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Abstract

Thermogenic fat cells that convert chemical energy into heat are present in both mice and humans. 

Recent years have witnessed a great advancement in our understanding of the regulation of these 

adipocytes and an increased appreciation of the potential these cells have to counteract obesity. 

Here we summarize recent efforts to understand the formation of these fat cells and critically 

review genetic models and other experimental tools currently available to further investigate the 

development and activation of both classical brown and inducible beige fat cells. We also discuss 

recent discoveries about the epigenetic regulation of these adipocytes, and finally present 

emerging evidence revealing the metabolic impacts of thermogenic fat in humans.

Keywords

Obesity; brown fat; beige fat; adaptive thermogenesis

Fighting fat with fat

Obesity affects one in three persons globally and constitutes an increasing burden on health 

care systems and an urgent challenge for the biomedical research community [1, 2]. 

Effective prevention and treatment of obesity may drastically reduce the occurrence of 

comorbidities such as type 2 diabetes, cardiovascular disease, and other serious health 

problems, including many types of cancer. As a multifactorial disorder, obesity can be 

prevented through combinations of approaches that target different aspects of metabolism to 

decrease energy surplus. Much of energy homeostasis depends on the activity and function 

of adipose tissue. Two major types of adipocytes exist in mammals, white fat and 

thermogenic fat. The primary function of white adipose cells is to store energy and 

subsequently secrete hormones in response to nutritional signals. By contrast, thermogenic 

adipocytes defend against hypothermia and obesity through adaptive thermogenesis, 

mediated by regulated expression and activity of mitochondrial uncoupling protein 1 

(UCP1). Thermogenic adipocytes have also been classified into so-called “classical” brown 

fat cells and newly identified beige adipocytes (discussed below).

© 2015 Published by Elsevier Ltd.
*Corresponding author: Wu, J. (wujunz@umich.edu). 

Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our 
customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of 
the resulting proof before it is published in its final citable form. Please note that during the production process errors may be 
discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

HHS Public Access
Author manuscript
Trends Genet. Author manuscript; available in PMC 2016 May 01.

Published in final edited form as:
Trends Genet. 2015 May ; 31(5): 232–238. doi:10.1016/j.tig.2015.03.003.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



It was long assumed that thermogenic fat was only present in humans at the infant stage. In 

2009, however, thermogenic adipocytes were shown to exist in human adults [3–5], drawing 

intense interest as a potential target to increase energy expenditure and counteract obesity. 

These research efforts have led to significant advances of our knowledge of these cells [6–

8]. It is becoming increasingly evident that thermogenic fat significantly influences whole 

body metabolism in humans. To leverage the full potential of the metabolic benefits of these 

cells, it is essential to thoroughly understand the developmental history and distinct 

regulatory mechanisms of different types of thermogenic fat. In this review, we discuss our 

current view of how these fat cells are regulated, particularly focusing on the distinguishing 

features of developmental formation and environmentally stimulated activation of 

thermogenic fat.

Thermogenic fat formation

The early developmental origins of fat remains an important question that is currently being 

intensively investigated [9, 10]. It has been proposed that certain adipocytes arise from 

endothelial [11] or hematopoietic lineages [12, 13]. Until recently, brown fat observed in the 

rodent interscapular depot and human infants was widely believed to share a common 

developmental origin with the rest of the fat cells throughout the body. These brown fat cells 

have high mitochondrial content, the iron in which gives them their eponymous color. A 

unique mitochondrial protein, UCP1, functions as a proton leak, which effectively 

“uncouples” ATP synthesis and oxidative phosphorylation through the electron transport 

chain (ETC). The inherent inefficiency of the biochemical reactions leads to the conversion 

of electrochemical energy into heat, so that mammals (small mammals in particular) can 

defend against hypothermia [14]. Despite these unique features, thermogenic fat cells share 

many characteristics with their white fat counterparts. They normally express most of the 

adipocyte-specific markers at comparable levels to white fat, such as peroxisome 

proliferator-activated receptor gamma (PPARG), adiponectin, and fatty acid binding protein 

4 (FABP4, also referred as aP2). Both white and thermogenic fat cells contain intracellular 

lipid droplets, albeit unilocular morphology (one lipid droplet) is normally observed in white 

adipocytes and multilocular (many lipid droplets) in thermogenic fat.

Despite these common characteristics, however, the notion of a common developmental 

origin for all fat cells was disproved in 2008. After the discovery that PRD1-BF-RIZ1 

homologous domain containing 16 (PRDM16) is a key regulator of the thermogenic 

program in brown fat [15], loss-of-function assays of PRDM16 were conducted in primary 

brown fat cells. These shPRDM16 brown preadipocytes differentiated into muscle-like cells 

instead of the expected white fat cells [16]. Cell fate mapping experiments showed that some 

UCP1+ fat cells from several depots, most noticeably the interscapular depot, arise from a 

Myf5+ lineage, which also gives rise to skeletal muscle [16]. This discovery, together with 

the rediscovery of thermogenic fat cells in human adults [3–5], which was reported one year 

later, significantly changed how we view thermogenic fat and its potential role in 

metabolism.

Not all UCP1+ fat cells come from the Myf5+ lineage, however [16]. Upon cold exposure, 

UCP1+ multilocular cells are detectable in many white adipose depots, most prominently, in 
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subcutaneous depots like the inguinal depot in mice [14]. These “inducible” thermogenic fat 

cells, together with white fat cells, come from one or more Myf5− lineage(s) [16]. To 

investigate the developmental origin and molecular identity of these Myf5− lineage derived 

UCP1+ adipocytes, clonal stable cell lines were generated from the subcutaneous depot, and 

unbiased analysis of transcriptional profiling revealed that a subset of these cell lines are 

functionally more similar to classical brown fat than the rest of the lines from the 

subcutaneous depot. This provides direct evidence that these “inducible” thermogenic fat 

cells (so-called beige fat cells) may be fundamentally dissimilar from the other fat cells of 

the inguinal depot, even at the precursor stage (Figure 1) [17]. The exact developmental 

lineage of this new type of fat cell is under intensive investigation. Using a ribosome-

profiling approach, it was shown that an enriched expression of a smooth muscle gene 

signature is present in beige fat cells but not in brown fat cells. Cell fate mapping 

experiments with a Myh11-driver (a smooth muscle marker) revealed that at least a subset of 

beige fat cells arise from a shared lineage with smooth muscle [18]. Other studies identified 

so-called “brite” fat (brown in white), a distinguished subpopulation of adipocytes from the 

visceral depot expressing UCP1 upon rosiglitazone treatment [19]. Rosiglitazone is a 

commonly used thiazolidinedione (TZD), a PPARγ agonist, which has been shown to induce 

activation of thermogenic gene expression in adipose tissue and cells [20–24].

The discovery of a common lineage of skeletal muscle and brown fat has drawn much 

attention and has been confirmed by many groups in various cell fate mapping models with 

different skeletal muscle markers. Experiments with an inducible Pax7 tracing model 

revealed that the cell fate diverging decision to become either brown fat or skeletal muscle 

happens between embryonic day 9.5–e11.5 during gestation [25]. Detailed mapping analysis 

of multiple fat depots using Myf5 and several other skeletal-muscle specific genes (MyoD 

and Pax3) confirmed the earlier discovery that UCP1+ cells in the interscapular fat depot are 

from the Myf5+ lineage and UCP1+ cells in the perigonadal (visceral) and posterior-

subcutaneous (inguinal) depots are from a Myf5− lineage [26]. Additional analysis in the 

same study revealed that certain depots (e.g., the cervical depot) contain UCP1+ adipocytes 

of both Myf5+ and Myf5− lineages [26]. It has also been shown that many unilocular 

adipocytes within dorsal-anterior depots arise from a Myf5+/Pax3+ lineage [26]. 

Furthermore, the abundance of adipocytes of Myf5+ or Pax3+ lineages at different adipose 

depots vary between mice of different gender, age, and metabolic status [26], suggesting 

adipose precursors with different developmental origins may differentially contribute to the 

dynamic adipose tissue remodeling process in vivo.

As we learn more about how thermogenic adipocytes are regulated, clearer definitions based 

on molecular insights and functional significance will be possible for different types of 

thermogenic fat cells. For example, the terms of “beige adipocyte” and “brite adipocyte” are 

currently used interchangeably in most contexts. However, the beige adipocyte was first 

defined studying thermogenic adipocytes isolated from subcutaneous depot [17], whereas 

brite adipocytes were isolated from visceral depot [19]. Future studies will elucidate whether 

beige and brite fat cells are molecularly equivalent or if there are many different subtypes of 

inducible thermogenic fat cells of separate lineages and distinct functions.
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To date, most studies on thermogenic fat cells have been carried out with either the 

interscapular or inguinal fat depot, mainly due to the substantial size of these tissues and the 

availability of protocols for culture and differentiation of the adipose precursors in these two 

depots. For the thermogenic fat cells resident in other adipose depots, particularly the ones 

from depots containing cells of both Myf5+ and Myf5− lineages, it is not yet known whether 

they are more similar to classical brown fat cells in the interscapular depot, beige fat 

identified in the inguinal depot, or are a completely different, new type of adipocyte. In this 

review, for the purpose of simplicity and clarity, we mainly discuss thermogenic adipocytes 

of Myf5+ lineage resident in interscapular depot (referred to as classical brown fat) and 

Myf5− lineage thermogenic adipocytes in subcutaneous depot (beige adipocytes).

In depth examination of the development and regulation of thermogenic fat cells further 

revealed a complicated role for PRDM16. Studies with Myf5-CRE mediated cell-type 

specific PRDM16 knockout mice revealed that it is not essential for the embryonic 

development of brown fat, likely due to compensation by PRDM3 [27]. As the animals age, 

PRDM16 plays a more prominent role in maintaining the identity of brown fat in adult and 

obese mice [27]. The regulatory role of PRDM16 in beige fat surfaced after studying mouse 

models of fat-specific ectopic expression or knockout of PRDM16 [28, 29]. Adipose-

specific PRDM16 transgenic mice are protected against diet-induced-obesity and preserve 

glucose homeostasis much better upon challenge with a high-fat-diet compared to control 

mice. Mechanistic investigations revealed these beneficial effects are likely caused by 

significant activation of the thermogenic program in the subcutaneous depot [28]. 

Conversely, inguinal fat tissue from fat-specific knockout of PRDM16 mice present a 

“whitening” phenotype, with greatly repressed thermogenic gene expression [29]. It is 

tempting to speculate that diverse functions of PRDM16 in regulating brown fat cell fate and 

beige fat function are achieved through recruitment of cell-type-specific transcription 

factor(s) or cofactor(s) to the PRDM16-containing transcriptional complex.

Functional marker-based approaches – activation versus formation

Many mouse models have been developed based on reporter-labeling or CRE-mediated 

deletion driven by promoters of functional genes in adipocytes. These genetic models 

provide powerful tools to investigate the regulation of fat cells in vivo, both at basal states 

and upon environmental stimulations (Table I) [30–32]. How progenitors commit to adipose 

cell fate and how preadipocytes develop into mature fat cells in vivo have been investigated 

with transgenic mouse models in which reporter (GFP or β-gal) expression is regulated by 

the promoters of Zfp423 (a preadipocyte marker) or Pparg [33–35].

Elegant work with a model called the adipoChaser mouse showed that thermogenic fat cells 

induced by cold exposure within the subcutaneous depot mainly arise from precursor cells 

[36, 37]. This model is a doxycycline-inducible, mature adipocyte-specific tracing system, 

allowing researchers to pulse-label all mature fat cells at a selected time point with β-gal. A 

significant advantage of the adipoChaser model is that doxycycline can be removed from the 

system within 24 hours, in contrast to tamoxifen-mediated inducible deletion, which has 

been shown to cause prolonged effects, therefore rendering it unfit for in vivo pulse-chase 

experiments [38, 39].
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Another commonly used approach to study cell proliferation is BrdU labeling. However 

when applied to studying adipose precursors in vivo, BrdU labeling identifies mitotically 

active cells but cannot be used to distinguish existing mature adipocytes from newly 

differentiated fat cells converted from existing precursors. It is essential to consider all the 

technical limitations and caveats of each genetic model when studying adipocyte 

development and fat tissue remodeling in vivo.

The development of thermogenic fat in vivo has also been studied with the GFP-RFP dual 

labeling, Ucp1-tracing mice [40]. In this model, GFP labels all cells presently expressing 

Ucp1; whereas RFP will pulse-label cells that express Ucp1 upon tamoxifen-induced CRE 

deletion. The study presented evidence that a subpopulation of adipocytes within white 

adipose depots switch between appearances and gene expression patterns of both white and 

thermogenic adipocytes. It is possible that a bona fide “transdifferentiation” happens 

between different types of adipocytes. However, it is worth pointing out that UCP1 is a 

functional marker whose expression level fluctuates significantly as the activity of 

thermogenic adipocytes is regulated. Hence, it is possible that the GFP and RFP label the 

same subpopulation of adipocytes at various states of thermogenic activation. Further 

studies with better-defined cell identity markers will provide alternative approaches to 

thoroughly investigating these important questions.

Cell surface marker-based approaches

Early work to identify differentially expressed markers in different adipose depots and 

different types of fat cells not only provided some hints about their potential functional 

differences but also generated candidate cell surface markers to separate thermogenic 

preadipocytes from the stromal vascular fraction (SVF) with fluorescence-activated cell 

sorting (FACS). Through gene expression analysis of murine clonal cell lines, CD137 and 

TMEM26 were identified as beige selective cell surface proteins. It was shown that the 

CD137-high subpopulation of the inguinal SVF has higher expression of thermogenic genes 

compared to the CD137-low subpopulation from the same depot, suggesting that the 

observations in immortalized cell lines also apply to primary beige and white fat cells [17]. 

Compared to sorting with established markers with decades of refinement (e.g., cell surface 

markers for hematopoietic stem cells), which clearly separate positive and negative 

subpopulations, better sorting strategies for thermogenic fat cells are still yet to be achieved. 

Further optimization with combined use of multiple markers will be attained as more 

information about these cells becomes available. To compare functions of subpopulations of 

adipose precursors, it is essential to ensure the SVF undergoes minimal stress throughout the 

procedure so that all subpopulations can achieve equal and robust differentiation.

In a different approach to discover markers, gene expression was correlated with either 

expression of Adipoq or Ucp1, leading to the identification of ASC-1 as a marker for white 

adipocytes and PAT2 and P2RX5 as specific markers for thermogenic fat cells [41]. A 

distinguishing feature of this study is that these markers are also present in human white and 

thermogenic fat cells, offering possibilities of prospective isolation of human thermogenic 

fat cells. These markers will enable us to thoroughly investigate the distinct functions of 

thermogenic fat in humans and potentially lead to clinical applications such as autologous 
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transplantation of thermogenic precursor cells back into individuals who undergo 

liposuction procedures to counteract obesity.

Using several cell surface markers that have been reported to be important for stem cell 

functions in other tissues, a strategy was optimized to isolate the “CD24+” subpopulation 

(Lin−:CD29+:CD34+:Sca-1+:CD24+), which was shown to be highly adipogenic in vitro and 

in vivo [42]. It was further demonstrated that this CD24+ subpopulation consists of an early 

stage of progenitors that will further commit into adipose cell fate as they lose the 

expression of CD24 [9]. Both CD24+ and CD24− cells express platelet-derived growth 

factor receptor α (PDGFRα), which has been shown to be expressed in adipogenic cells 

within the skeletal muscle [43, 44]. Using CD34, Sca-1, and PDGFRα, a subpopulation was 

separated from the abdominal adipose depot, and it was proposed that these cells can 

differentiate into either white or thermogenic fat depending on different environmental cues 

[45]. This observation suggests that the PDGFRα+ subpopulation within the visceral depot 

may represent an earlier stage of progenitors before the cells commit into diverged fates of 

being either white or thermogenic adipocytes.

PDGFRα+ and Ebf2-regulated GFP+ cells were sorted, and it was demonstrated that EBF2, 

an important regulator of brown fat cell fate [46], may also participate in functional 

regulation of beige adipocytes [47]. This approach combines the use of cell surface markers 

and genetic labeling with functional markers and may represent a promising strategy to 

investigate thermogenic fat function until better defined exclusive markers become 

available.

Epigenetic regulation of thermogenic fat cells

The role of epigenetic regulation in adipose tissue function has been increasingly 

appreciated in recent years [48]. Studies in both 3T3-L1 immortalized white fat and human 

adipose stromal cells showed that many fundamental aspects of transcriptional networks for 

adipogenesis act in concert with epigenetic regulation [48]. Given that environmental 

signaling acutely controls thermogenic functions, it is particularly interesting to study how 

development and function of thermogenic fat are regulated through chromatin structure 

changes. Several epigenetic regulators have been shown to be closely involved in brown 

and/or beige fat functions. Jhdma2a, an H3K9-specific demethylase, has been shown to be 

essential for the adrenergic-stimulated UCP1 expression in brown fat. Loss of Jhdma2a in 

mice leads to obesity with both regular and high-fat diets, although this phenotype may be 

caused in part by defective β-oxidation in skeletal muscle in the absence of Jhdma2a [49]. 

Euchromatic histone-lysine N-methyltrasferse 1 (EHMT1) is another key epigenetic 

regulator involved in brown fat function. Studies with fat-specific EHMT1-KO mice display 

impaired development of brown fat and increased obesity [50]. Further mechanistic 

investigations revealed that this brown adipose tissue (BAT)-enriched methyltransferase 

controls brown fat cell fate through interactions with PRDM16 [50]. Nicotinamide N-

methyltransferase (NNMT) regulates histone methylation, and loss of function of NNMT in 

white adipose tissue and in the liver increases energy expenditure, counteracting diet-

induced obesity through a mechanism independent of classical brown fat activity [51]. In 

vitro experiments with an immortalized fat cell line demonstrated that at least some of the 
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systemic effects are regulated through cell-autonomous mechanisms in the adipocytes [51]. 

Future studies will determine whether and how different types of adipocytes are distinctively 

regulated on the epigenetic level and lead to a better understanding of the interplay between 

various genetic, behavioral, and environmental causes of obesity.

Thermogenic fat and its therapeutic potential in humans

Six years after initial reports of thermogenic fat cells in human adults, an overwhelming 

amount of data on gene expression, histology, and function of these adipocytes leaves little 

room for doubt regarding the presence of these cells in humans [3–5, 52–54]. Studies are 

now emerging that address the potential significance of their impact on systemic 

metabolism.

Using the cell-type specific markers identified through analysis with murine clonal brown, 

beige, and white cell lines provided evidence that UCP1+ cells resident within the human 

supraclavicular region are more similar to murine beige fat cells instead of brown fat cells 

[17]. Several later reports independently confirmed the presence of beige-like thermogenic 

fat cells in human adults [55, 56]. A recent study showed that some of the UCP1+ fat cells in 

the neck area express genes enriched in murine interscapular brown fat [57]. Another report 

proposed that UCP1+ cells in the human supraclavicular region consist of both classical 

brown and beige adipocytes [58]. It is worth noting that clonal cell lines were later 

independently generated from the biopsies used in this study [58] and unbiased genome-

wide expression analyses revealed these thermogenic cells possess molecular signatures 

much more similar to murine beige adipocytes than brown adipocytes [59]. Given the 

heterogeneity in the human genetic makeup and our still limited understanding of the 

distinction between brown and beige fat, the debate regarding the molecular identities of 

human thermogenic fat is still ongoing.

Several concerns and caveats should be taken into consideration when designing future 

studies on human thermogenic fat. When the sample size is small (not on the 

epidemiological scale), analysis of differences between so-called “BAT” and “WAT” should 

be conducted with biopsies from the same person to offset individual variance. Because 

thermogenic gene expression (e.g., UCP1) may vary significantly depending on the 

activation states of thermogenic fat cells (particularly so for beige fat), all the biopsies for 

one experiment should be collected under exactly the same conditions. It has been shown 

that the activity of human thermogenic fat varies significantly as environmental 

temperatures change, both upon acute cold exposure and as seasons change [60–62].

In addition to their molecular identity, another essential question regarding human 

thermogenic fat is whether the amount of this type of fat cell present in an average human 

constitutes a significant influence over systemic metabolism. It was speculated that one year 

of maximal activation of thermogenic fat could convert chemical energy into heat equivalent 

to the energy stored in 8 pounds of white fat [63, 64]. New studies have shown that activated 

human thermogenic fat significantly improves whole body glucose homeostasis and insulin 

sensitivity [65, 66]. Given that thermogenic fat activities induced by cold exposure alone can 

lead to reduced body weight [67], it is reasonable to expect that ongoing endeavors to 
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develop thermogenesis-enhancing therapeutics for weight loss will succeed in the 

foreseeable future.

Concluding remarks

The recent explosion of interest in thermogenic fat cells has led to significant advances in 

our understanding of the development and regulation of these potentially metabolically 

beneficial adipocytes. Yet, many important questions remain contentious, reminding us that 

science is a process of trial and error. Recent history has witnessed a similar trajectory of 

progress with regulatory T cells, which were originally identified in the 1970s. It took the 

field four decades to arrive at a better understanding of what these immune cells do and how 

they are regulated [68, 69]. In addition to further characterization of “inducible 

thermogenesis”, thorough investigation of beige-selective transcriptional regulation, 

hormonal response, and other distinct functions will provide mechanistic insights and enable 

the development of the necessary research tools to delineate the detailed developmental 

paths of different types of adipocytes, reveal their unique regulation, and functionally 

distinguish their individual impact on systemic metabolism.
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Nonstandard abbreviations

WAT white adipose tissue

PET/CT positron emission tomography – computed tomography

FACS fluorescence-activated cell sorting
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Highlights

• Thermogenic fat cells can be distinguished by their developmental origins.

• Studies with genetic models and FACS reveal regulations of thermogenic 

adipocytes.

• Activated thermogenic fat in humans helps to improve systemic metabolic 

health.
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Figure 1. Development of three types of fat cells
White, beige, and brown adipocytes are derived from different lineages and subpopulations 

of precursors. Brown adipocytes come from Myf5+/Pax7+ lineages, whereas white and 

beige adipocytes arise from Myf5−/Pax7− lineages. Recently, Myh11 expressing progenitors 

have been newly identified as a population giving rise to at least some of the “inducible” 

thermogenic beige adipocytes. PPARγ coordinates the adipogenesis of three types of fat 

cells through interactions with different transcriptional coregulators. TLE3 functions as a 

coactivator of PPARγ during white adipogenesis [70]. Recruitment of PRDM16 and EBF2 

to PPARγ leadscells to differentiate into thermogenic beige and brown adipocytes.
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