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Abstract

Maternal diabetes-induced birth defects occur in 6-10% of babies born to mothers with 

pregestational diabetes, representing a significant maternal-fetal health problem. Currently, these 

congenital malformations represent a significant maternal-fetal medicine issue, but are likely to 

create an even greater public health threat as 3 million women of reproductive age (19-44 years) 

have diabetes in the United States alone, and this number is expected to double by 2030. Neural 

tube defects (NTDs) and congenital heart defects are the most common types of birth defects 

associated with maternal diabetes. Animal studies have revealed that embryos under 

hyperglycemic conditions exhibit high levels of oxidative stress resulting from enhanced 

production of reactive oxygen species and impaired antioxidant capability. Oxidative stress 

activates a set of pro-apoptotic kinase signaling intermediates leading to abnormal cell death in the 

embryonic neural tube, which causes NTD formation. Work in animal models also has revealed 

that maternal diabetes triggers a series of signaling intermediates: protein kinase C (PKC) 

isoforms, PKCα, βII and δ; apoptosis signal-regulating kinase 1 (ASK1), c-Jun-N-terminal kinase 

1/2 (JNK1/2), caspase and apoptosis. Specifically, maternal diabetes in rodent models activates the 

pro-apoptotic unfolded protein response and endoplasmic reticulum (ER) stress. A reciprocal 

causation between JNK1/2 activation and ER stress exists in diabetic embryopathy. Molecular 

studies further demonstrate that deletion of the genes for PKCα, Ask1, Jnk1 or Jnk2 abolishes 

maternal diabetes-induced neural progenitor apoptosis and ameliorates NTD formation. Similar 

preventive effects are also observed when ASK1, JNK1/2 or ER stress is inhibited. Cell membrane 

stabilizers and antioxidant supplements are also effective in prevention of diabetes-induced birth 

defects. Mechanistic studies have revealed important insights into our understanding the cause of 
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diabetic embryopathy and have provided a basis for future interventions against birth defects or 

other pregnancy complications associated with maternal diabetes. The knowledge of a molecular 

pathway map identified in animal studies has created unique opportunities to identify molecular 

targets for therapeutic intervention.
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Introduction

Each year in the United States, about 150,000 babies—3% of all live births—are born with 

at least one major congenital malformation1, 2. The Prevalence of birth defects is 

significantly worse in offspring of women who have type 1 or 2 diabetes. In these cases, 

6%–10% of babies are born with a major congenital malformation3, 4. Based on the National 

Health and Nutrition Examination Survey, conducted from 1988–1994, 1.1% of women 20–

39 years of age have type 1 or 2 diabetes5, and the incidence of diabetes among women of 

childbearing age has increased over the past four decades3. It is projected that the number of 

women of childbearing age with type 2 diabetes will double by 2010 3, suggesting that 

approximately 8,000 babies will be born each year in the United States with a congenital 

malformation in pregestational type 1 or 2 diabetic pregnancies.

Observational studies in humans have demonstrated a strong link between the extent of a 

mother's glycemic control and the incidence of congenital malformations in her 

offspring6-11. The putative teratogenic effects of hyperglycemia are supported by studies 

which demonstrate that clinical intervention targeted at achieving euglycemia can reduce the 

incidence of diabetes-associated birth defects12. When euglycemia is successfully 

maintained periconceptionally and during the first trimester, the prevalence of 

malformations is reduced to a level comparable to that of the general population13-15. 

However, even with excellent compliance and clinical care, euglycemia may be difficult to 

achieve and maintain. In addition, it is possible that organogenesis can be affected by short 

periods of hyperglycemia that are not reflected in the averaged values of glycosylated 

hemoglobin levels used to monitor glucose levels. A further obstacle is that most women 

with diabetes do not seek preconceptional care and most have unplanned pregnancies16.

Hence, a very important public health goal is to develop and implement new and easily 

accessible intervention strategies to decrease the occurrence of diabetes-induced congenital 

anomalies. To achieve this goal, we need a thorough understanding of the biochemical and 

molecular mechanisms underlying diabetic embryopathy. Although we are still far from 

reaching this goal, one area where we have made progress is in our understanding of the link 

between maternal hyperglycemia and oxidative stress. The molecular pathways involved in 

the cellular response to stress are potential therapeutic targets to prevent diabetes-induced 

embryonic malformations.
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Excess apoptosis is a causal event in the induction of malformations

Diabetes-associated malformations may involve one or more organs and frequently result in 

significant disability or death12, 17. Adverse effects of maternal hyperglycemia have been 

documented in the yolk sac of diabetic animal models and in cultured murine embryos17-20. 

Studies with in vivo and in vitro models have determined that the stages of embryogenesis 

vulnerable to hyperglycemia-induced malformations comprise the critical period of 

organogenesis between 8.5-11.5 and 9–12 days of gestation in the mouse and rat, 

respectively, which is equivalent to gestational weeks 3–5 in humans21, 22.

Both clinical cases and animal studies have clearly demonstrated that the main 

characteristics of maternal hyperglycemia-associated defects are organ agenesis and 

underdevelopment17, 23. The organ systems most commonly affected include the central 

nervous, cardiovascular, gastrointestinal, craniofacial, genitourinary, and skeletal 

systems1, 23, 24. Because the neural folds and the heart develop early during embryogenesis, 

a higher incidence of malformations is observed in these organs. In the central nervous 

system, abnormalities can be categorized as underdevelopment of the midbrain and 

hindbrain, and failure of the neural tube to close at both anterior (rostral) and posterior 

(caudal) ends of the neural axis12, 17, 23. The failure of posterior neural tube closure results 

in spina bifida, one of the common birth defects among offspring of diabetic mothers24, 25.

Multiple studies have confirmed that excessive cell death, at least in the central nervous 

system, contributes to the abnormal development of structures in the embryos of diabetic 

animals17, 26-29. These observations strongly suggest that high concentrations of glucose 

cause damage to the neural progenitor cells, leading to apoptosis and, ultimately, abnormal 

organogenesis. However, the mechanisms by which hyperglycemia triggers cell death in the 

embryonic cells are largely unknown.

Programmed cell death is a precisely controlled cellular event that can be triggered by 

extracellular signals or other stimuli under normal and pathological conditions30-33. In most 

cases, apoptosis is characterized by the condensation of chromatin, degradation 

(fragmentation) of DNA, and formation of apoptotic bodies31, 34, 35, 36. The intracellular 

factors activated during apoptosis are the members of the Bcl-2 family36, notably Bax and 

Bim. When apoptosis initiates, Bax and Bim become activated37, 38. Activated Bax moves to 

the mitochondrion to form a transmembrane channel with Bak, another Bcl-2 family 

member. Bim is phosphorylated and translocates to the mitochondria to help open the 

Bax/Bak channel, resulting in cytochrome C release into the cytosol39, 40. Cytochrome C 

binds to apoptosis protease-activating factor-1, and the resulting complex activates 

Caspase-9. Activated Caspase-9 activates Caspase-3, which then turns on caspase-activated 

DNase and other pro-apoptotic factors, leading to DNA fragmentation and cell death41, 42.

Hyperglycemia-induced oxidative stress

Evidence from clinical and experimental studies demonstrates that diabetes-related 

hyperglycemia leads to sustained generation of reactive oxygen species (ROS) and depletion 

of antioxidants, resulting in intracellular oxidative stress from an imbalance in intracellular 

reduction-oxidation (redox) homeostasis43-48. Under normal physiological conditions, 
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oxygen free radicals, including hydroxyl radicals, superoxide anions, singlet oxygen, and 

hydrogen peroxide (H2O2), are produced during cellular energy metabolism in 

mitochondria49-52. Physiologic levels of ROS mediate intracellular signal transduction, 

which, in turn, regulates a wide range of cellular functions, including proliferation, 

differentiation, and migration49-51. However, under pathological conditions, excess ROS can 

oxidize proteins, lipids, and DNA, causing cell injury and cell death53 (Fig. 1).

Intracellular redox homeostasis depends on the relative balance between ROS production 

and the thiol buffers, glutathione (GSH) and thioredoxin54. Normally, the intracellular 

environment is maintained in a highly reduced state, which is mediated by high levels of 

reduced glutathione (GSH) and thioredoxin54. However, ROS produced via various cellular 

activities converts GSH into oxidized GSSG (glutathione disulfide) (Fig. 1). If ROS 

production exceeds the cellular thiol-buffering capacity, the oxidizing agents build up in the 

cell, causing damage and promoting oxidative stress55.

In addition to the GSH antioxidant buffering system, cells also protect themselves by 

producing antioxidative enzymes (AOEs) that convert damaging radicals to non-toxic 

molecules56-59 (Fig. 1). Superoxide dismutases (SODs) convert a superoxide anion into 

hydrogen peroxide, which is then reduced to water by GSH peroxidase (GPx) and catalase 

(CAT)51, 60. Two types of mammalian intracellular SODs, copper–zinc SOD (CuZn-SOD, 

or SOD1) and manganese SOD (Mn-SOD, or SOD2), have been extensively studied56, 58; 

SOD1 is localized in the cytoplasm, SOD2 in the mitochondrial matrix56, 58. It has been 

shown that SOD1, not only controls the redox state in the cytoplasm, but also regulates 

mitochondrial homeostasis61, 62. A study using transgenic mouse embryos overexpressing a 

human SOD1 transgene showed higher SOD activity and lower malformation rate in 

response to maternal diabetic conditions than wild-type embryos under the same 

conditions63. These studies strongly suggest that AOEs play an important role in protecting 

embryos against hyperglycemia-augmented oxidative stress (Fig. 1).

The effects of ROS can be transduced by a number of factors within the cell, including 

p66Shc, a member of the ShcA family which also includes p46Shc and p52Shc64 (Fig. 1). 

Unlike other members of this protein family, p66Shc is a specific target of ROS and a 

critical transducer of oxidative stress signaling leading to apoptosis65, 66. p66Shc is activated 

via phosphorylation of its serine 36 residue (S36) in the CH2 domain 67, 68. Targeted 

deletion of the p66Shc gene in the mouse increases cellular resistance to oxidative stress-

induced apoptosis69, 70. The apoptotic effect of p66Shc may involve functional activation 

and/or transcriptional regulation of Bax and Bim 71 (Fig. 1). Recently, reports in animal 

models have shown that p66Shc plays a critical role in diabetic complications. In our 

laboratory, p66Shc is also affected in models of diabetic embryopathy. These observations 

suggest that p66Shc may be an important factor which mediates the effects of oxidative 

stress in diabetes-induced birth defects.

Oxidative stress-induced pro-apoptotic protein kinase C signaling

Intracellular ROS are generated by a number of mechanisms, including changes in ion 

homeostasis, membrane lipid metabolism and peroxidation72, 73. In embryos under maternal 
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hyperglycemicconditions, products of arachidonic acid (AA) metabolism (lipoperoxides) 

have been detected 74, 75. The major pathway of AA metabolism involves cyclooxygenase-2 

(COX-2)-catalyzed production of prostaglandin E2 (PGE2)76, 77. Adding PGE2 to the 

medium of embryos cultured under high glucose conditions prevents malformations, 

suggesting that PGE2 has a protective effect on embryos exposed to hyperglycemia78.

Other pathways of AA metabolism have also been identified in diabetic patients79, 80. In 

these alternate pathways, AA is converted into PGE2-like isoprostanes, such as 8-

isoprostagladin F2 (8-iso-PGF2) and 8-iso-PGF2α, by non-COX-catalyzed peroxidation 

involving free radicals79, 80. These PGE2-like isoprostanes have been shown to have 

damaging effects in animal models and embryos79, 81. In embryos cultured under 

hyperglycemic conditions, as well as in diabetic patients, the level of 8-iso-PGF2 is 

dramatically elevated79, 82-84, suggesting a shift in metabolism from AA/PGE2 to AA/

isoprostanes (Fig. 2).

Dietary AA appears to be protective against hyperglycemia-induced damage. We have 

shown that pregnant diabetic rats supplemented with AA display a reduced incidence of 

embryonic malformations75, 85, 86. Similar phenomena have also been seen with the addition 

of AA to embryos cultured in high concentrations of glucose75, 87, 88. Giving AA as a 

treatment may protect against hyperglycemic insults because exogenous AA may replace the 

endogenous AA displaced from the cell, thereby repairing and stabilizing cell membrane 

structure and function.

The PKC family of serine/threonine protein kinases consists of 12 members, which can be 

divided into the following three groups based on their activation mechanisms:89 1) PKCα, 

β1, β2, and γ require calcium and diacylglycerol (DAG) for activation; 2) PKCδ, ε, η, ν, and 

θ require only DAG; 3) PKCμ, ξ, and ι/λ do not require calcium or DAG, but instead require 

distinct lipid cofactors (e.g., ceramide and phosphatidylinositol-4-phosphate)89, 90 . 

Substrate specificity of an individual PKC family member involves binding to its specific 

membrane-bound anchor protein and becoming localized to a particular cellular 

compartment, such as the plasma membrane, cytoskeleton, mitochondrion, or nucleus89. 

PKCs are involved in a number of cellular activities, including proliferation, migration, 

apoptosis, differentiation, and secretion89, 91.

Prolonged activation of PKC by hyperglycemia has been documented in people with 

diabetes, animal models, and cultured cells92-95. Specific PKC isoforms (α, β2, and δ) are 

upregulated, while others (ε and ξ) are downregulated in diabetic embryopathy (Fig. 2). 

Pharmacological inhibition of the activity of PKCα, -β2, and –δ results in significant 

decreases in NTD rates in embryos cultured under high glucose conditions. Molecular 

studies have further uncovered a functional role for PKCα activation in diabetic 

embryopathy96. Deletion of the Prkca gene in PKCα knockout mice significantly blocks 

caspase activation and apoptosis leading to a reduction in NTD formation rate in diabetic 

pregnancies96.

Evidence suggests that maternal diabetes-induced oxidative stress is a major contributor to 

PKC activation. Transgenic overexpression of SOD1, which suppresses oxidative stress and 
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NTD formation63, 97-100 represses maternal diabetes-induced phosphorylation of PKCα/βII 

and PKCδ97. In addition, PKC activation induces lipid peroxidation97, 101 (Fig. 2), and, thus, 

may further enhance the degree of oxidative stress seen in embryos subjected to 

hyperglycemic conditions. Therefore, our experiments have shown that oxidative stress and 

PKC activation form a positive feedback loop in diabetic embryopathy (Fig. 2).

Hyperglycemia and oxidative stress-altered MAPK signaling

Chronic and excessive oxidative stress results in cell injury and activation of a variety of 

stress-sensitive signaling pathways that often induce apoptosis73. Members of the mitogen-

activated protein kinase (MAPK) family play a large role in programmed cell death and are 

activated in response to a variety of extracellular stimuli, including ROS102, 103. Activation 

of these serine/threonine kinases requires phosphorylation103. MAPKs can be grouped into 

extracellular signal-regulated kinases (ERKs), c-jun N-terminal kinases/stress-activated 

protein kinases (JNKs/SAPKs), p38, and others102 (Fig. 3). MAPK activity is altered in 

diabetic patients and in cells cultured in high glucose, suggesting that MAPKs may be 

involved in hyperglycemia-induced complications93, 104, 105. Although MAPKs are involved 

in various cellular activities, the ERK pathways primarily mediate cell proliferation, and the 

JNK and p38 pathways respond to cell stress signals and mediate apoptosis106, 107. Maternal 

diabetes induces JNK1/2 activation but suppresses ERK phosphorylation associated with 

increased apoptosis in the developing embryo23, 98, 105, 108, 109 (Fig. 3).

Three members of the JNK family, JNK1, −2, and −3, and their splice variants have been 

characterized110. JNK1 and −2 are ubiquitously expressed, while JNK3 is primarily 

expressed in the nervous system111. JNKs are activated by phosphorylation by upstream 

MAPK kinases (MKKs), specifically MKK4 and MKK7. MKKs are, in turn, phosphorylated 

by other enzymes, one of which is apoptosis signal-regulating kinase (ASK) 1, a kinase 

which is activated under the influence of ROS112-114 (Fig. 3). JNKs can phosphorylate 

nuclear proteins, such as c-jun, ATF2, and Elk-1, as well as cytoplasmic proteins, such as 

Bcl-2 and Bim106, 110. Mice with a null mutation in any individual jnk gene develop 

normally115, as do double mutants of jnk1/jnk3 or jnk2/jnk3 116. Although jnk1/jnk2 null 

mutants die in utero due to an abundance of abnormal apoptosis in the brain117, individual 

jnk gene null mutants are still useful models for delineating apoptotic pathways involving 

JNKs. It remains unclear how JNK1/2 are activated by maternal diabetes. It is likely that 

JNK1/2 are activated by oxidative stress because overexpressing the antioxidant enzyme 

superoxide dismutase 1 (SOD1) in transgenic mice abrogates maternal diabetes-induced 

JNK1/2 activation98, 109.

Recently, we have revealed a functional role for JNK1/2 activation in diabetic embryopathy. 

In a cultured embryo system, inhibiting JNK1/ by the pharmacological inhibitor, SP600125, 

reduced high glucose-induced NTD formation, whereas adding sorbitol, a JNK1/2 activator, 

induced NTD formation118. Studies using gene knockout mouse models have uncovered a 

critical role for JNK1/2 activation in maternal diabetes-induced apoptosis and NTD 

formation98, 118. Deletion of either the Jnk1 gene or the Jnk2 gene abolishes the activation of 

four transcription factors downstream of JNK1/2, blocks maternal diabetes-induced caspase 

cascade activation, neural progenitor apoptosis and NTD formation109. These findings 
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support the hypothesis that JNK1 and JNK2 are equally responsible for the induction of 

diabetic embryopathy, and that the JNK1/2 pathway mediates apoptosis and the 

teratogenicity of maternal diabetes (Fig. 3).

The reciprocal causation between JNK1/2 activation and ER stress

JNK1/2 activation induces pro-apoptotic cellular events leading to apoptosis. JNK1/2 

activation positively modulates the activities and mitochondrial translocation of the 

proapoptotic Bcl-2 family members119 (Fig. 3). While both JNK1/2 and increased activities 

of pro-apoptotic Bcl-2 family members have been observed in diabetic embryopathy120, 121, 

the relationship between these events have not been established in relation to mitochondrial 

dysfunction, which is manifested in embryos exposed to maternal diabetes122, 123. Recently, 

endoplasmic reticulum (ER) stress has emerged as a proapoptotic event that is involved in 

the pathogeneses of diabetic complications124, 125. It is known that one of the unfolded 

protein response (UPR) sensors, inositol-requiring protein-1α (IRE1α), can activate JNK1/2 

under ER stress conditions126 (Fig. 4). In our previous ultracellular study using electronic 

microscopy, aberrant maturational and cytoarchitectural changes associated with 

malformations in cultured embryos were observed under high glucose conditions 19, 127. 

These findings suggest that ER stress may be present in embryos exposed to maternal 

diabetes, and plays a role in JNK1/2 activation and apoptosis.

Newly synthesized proteins are folded into their correct three-dimensional structures in the 

ER. A group of molecular chaperone proteins residing in the ER, such as binding 

immunoglobulin protein (BiP) and calnexin, is critical for the maintenance of ER luminal 

homeostasis. Accumulation of misfolded proteins due to ER luminal imbalance triggers ER 

stress and the induction of apoptosis128, 129. The UPR sensors, particularly IRE1α and 

protein kinase RNA-like ER kinase (PERK), mediate pro-apoptotic signaling in the 

ER128, 129 (Fig. 4).

Our recent study demonstrated that neuroepithelial cells in the developing neural tubes of 

embryos exposed to maternal diabetic conditions possess swollen/stressed ER lumens, and 

have elevated ER stress markers109. Our work in animal models has shown that maternal 

diabetes activates IRE1α and PERK109. IRE1α activation leads to splicing of X-box binding 

protein (XBP1) mRNA and subsequent formation of a transcription activator, whereas 

PERK activation results in phosphorylation of eukaryotic initiation factor 2α (eIF2α) 

leading to up-regulation of an apoptotic factor, C/EBP-homologous protein (CHOP)109 (Fig. 

4).

Our laboratory has further revealed a causal role for ER stress in maternal diabetes-induced 

neuroepithelial cell apoptosis and NTD formation by blocking ER stress109. We have shown 

that the ER stress inhibitor, 4-phenylbutyric acid (4-PBA), diminishes ER stress markers, 

blocks apoptosis in the developing neural tube and NTD formation in embryos cultured 

under high glucose conditions109 (Fig. 4). Because it is widely accepted that ER stress 

activates JNK1/2, we have conducted subsequent studies to show that 4-PBA treatment also 

can suppress hyperglycemia-induced JNK1/2 activation109. The relationship between 

JNK1/2 activation and ER stress has been further defined using JNK1 and JNK2 knockout 
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mice. Deletion of either Jnk1 or Jnk2 gene abolishes maternal diabetes-triggered UPR 

signaling and ER stress, indicating that JNK1/2 activation acts upstream of ER stress (Fig. 

4). The observations we have made in our diabetic embryopathy model system agree with 

findings in another recent study, which showed that inhibiting JNK1/2 prevented ER stress 

and apoptosis in pancreatic cells130. Therefore, our work has indicated a reciprocal causation 

between JNK1/2 and ER stress exists in pathogenesis of diabetic embryopathy (Fig. 4).

The JNK1/2 upstream kinase, ASK1, initiates a key molecular signaling 

pathway

The upstream kinase of JNK1/2 has been identified as ASK1, which is activated by 

oxidative stress98 (Fig. 5). Under nondiabetic conditions, the ASK1 endogenous inhibitor, 

thioredoxin, is tightly associated with ASK1. Under diabetic conditions, the interaction of 

thioredoxin and ASK1 is disrupted and ASK1 is autophosphorylated and activated (Fig. 5). 

ASK1 induces the activation of Forkhead transcription factor 3a (FoxO3a), which in turn 

up-regulates the expression of a pro-apoptotic factor, tumor necrosis factor receptor type 1-

associated DEATH domain protein (TRADD)131 (Fig. 5). TRADD up-regulation results in 

caspase 8 cleavage and neuroepithelial cell apoptosis (Fig. 5). Deletion of the Ask1 gene, the 

FoxO3a gene, or thioredoxin treatment ameliorates maternal diabetes-induced apoptosis and 

NTD formation. Our work has revealed a comprehensive pathway, the ASK1-JNK1/2-

FoxO3a-TRADD-caspase 8 pathway131 (Fig. 5), which provides important insights into our 

understanding of the mechanisms underlying the teratologenicity of diabetes.

Future perspectives and clinical relevance

The prevalence rate of diabetes in women of childbearing age is rising all over the world, 

turning this chronic condition into a global pandemic that is associated with significant 

adverse maternal, fetal and neonatal outcomes132-137. Hyperglycemia during the 

periconceptional period and later in gestation is a major teratogenic factor10, 138-141 causing 

a range of adverse outcomes from fetal death, to congenital anomalies, to accelerated fetal 

growth and delivery complications, to higher rates of metabolic syndrome in adults due to 

altered in utero programming142, 143.

Clinical interventions are intended to help patients achieve and maintain euglycemia138, 144. 

Glycemic control is managed by measuring levels of a patient's glycohemoglobin (HgA1c), 

self-monitoring or continuous glucose monitoring. However, many controversies still exist 

in the medical community regarding the best glucose monitoring methods, desired glucose 

target values and treatment options.

When measured by a healthcare practitioner, a patient's HgA1c reading reflects her mean 

concentration of blood glucose levels in the prior 4-6 weeks. In addition, although self-

monitored blood glucose readings or continuous glucose monitoring add information on the 

fluctuations of a patient's glucose levels, and may reveal short-term hypo- or hyperglycemia, 

the exact combination of monitoring techniques, and how frequently finger-stick blood 

glucose and HgA1c measurements should be performed is still undetermined. The debate 

also continues regarding which glucose values are associated with adverse outcomes, and 
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which glucose values should be attained to improve pregnancy outcomes. Even if an ideal 

glucose level is determined, the available treatment options to achieve euglycemia vary 

greatly: from diet and exercise alone; to oral hypoglycemic drugs, combined with short, 

intermediate and/or long acting, self-injectable agents; to insulin pumps. Although maternal 

diabetes-associated adverse pregnancy outcomes may be reduced by normalizing a woman's 

blood glucose levels, her risk of complications remains higher than the risk in healthy 

women. As the number of people with diagnosed and undiagnosed diabetes continues to 

rise145, and considering that many pregnancies are unplanned, achieving euglycemia at the 

periconceptional period is almost an unreachable goal. Therefore, there is a significant need 

to develop new and improved strategies to prevent diabetes-associated birth defects and 

pregnancy complications.

Work in animal models, as well as translational research, has opened up a new era of 

intervention for diabetic pregnant women. Studies that have focused on the mechanism of 

diabetes-induced congenital anomalies have revealed that enhanced production of ROS, 

impaired antioxidant capability, high oxidative stress and increased abnormal apoptosis are 

some of the major underlying causes for hyperglycemia-induced adverse events in animal 

models of diabetic pregnancies98-100, 131, 146-149. Targeted interventions aimed at blocking 

the events causing altered cell function and excess cell death may offer other strategies for 

reducing diabetes associated mal effects. Antioxidants, inhibitors of PKC specific isoforms, 

thioredoxin, 4-PBA and caspase inhibitors are good candidates for therapeutic 

intervention131, 149, 150. However, further research is needed to prove safety and efficacy of 

any of these candidates in women with diabetes.
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Condensation

Pro-apoptotic kinase signaling mediates the effect of oxidative stress in diabetic 

embryopathy

Yang et al. Page 17

Am J Obstet Gynecol. Author manuscript; available in PMC 2016 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. 
Hyperglycemia-induced oxidative stress. Sustained generation of ROS by maternal diabetes-

related hyperglycemia activates p66shc by phosphorylation, which further causes 

mitochondrial dysfunction, aggravating ROS generaction and oxidative stress. Excess ROS, 

in one hand, causes cell injury and death through oxidizing protein, lipids and DNA; in the 

other hand, causes oxidization of GSH which results in depletion of antioxidant further 

augmenting oxidative stress. Generation of AOEs can protect cells by converting free 

radicals to non-toxic molecules.  : phosphorylation; GSH: glutathione; GSSG: glutathione 

disulfide; AOE: antioxidative enzyme.
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Figure 2. 
Oxidative stress-induced pro-apoptotic protein kinase C signaling. Maternal diabetes-

induced oxidative stress activates PKCα, βII, δ, while inhibits PKC[.epsilon], ξ. Activated 

PKCα induces lipid peroxidation, which in turn aggravates oxidative stress, induces 

apoptosis and diabetic embryopathy. COX2 helps lipid peroxidation product AA convert to 

PGE2, which has protective effect on embryos from oxidative stress. Hyperglycemia 

decreases COX2 activity resulting in generation of PGF2 from AA instead of PGE2, finally 

inducing apoptosis and NTD formation. x: blocked; AA: arachidonic acid. ⇓ downregulated; 

⇑ upregulated.
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Figure 3. 
MAPK signaling in diabetic embryopathy. Among MAPKs, ERK regulates cell 

proliferation, p38MAPK and JNKs regulate cell apoptosis. Hyperglycemia-induced 

oxidative stress decreases ERK activity by dephosphorylation and increases JNK1/2 activity 

by phosphorylation, while has no effect on p38MAPK. Decreased ERK suppresses cell 

proliferation, blocks cell survival signaling. Activated JNK1/2 induces translocation of Bcl2 

family members to mitochondria membrane resulting in mitochondrial dysfunction and 

apoptosis.  : dephosphorylation;  : phosphorylation; ⇓ downregulated; ⇑ upregulated.
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Figure 4. 
Oxidative stress-induced JNK1/2 activation and ER stress. Maternal diabetes-induced 

oxidative stress causes ER stress by aggravating UPR events in ER. ER stress activates UPR 

sensors IRE1α and PERK by phosphorylation. Activated IRE1α leads to XBP1 splicing and 

ASK1-JNK1/2 signaling pathway, whereas phospho-PERK activates eIF2α and CHOP, 

which both finally induce apoptosis and diabetic embryopathy. Activated JNK1/2 can 

reversely intensify ER stress. 4-PBA blocks ER stress and ER stress-induced apoptosis and 

NTD formation. *p-: phosphorylated-;  : phosphorylation.
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Figure 5. 
Oxidative stress activates ASK1 signaling pathway. Oxidative stress activates ASK1 by 

disrupting its interaction with oxidized-thioredoxin. Free ASK1 quickly autophosphorylates 

and further phosphorylates JNK1/2, induces translocation of Bcl2 family members to 

mitochondria and apoptosis. Phospho-ASK1 can also increase nucleus transpotation of 

transcription factor FoxO3a, which induces TRADD expression. Up-regulation of TRADD 

leads to caspase 8 cleavege and apoptosis.  : phosphorylation; ⇑ upregulated.
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