mtHsp70His arg4� cells were grown in synthetic
medium (0.67% (w/v) bacto-yeast nitrogen base, amino acid
mix, 3% (v/v) glycerol, and 0.2% (w/v) glucose) at 30 °C to an
early logarithmic growth phase. The medium was supple-
mented with either 15N2

13C6-lysine or 15N4
13C6-arginine

(Euriso-Top) for wild-type or 14N2
12C6-lysine and 14N4

12C6-
arginine for mtHsp70His arg4� cells (39). Mitochondria were
isolated following the standard procedure (39). Lysis and puri-
fication via Ni2�-NTA-agarose were performed as described
above. Subsequently, the elution fractions were pooled and sub-
jected to mass spectrometric analysis.

Mass Spectrometry and Data Analysis—Mass spectrometric
analyses of affinity-purified mtHsp70His complexes were per-
formed as described previously (56) with minor modifications.
Protein complexes (n � 3) were precipitated with ice-cold ace-
tone and resuspended in urea buffer (8 M urea in 50 mM

NH4HCO3). Cysteine residues were reduced with 5 mM Tris-2-
carboxyethylphosphine (30 min at 37 °C) and subsequently
alkylated with 50 mM iodoacetamide (30 min at room temper-
ature in the dark). 50 mM NH4HCO3 was added to reach a final
urea concentration of 2 M. Proteins were then subjected to pro-
teolysis with trypsin overnight at 37 °C. Peptides were dried,
reconstituted in 0.1% (v/v) trichloroacetic acid, and subjected
to LC/MS analysis on an LTQ-Orbitrap XL (Thermo Scientific,
Bremen, Germany) directly coupled to an UltiMateTM 3000
RSLCnano system (Thermo Scientific). Peptide separation was
performed using a C18 reverse-phase nano LC column (50
cm � 75 �m; Acclaim PepMap; particle size, 2 �m; pore size,
100 Å; Thermo Scientific). For peptide elution, a 130-min linear
LC gradient ranging from 1.5–21% (v/v) acetonitrile and 2.5–
35% (v/v) methanol in 4% (v/v) dimethyl sulfoxide/0.1% (v/v)
formic acid was applied. The flow rate was 250 nl/min.

Full scan MS spectra in the range of m/z 370 –1700 were
acquired in the Orbitrap at a resolution of 60,000 at m/z 400.

Interaction Partners of Mitochondrial Hsp70

11612 JOURNAL OF BIOLOGICAL CHEMISTRY VOLUME 290 • NUMBER 18 • MAY 1, 2015



Simultaneously with completion of the full scan, up to five of
the most intense peptide ions (z � �2) were fragmented further
by low-energy collision-induced dissociation in the linear ion
trap. A dynamic exclusion time of 45 s was applied to prevent
repeated fragmentation of previously selected precursor ions.

For protein identification and SILAC-based relative protein
quantification, MS data were analyzed with MaxQuant (version
1.4.1.2) and its search algorithm Andromeda (57, 58). MS/MS
data were searched against the Saccharomyces Genome Data-
base (version 02/03/2011) (59) using the following parameters:
mass tolerances of 4.5 ppm for precursor and 0.5 Da for frag-
ment ions, tryptic specificity, maximum of two missed cleav-
ages, acetylation of protein N termini and oxidation of me-
thionine as variable modifications, carbamidomethylation of
cysteine residues as fixed modification, and Arg-10 and Lys-8 as
heavy labels. A false discovery rate of �0.01 on the peptide and
protein level was applied. Proteins were identified on the basis
of at least one unique peptide with at least seven amino acids.
For the calculation of mtHsp70His/WT protein ratios, only
unique peptides were taken into account, and the minimum
number of ratio counts (i.e. SILAC peptide pairs) was one. Data
were visualized by plotting the mean log10 mtHsp70His/WT
ratios across all three replicates against the p value (determined
using one-sided Student’s t test) for each protein. Potential
mtHsp70His -interacting proteins were required to have a
sequence coverage of �4%, a ratio mtHsp70/WT of �5, and a p
value of �0.05.

Coimmunoprecipitation of Imported Precursor Proteins—
Protein A-Sepharose (GE Healthcare) was coated with anti-
Hsp10 antibodies or its corresponding preimmune serum by
covalent coupling with dimethylpimelidate. To detect associa-
tion to imported precursor proteins, a 5-fold import reaction
was performed following the procedure described above. After
washing, the mitochondria were lysed with lysis buffer contain-
ing 1% (w/v) digitonin at a final protein concentration of 1
mg/ml. After removal of unsoluble material, the mitochondrial
lysate was incubated with the indicated beads for 1 h under
constant rotation at 4 °C. Unbound material was removed, and
beads were washed intensively with lysis buffer containing 0.1%
(w/v) digitonin. Finally, bound proteins were eluted at low pH
using 0.1 M glycine (pH 2.5). Eluted samples were immediately
neutralized with Tris base and analyzed by SDS-PAGE.

In the case of two-step purification, the 35S-labeled Hsp60
precursor was imported into mtHsp70His mitochondria. Subse-
quently, mitochondria were lysed and proteins were purified
via Ni2�-NTA-agarose as described above. The elution sample
in lysis buffer containing 250 mM imidazole was incubated with
protein A-Sepharose coated with anti-Hsp10 or the corre-
sponding preimmune serum. Coimmunoprecipitation was per-
formed as described above.

Binding Assay to the Mge1 Affinity Matrix—For the prepara-
tion of the Mge1 affinity matrix, His-tagged Mge1 lacking the
presequence was recombinantly expressed and purified as
described previously (39). Purified Mge1His was coupled to
Ni2�-NTA-agarose. Subsequently, affinity beads were washed
several times with lysis buffer containing 0.1% (w/v) digitonin
and 10 mM imidazole. Mitochondria were lysed in 1% (w/v)
digitonin in lysis buffer at a final protein concentration of 1

mg/ml. After removal of unsoluble material by centrifugation,
the mitochondrial lysate was incubated with the Mge1 affinity
matrix for 1 h under constant rotation at 4 °C. Subsequently,
unbound material was removed, and the beads were washed
intensively with lysis buffer containing 0.1% (w/v) digitonin and
40 mM imidazole. To elute bound proteins, the affinity matrix
was incubated with 250 mM imidazole and 0.1% (w/v) digitonin
in lysis buffer.

Protein Aggregation Assay—To study protein aggregation in
wild-type and mutant mitochondria, isolated mitochondria
were solubilized in lysis buffer containing 1% (w/v) digitonin.
After incubation on ice for 15 min, protein aggregates were
collected by centrifugation for 10 min at 4 °C and 18,000 � g.
Proteins of the supernatant were precipitated with trichloro-
acetic acid. All pellet fractions were denatured by solubilization
with SDS-PAGE loading buffer and subjected to SDS-PAGE
and Western blotting.

Miscellaneous—In general, the signals detected by the anti-
bodies used in this study were confirmed intensively using wild-
type and the corresponding mutant mitochondria. The anti-
bodies have been described previously (39, 44, 60). For
immunodetection, proteins were transferred by semidry West-
ern blotting to a PVDF membrane (Millipore). After immuno-
decoration with the indicated antibodies, the signals were
detected using the chemiluminescence kit (ECL, GE Health-
care). 35S-labeled proteins and protein complexes were
detected by digital autoradiography (Storm imaging system, GE
Healthcare). Analysis and quantification of protein signals were
performed with ImageQuant 5.2 software (GE Healthcare).

RESULTS AND DISCUSSION

MtHsp70 Interacts with Hsp60 and Hsp10 —To identify
novel binding partners of the major mitochondrial Hsp70,
we used a yeast strain expressing a His-tagged mtHsp70
(mtHsp70His). We have demonstrated previously that the His-
tagged mtHsp70 is functional and interacts with known
cochaperones (39). Isolated mitochondria were lysed with the
non-ionic detergent digitonin and subjected to affinity purifi-
cation via Ni2�-NTA chromatography. The elution fractions
from wild-type and mtHsp70His mitochondria were mixed
and analyzed by stable isotope labeling by amino acids in
cell culture (SILAC)-based mass spectrometry (61) (Fig. 1A,
supplemental Table S1). We used the SILAC ratios to deter-
mine proteins that were specifically enriched in the
mtHsp70His-bound fraction (Fig. 1A, supplemental Table S1).
A large number of different proteins were copurified along
with mtHsp70His, comprising potential interaction partners
and substrate proteins of the chaperone. Known partner pro-
teins, like subunits of the TIM23 complex and several
cochaperones, were enriched in the mtHsp70His purification
(Fig. 1A, supplemental Table S1). Surprisingly, Hsp10 and
Hsp60 were found among the strongly enriched proteins. We
analyzed the affinity purification by Western blotting and
immunodetection using antibodies against various mitochon-
drial proteins (Fig. 1B). We could demonstrate the copurifica-
tion of Hsp60 and Hsp10 along with mtHsp70His, indicating
that a fraction of Hsp60 and Hsp10 interacts with mtHsp70
(Fig. 1B). Known mtHsp70 interactors, like the cochaperones
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Mge1, Mdj1, and Mdj2 and components of the TIM23 complex,
bound to mtHsp70His with high efficiency. We also confirmed
the binding of mtHsp70 to Cox4 and Mss51 (Fig. 1B) (38, 39).
MtHsp70 binds to several interaction partners, like Tim44,
Cox4, Zim17, and Mge1, in an ATP-sensitive manner (13–15,
27, 31, 35, 39, 62). Therefore, we performed the affinity purifi-
cation via mtHsp70His in the presence of ATP or ADP. The
association of both Hsp60 and Hsp10 to mtHsp70His is abol-
ished in the presence of ATP (Fig. 1C, lanes 4 and 8). As
reported, binding of Mss51 to Hsp70His is not affected upon
addition of ATP, whereas other control proteins, like Tim23,

Cox4, and Mge1, lose their contact with mtHsp70 (Fig. 1C,
lanes 4 and 8) (38, 39). Next we analyzed whether binding of the
cochaperone Mge1 to mtHsp70 interferes with the association
of Hsp60 and Hsp10. To this end, we recombinantly expressed
tagged Mge1 (Mge1His) and coupled the purified protein to
Ni2�-NTA-agarose (39). Subsequently, the Mge1-affinity
matrix was incubated with lysed mitochondria. MtHsp70
bound in stoichiometric amounts to the Mge1-coated column,
as detected by Coomassie staining (Fig. 1D, lane 4). Hsp60 and
Hsp10, as well as control proteins, were copurified along with
the Mge1 affinity matrix, indicating that the chaperonin system
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binds to Mge1-bound mtHsp70 (Fig. 1D, lanes 4 and 8). There-
fore, we conclude that Hsp10 and Hsp60 specifically bind to
mature mtHsp70 in an ATP-sensitive manner.

MtHsp70 and the chaperonins capture substrate proteins
during protein folding (31, 43, 63). Along this line, it has been
reported that mtHsp70 binds to the Hsp60 precursor to pro-
mote its import (43). We asked whether the association
between the chaperones persists upon prolonged incubation
and would, therefore, reflect a stable binding to the mature
Hsp60 and Hsp10 rather than transient binding to premature
forms. To this end, yeast cells expressing mtHsp70His were
incubated with cycloheximide, which blocks de novo synthesis
of nucleus-encoded proteins (64). After incubation with cyclo-
heximide, mitochondria were isolated, lysed with digitonin,
and subjected to affinity purification via Ni2�-NTA-agarose
(Fig. 2). Incubation with cycloheximide did not affect the associa-
tion of Hsp60 and Hsp10 with mtHsp70 (Fig. 2, lanes 6 and 7).
Similarly, the stable interactions with Mge1 and the presequence
translocase were not affected (Fig. 2, lanes 6 and 7). We conclude
that the association of mtHsp70 to Hsp60 and Hsp10 does not
depend on the import of newly synthesized proteins. Therefore,
these mitochondrial chaperones interact stably with each other.

MtHsp70 Interacts with Hsp10 Independently of Hsp60 —We
have shown that mtHsp70 interacts with Hsp60 and Hsp10.
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The association of both chaperone systems may facilitate sub-
strate channeling, as suggested for the bacterial homologs (65).
However, Hsp10 interacts stably with Hsp60 in the presence,
but not in the absence, of ATP or ADP (47, 49, 66, 67). The
observed binding of Hsp10 to mtHsp70 occurred without the
addition of nucleotides and was lost in the presence of ATP (Fig.
1, B and C). Therefore, the mode of interaction of Hsp10 with
Hsp60 and with mtHsp70 differs. We wondered whether Hsp10

associates with mtHsp70 independently of Hsp60. To address
this question, we employed mitochondria isolated from hsp60ts
cells, which were shifted to non-permissive growth conditions.
In these hsp60ts mitochondria, the steady-state levels of Hsp60
are unchanged, but the vast majority of Hsp60 aggregates (Figs.
3, A and B) (44). Consequently, Hsp60 ring complexes cannot
be detected in hsp60ts mitochondria by blue native gel electro-
phoresis (Fig. 3C, lane 3). We analyzed whether the interaction
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of endogenous Hsp10 with mtHsp70 was affected in the mutant
mitochondria by utilizing an Mge1His affinity matrix. The asso-
ciation of mtHsp70 with the Mge1His affinity matrix was largely
unchanged in hsp60ts mitochondria (Fig. 3D, lanes 8 and 9).
Surprisingly, copurification of Hsp10 to an Mge1His affinity
matrix in hsp60ts mitochondria remained unaltered (Fig. 3D,
lanes 5 and 6). In contrast, binding of Hsp60 to mtHsp70 was
strongly diminished (Fig. 3D, lanes 5 and 6). Therefore, Hsp10
interacts with Mge1-bound mtHsp70 independently of Hsp60.

MtHsp70 Promotes the Formation of Hsp60 Complexes—We
speculated that the mtHsp70-Hsp10 interaction is involved in
the biogenesis of Hsp60. So far, it has been reported that
mtHsp70 is required for the import of Hsp60, but a potential
role of the chaperone in the formation of Hsp60 complexes has
not been addressed (43). To distinguish between the role of
mtHsp70 in import or folding and assembly of the Hsp60 pre-
cursors, we used a temperature-sensitive mutant of mtHsp70,
ssc1– 42 (54). The ssc1– 42 mutant mtHsp70 harbors six point
mutations that are distributed randomly in the ATPase, sub-
strate-binding, and C-terminal domains of the chaperone
(I101T, I114N, I485L, N560D, V588A, and K626R). The mutant
ssc1– 42 grows normally at the permissive temperature but
reveals a strong growth defect at 37 °C on non-fermentable and
fermentable carbon sources (Fig. 4A). We grew the cells at the
permissive temperature and isolated mitochondria for bio-
chemical characterization. Steady-state levels of mtHsp70 were
mildly reduced in the mutant, whereas the levels of other mito-
chondrial proteins, including Hsp10 and Hsp60, were similar to
wild-type mitochondria (Fig. 4B). We analyzed the levels of
Hsp60 and Hsp10 by blue native electrophoresis. A previous
study revealed that the single (Hsp607) and double (Hsp6014)
ring complexes of Hsp60 can be detected on a blue native gel
(60). Here we show that the heptameric Hsp10 oligomer can
also be resolved on blue native gels (Fig. 4C). The levels of the
Hsp60 and Hsp10 complexes as well as of respiratory chain
complexes were unaffected in ssc1– 42 mutant mitochondria
(Fig. 4C). To functionally characterize the mutant mtHsp70, we
tested whether the protein import capacity is affected in
ssc1– 42 mitochondria. Model precursor proteins were labeled
with [35S]methionine in a cell-free translation system and incu-
bated with isolated mitochondria under import conditions.

Subsequently, non-imported precursor proteins were proteo-
lytically removed. We selected two precursors for our import
studies that are transported, via mtHsp70, into the mitochon-
drial matrix: the precursor subunit 9 of the F1FO-ATP synthase
fused to DHFR (pSu9-DHFR) and the precursor of a cyto-
chrome b2 variant lacking the transmembrane segment fused to
DHFR (b2�167-DHFR). The import of both precursor proteins
was moderately affected in the mutant mitochondria under
permissive conditions (Fig. 4D, lanes 4, 5, 16, and 17). However,
upon in vitro heat shock, the transport of both model substrates
into the mutant mitochondria was largely compromised (Fig.
4D, lanes 10, 11, 22, and 23). In contrast, import of the 35S-
labeled precursor of cytochrome c1 (Cyt1) was not affected by in
vitro heat shock (Fig. 4D, lanes 34 and 35). The precursor of
cytochrome c1 is sorted into the inner membrane in an
mtHsp70-independent manner. We conclude that the import
capability of the mutated mtHsp70 can be specifically inacti-
vated in ssc1– 42 mitochondria by in vitro heat shock.

Next, we established an assay to study the biogenesis of 35S-
labeled Hsp60 in mitochondria. The import of the 35S-labeled
Hsp60 precursor occurs rapidly and is strictly dependent on the
membrane potential (Fig. 5A, bottom panel). We employed blue
native electrophoresis to study the assembly of the Hsp60 pre-
cursor into the mature complexes. Indeed, we observed an effi-
cient integration of the 35S-labeled Hsp60 precursor into two
high molecular weight complexes (Fig. 5A, top panel), which
correspond in size to the single (Hsp607) and double (Hsp6014)
rings of Hsp60 (Fig. 4C). Import and assembly studies at differ-
ent temperatures revealed that formation of the mature Hsp60
complexes occurs in a delayed manner compared with the
import of Hsp60 into the mitochondrial matrix (Fig. 5A). Inter-
estingly, a low molecular weight form of 150 kDa can be
detected at a lower temperature on blue native gels (Fig. 5A).
Because the 150-kDa band remained stable upon solubilization
with SDS, it most likely represents monomeric Hsp60 (Fig. 5B).
Depending on the isoelectric point and capability to bind the
Coomassie dye, the running behavior of water-soluble proteins
on blue native gels can differ from molecular weight markers
(68). This could explain the difference between the size of the
potential monomeric Hsp60 of 60 kDa and its running behavior
on the blue native gel above the 140 kDa mass marker. The blue
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native system allows following the formation of Hsp60 com-
plexes from the unassembled Hsp60 precursor.

Having established an assay to separately analyze the import
and assembly of the 35S-labeled Hsp60 precursor, we asked

which step of Hsp60 biogenesis is affected in ssc1– 42 mutant
mitochondria. The 35S-labeled Hsp60 precursor is imported
into untreated and in vitro heat shock-treated ssc1– 42 mito-
chondria, although with reduced efficiency (Fig. 6, A and B).
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This observation supports the role of mtHsp70 in the import of
the Hsp60 precursor (42). Strikingly, the assembly of 35S-la-
beled Hsp60 is more severely impaired in both untreated and
heat-treated ssc1– 42 mitochondria (Fig. 6, A and B), indicating
an additional role of mtHsp70 in the formation of Hsp60 com-
plexes. To test this notion, 35S-labeled Hsp60 was imported into
wild-type and mutant mitochondria for a short time period
(Fig. 6C, Pulse). Subsequently, the membrane potential was
depleted to prevent further import of 35S-labeled Hsp60 pre-
cursors. Mitochondria were reisolated and incubated under
import conditions to allow the assembly of the imported 35S-
labeled Hsp60 (Fig. 6C, Chase). Although 35S-labeled Hsp60
was efficiently integrated into the mature complexes in wild-
type mitochondria, its assembly was blocked in ssc1– 42 mutant
mitochondria (Fig. 6C). To substantiate a role of mHsp70 in the
formation of Hsp60 complexes, we analyzed which oligomeric
state of Hsp60 binds to mtHsp70. 35S-labeled Hsp60 was
imported into mtHsp70His mitochondria for a short time
period (pulse), followed by dissipation of the membrane poten-
tial and further incubation (chase). After the import reaction,
mitochondria were lysed with digitonin and subjected to affin-
ity purification via Ni2�-NTA agarose. Bound proteins were
eluted from mtHsp70His by incubation with ATP. After a short

import period, mtHsp70His binds to unassembled 35S-labeled
Hsp60 (Fig. 6D, lane 5), whereas, upon chase incubation, a hep-
tameric ring of 35S-labeled Hsp60 associates with mtHsp70His
(Fig. 6D, lane 6). We conclude that mtHsp70 binds to two dif-
ferent assembly stages of Hsp60, revealing an important role of
mtHsp70 in the formation of the Hsp60 complexes.

MtHsp70 Cooperates with Hsp10 to Promote the Formation of
the Hsp60 Ring Structures—We wondered whether Hsp10
functions in the assembly of Hsp60 complexes as well. To this
end, we imported 35S-labeled Hsp60 into hsp10ts mitochondria
(44). Indeed, similar to ssc1– 42 mitochondria, the assembly of
Hsp60 into the high molecular weight complexes is compro-
mised in hsp10ts mitochondria, whereas the overall import effi-
ciency is not altered (Fig. 7A). Steady-state levels of Hsp60 com-
plexes in hsp10ts mitochondria are unaffected (Fig. 3C),
pointing to a direct role of Hsp10 in the biogenesis of Hsp60. To
substantiate a role of Hsp10 in the biogenesis of Hsp60 com-
plexes, we wondered whether Hsp10 is capable to bind to the
unassembled Hsp60 precursor. Therefore, we imported 35S-
labeled Hsp60 at 2 °C to prevent formation of the mature Hsp60
complexes (Fig. 5A). Under these conditions, the 35S-labeled
Hsp60 precursor is coimmunoprecipitated by antisera against
Hsp10, indicating that Hsp10 interacts with an unassembled
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form of Hsp60 (Fig. 7B, lanes 3 and 4). Supporting this view,
coimmunoprecipitation of the 35S-labeled Hsp60 precursor by
Hsp10-specific antiserum is not affected in hsp60ts mitochon-
dria (Fig. 7C, lanes 5 and 6). In contrast, the imported 35S-
labeled Hsp60 precursor does not assemble into the mature
Hsp60 complexes in hsp60ts mitochondria, likely because of
aggregation and malfunction of the mutated endogenous
Hsp60 (Figs. 7D and 3, B and C) (44, 52). We conclude that
Hsp10 promotes early steps in the formation of Hsp60 com-
plexes. This observation is supported by the increased protease
accessibility of imported Hsp60 in the Hsp10 temperature-sen-
sitive strain (hsp10ts) (44). We asked whether mtHsp70 and
Hsp10 cooperate in the biogenesis of Hsp60. To address
this question, we imported 35S-labeled Hsp60 at 2 °C into
mtHsp70His mitochondria to prevent the formation of mature
Hsp60 complexes. Subsequently, the imported Hsp60 was copuri-
fied along with mtHsp70His via Ni2�-NTA-agarose (Fig. 7E, lane
2). Bound proteins were eluted and subjected to coimmunopre-
cipitation with Hsp10-specific antibodies or their corresponding
preimmune serum. Following this approach, we found that a por-
tion of the mtHsp70-bound Hsp60 was associated with Hsp10
(Fig. 7E, lane 3). We conclude that a fraction of Hsp10 interacts with
mtHsp70 to promote the biogenesis of Hsp60.

CONCLUSIONS

MtHsp70 mediates multiple functions in mitochondrial pro-
tein homeostasis (2, 4). To carry out its different tasks mtHsp70
interacts with various interaction partners. Recent studies have
indicated more specialized functions of mtHsp70 in the biogen-
esis of cytochrome c oxidase. Here mtHsp70 interacts with
Mss51 and Cox4, which do not belong to the classical cochap-
erones of Hsp70 (38, 39). These observations indicate that fur-
ther interaction partners of the chaperone may exist. Indeed,
we found a robust interaction of mtHsp70 with Hsp60 and
Hsp10. In bacteria, an association of the Hsp70 protein DnaK
with the Hsp60 homolog GroEL has been reported (65). Similar
to bacteria, the interaction between the two different types of
chaperones may facilitate the transfer of substrate proteins.
Strikingly, the interaction of Hsp10 with mtHsp70 occurs inde-
pendently of Hsp60. MtHsp70 and Hsp10 cooperate to facili-
tate the integration of the Hsp60 precursor into the mature
Hsp60 complexes. Two populations of mtHsp70 mediate
Hsp60 biogenesis. First, mtHsp70 drives the import of Hsp60 at
the presequence translocase. Second, mtHsp70 and Hsp10 pro-
mote the maturation of Hsp60 complexes. We propose that
coupling to dedicated partner proteins like Hsp10, Tim44,
Cox4, or Mss51 enables mtHsp70 to carry out a plethora of
specific functions in mitochondrial biogenesis.
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