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Key steps in understanding a biological process include identifying genes that are involved and determining how they are

regulated. We developed a novel method for identifying transcription factors (TFs) involved in a specific process and used it

to map regulation of the key virulence factor of a deadly fungus—its capsule. The map, built from expression profiles of 41

TF mutants, includes 20 TFs not previously known to regulate virulence attributes. It also reveals a hierarchy comprising

executive, midlevel, and “foreman” TFs. When grouped by temporal expression pattern, these TFs explain much of the tran-

scriptional dynamics of capsule induction. Phenotypic analysis of TF deletion mutants revealed complex relationships

among virulence factors and virulence in mice. These resources and analyses provide the first integrated, systems-level

view of capsule regulation and biosynthesis. Our methods dramatically improve the efficiency with which transcriptional

networks can be analyzed, making genomic approaches accessible to laboratories focused on specific physiological

processes.

[Supplemental material is available for this article.]

In this paper we present an efficient means of comprehensively
mapping the network of transcription factors (TFs) that regulate
a particular physiological process. Our approach cycles through
deletion of TFs, expression profiling of TF mutants, model con-
struction, and model-directed selection of TFs for the next round
of deletion. This predictive genetics approach identifies TFs that af-
fect the process of interest, providing a valuable complement to
undirected mutagenesis and screening. Simultaneously, it builds
a network model that explains how the TFs affect the process,
yielding novel insights into the biological system under study.

Mapping the network that regulates a specific process requires
knowing which TFs affect that process. One way to identify such
TFs is to screen comprehensive mutant libraries, but generating
such libraries is not always feasible. Furthermore, genome-scale
screening assays must be fast and scalable; such assays may not
exist for the process of interest or may be less sensitive than other,
more laborious assays. An alternative approach is to map the
targets of all TFs encoded in a genome by using methods such as
chromatin-immunoprecipitation (ChIP) or large-scale TF deletion
and expression analysis. However, undirected, genome-wide ap-
proaches are costly and inefficient for probing a specific biological
process in detail.We report amodel-guided approach that address-
es all of these problems by focusing experimental effort on the TFs

most likely to be involved in the process of interest. Furthermore,
our approachgenerates a network that providesmechanistic expla-
nations for the phenotypes of TF deletion mutants.

Our approach alternates network building by using an algo-
rithm we call NetProphet with identifying relevant TFs by using
an algorithm we call PhenoProphet. NetProphet is a validated
method for mapping direct, functional regulation that significant-
ly outperforms other network mapping methods (Haynes et al.
2013). It requires only gene expression profiles of strains in which
TF expression has been perturbed (by gene deletion, mutation,
over-expression, or RNAi) and wild-type controls, data that can
be gathered in a reliable, scalable way by most molecular biology
laboratories. It therefore offers significant advantages over alter-
natives such as ChIP-seq, which requires reoptimization for every
TF studied (Landt et al. 2012) and follow-up experiments to
determine which binding events lead to functional regulation.
NetProphet works by combining differential expression (DE) anal-
ysis with coexpression analysis. In the DE analysis, genes that are
strongly differentially expressed between a TF-deletion strain and
a wild-type (WT) strain are considered potential targets of the TF.
In the coexpression analysis, genes whose expression is strongly
correlated with that of a TF (either positively or negatively) across
the expression profiles are considered potential targets of the TF,
enabling NetProphet to identify targets for TFs that have not
been directly perturbed (see Haynes et al. 2013). PhenoProphet,
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described here for the first time, assigns each TF a score represent-
ing its confidence that deletion of that TF will yield some pheno-
typic change of interest. The score of each TF is based on the
degree to which its NetProphet-predicted targets are enriched for
genes associated with the phenotype of interest.

We demonstrate the power of combining NetProphet and
PhenoProphet by mapping the network that regulates the major
virulence factor of a pathogenic yeast, Cryptococcus neoformans.
C. neoformans is a basidiomycetous yeast, with a 19-Mb genome
encoding ∼7000 genes (Janbon et al. 2014), that diverged from as-
comycetes like S. cerevisiae roughly 1 billion years ago (Hedges et al.
2004). It is also an opportunistic pathogen that is responsible
for more than 600,000 deaths per year worldwide (Park et al.
2009). Multiple factors influence cryptococcal virulence (Srikanta
et al. 2014), including the production of protective structures like
melanin and its major virulence factor, a polysaccharide capsule.
Capsule polysaccharides are both displayed on the cell surface
and shed from the cell. The capsule grows large upon entry into
a mammalian host, a process that can be recapitulated by a variety
of host-like conditions in vitro (Zaragoza and Casadevall 2004).

Several TFs involved in capsule regulation have been identi-
fied and various signaling pathways are known to act upstream
to influence capsule growth (O’Meara and Alspaugh 2012;
Kwon-Chung et al. 2014). However, most of the downstream cap-
sule biosyntheticmachinery remains to be discovered, and current
knowledge of capsule regulation is incomplete and fragmented.
This offers an ideal opportunity to apply model-guided network
mapping. In this paper, we present the first integrated, systems-
level view of capsule regulation and biosynthesis, which in turn
produces unexpected insights into cryptococcal virulence.

Results

Expression-based network mapping predicts TFs involved

in capsule regulation

Wehave developed a novel, predictive approach to identifying TFs
related to a physiological process of interest andmapping their reg-
ulatory targets. This approach consists of a cycle (Fig. 1) in which
TF deletion strains are subjected to phenotyping and expression
profiling, and networkmodels are constructed from the expression
profiles by usingNetProphet. PhenoProphet is then used to predict
additional TF genes which, when deleted, will influence the pro-
cess of interest. These genes are then deleted, and the phenotypes
and expression profiles of the resulting mutants are fed back into

the cycle. The genome-wide network models resulting from this
process can be analyzed in multiple ways, including modeling TF
binding specificity and predicting TF function based on target
gene sets.

We selected deletion strains to make and profile in several
stages. First, we deleted genes encoding 11 regulators previously re-
ported to participate in capsule synthesis: eight DNA-binding TFs
and three signaling proteins (Supplemental Table S1, “Literature”).
In the second stage, we deleted 17 genes encoding putative DNA
binding proteins based on the correlation of their expression levels
with capsule size in various conditions (Supplemental Table S1,
“Correlation”; Haynes et al. 2011). We grew these 28 deletionmu-
tants and three others (Supplemental Table S1, “Other”) in cap-
sule-inducing conditions and assayed them for capsule size. We
developed custom software to facilitate precise measurement of
capsule thicknesses, enabling statistical analysis of thickness distri-
butions. We further subjected all the mutant strains to expression
profiling by RNA-seq in biological triplicate after a shift to capsule-
inducing conditions. We used the expression profiles of these
strains and WT controls as input for NetProphet to map the cap-
sule regulation network (Fig. 1).

To select the final group of genes to delete, we applied
PhenoProphet to the NetProphet-generated network along with
68 genes that have been reported to play a role in capsule produc-
tion (Supplemental Table S2, Tab A). These genes encode a variety
of enzymes, transporters, signaling factors, and proteins of un-
known function. When we rank-ordered all TFs by their
PhenoProphet scores, we found that 14 of the 21 highest-scoring
TFs had already been deleted; 12 of these 14 had altered capsule
phenotypes. We deleted an additional 10 top-ranked TFs and as-
sayed their gene expression profiles and capsule sizes. Eight of
these 10 had altered capsule phenotypes (80%). For comparison,
a traditional screen ofmutants that included 64 regulator deletions
identified only three required for normal capsule regulation (<5%)
(Liu et al. 2008).

Ten of our deletion strains had increased capsule thickness
and 17 had reduced capsule thickness (Fig. 2). Only 11 of the 27
had been previously reported to influence capsule thickness.
(The phenotype of cells lacking MBS1, which we studied because
of its PhenoProphet score, was reported while our analysis was in
progress [Song et al. 2012].) Figure 3A shows the altered capsule
thicknesses of 17 mutants lacking TF-encoding genes that we se-
lected based only on expression data, analyzed by either capsule
size correlation or PhenoProphet. Almost half of our newmutants
were hypercapsular, a phenotype that has been relatively rarely
reported (D’Souza et al. 2001; Bahn et al. 2005; Lee et al. 2009).
Many of the mutants with altered capsule size also showed signif-
icantly increased capsule size variability. Interestingly, two mu-
tants, ssn801 and clr2, showed a substantial increase in capsule
size variability (2.9-fold, P < 10−78 and 1.6-fold, P < 10−18, respec-
tively) with no change in mean capsule size.

We also assessed other virulence-related phenotypes in our
uniform collection of 41 mutants. In addition to displaying cap-
sule polysaccharide on its surface, C. neoformans sheds this ma-
terial into the environment, with adverse effects on the host
immune response (Coelho et al. 2014). We used a cryptococcal an-
tigen latex agglutination test to assess capsule shedding in our
strain set. Interestingly, both hyper- and hypocapsular strains
showed alterations in capsule shedding (Fig. 2). Many of our new
mutants also had defects inmelanin production, a virulence factor
(Fig. 2; Supplemental Fig. S1; Eisenman and Casadevall 2012).
Finally, we tested our new mutants for their ability to grow in
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Figure 1. NetProphet–PhenoProphet workflow. (Yellow) Steps involved
in network modeling; (blue) steps involved in network refinement to elu-
cidate a specific process of interest; (green) products of genome-wide net-
work analysis.
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the mouse lung; 11 showed a significant change in this character-
istic (Fig. 3B).

About two-thirds of the newmutants with abnormal capsules
also showed defects in at least one other virulence-related trait (Fig.
3C, left). Several showed defects in all traits measured, including
usv101, a novel virulence regulator (Fig. 2).We also identified three
novel factors, Hap2, Bik1, and Mlr1, that are not involved in regu-
lating capsule, but do yield isolated melanin defects (Fig. 3C,
right); Mlr1 further has no S. cerevisiae ortholog. Notably, all four
TF mutants with reduced capsule shedding that we tested in

mice had an infectivity defect. This suggests that capsule shedding
is critical for infectivity, regardless of whether the surface capsule is
reduced or enlarged.

PhenoProphet accurately predicts which TFs will have altered

capsule thickness

A remarkably large fraction of the TFs identified by PhenoProphet
were involved in capsule regulation (Supplemental Table S1). We
compared this result to our previous strategy of using the correla-
tion of gene expression with capsule thicknesses to predict TF cap-
sule involvement by using our previously published correlation
scores (Haynes et al. 2011). Of the 17 TFs we selected for deletion
by the correlation method, eight had altered capsule thickness
(47%); of the 10 we selected by PhenoProphet, eight had aberrant
or hypervariable capsule thickness (80%). To further compare
capsule-size correlation and PhenoProphet to one another and to
other methods of phenotype prediction, we applied each method
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Figure 2. TF mutants have significant virulence-related phenotypes. For
capsule, the difference in thickness fromWT (in pixels) is tabulated and also
color-coded: (green) a decrease of ≥10 pixels compared to wild type;
(blue) a decrease of 3–9 pixels; (yellow) an increase of ≥3 pixels; (∗) de-
notes strains with WT mean capsule thickness but significantly increased
variance. For melanin formation, green indicates colonies that were white
(no melanin) to beige, and blue indicates colonies that were brown but
lighter thanWT. For capsule shedding, green indicates that the 3-h culture
supernatant concentration of GXMwas ≥8-fold lower than WT; blue, two-
to fourfold lower; and yellow, twofold higher. For short-term infectivity,
fold-change in colony-forming units (CFU) in 1 wk was calculated (tested
only for strains with newly discovered capsule phenotypes): (green) >10
times lower than WT; (blue) 2–10 times lower; (yellow) >2 times higher.
In all columns gray indicates no significant change in phenotype.
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Figure 3. Virulence attributes of new regulatory mutants. (A) Represen-
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(C ) Aberrant phenotypes of new mutants (left) and of all the mutants in
Figure 2 (right). Melanin was scored for 37°C phenotype.
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to a set of TFs for which the capsule phenotype of the correspond-
ing deletion was known. These genes had primarily been deleted
because they were suspected to have a role in capsule regulation
(Supplemental Table S2, Tab B). To simulate prospective pheno-
type prediction, we used leave-one-out cross validation, in which
each mutant phenotype is predicted without using any data de-
rived from that mutant. As a simple, baseline prediction method,
we considered the hypothesis that TF genes that display significant
expression changes upon capsule induction are more likely to be
required for normal capsule induction than those that do not.
The data did not support this hypothesis (Fig. 4A, green). Next,
we considered the possibility that geneswhose expression is signif-
icantly correlated with capsule thickness would be more likely to
encode TFs regulating capsule than genes whose expression is
not correlated with capsule thickness. The data did not support
this hypothesis, either (Fig. 4A, red).

We next tried a phenotype prediction method called Pheno-
logs, which is based on the observation that genes sharing a
phenotype in one organism often share phenotypes in another or-
ganism, even when the phenotypes themselves appear to be unre-
lated (McGary et al. 2010). However, TFs with positive Phenolog
scores were not significantly enriched for those that affect capsule
thickness (Fisher’s exact P = 0.43) (Fig. 4A, blue), nor were the
Phenolog scores of TFs that do affect capsule thickness greater,
on average, than those of TFs that do not (Mann-Whitney U-test
P = 0.33) (Fig. 4B, blue). Thus, Phenolog scores do not have dis-
criminative value in this application. In contrast to all of these
methods, TFswith positive PhenoProphet scoreswere significantly
enriched for those that affect capsule thickness (Fisher’s exact P <
0.03) (Fig. 4A, orange). Furthermore, the mean of PhenoProphet
scores for TFs that affect capsule thickness was significantly greater
than the mean score for TFs that do not affect capsule thickness
(Mann-Whitney U-test P < 0.02) (Fig. 4B, orange). The predictive
power of PhenoProphet relative to the othermethods is confirmed
by receiver operating characteristic analyses (Fig. 4C).

Next, we investigated the effect of the number of expression-
profiled TF deletion strains on the accuracy of PhenoProphet. The
results showed that the predictive accuracy of PhenoProphet ex-
ceeded chance (and the accuracy of Phenologs) even when the
number of profiled TF-deletion strains given to NetProphet was re-
duced to 25% of the total (11 TFs deleted) (Supplemental Fig. S2A).
Providing profiles of more TF-deletion strains increased accuracy,
confirming that PhenoProphet depends on the NetProphet net-
work for its accuracy. In applications in which no TF network is
available and thenumberof TF-deletion strains that canbe profiled
is less than 10, anothermethod (such as Phenolog analysis)maybe
most useful. We also investigated the effect of the number of
known capsule-involved genes, with results similar to those de-
scribed above for deletion-strain profiles (Supplemental Fig. S2B.)

NetProphet predicts functional, direct binding

of TFs to their targets

We previously validated NetProphet in S. cerevisiae using data
from ChIP-chip and protein-binding microarrays (Haynes et al.
2013). To validate NetProphet in C. neoformans, we focused on
Gat201, the only cryptococcal TF forwhichChIPdatawas available
(Chun et al. 2011); Nrg1, a well-studied capsule regulator (Cramer
et al. 2006); and Usv101, a capsule regulator described here for
the first time. We epitope-tagged the last two and carried out
ChIP-seq. We then tested the NetProphet-predicted targets of
Usv101, Gat201, and Nrg1 for significant overlap with their

ChIP-positive targets. NetProphet assigns a confidence score to
each potential target of a TF, so we tested top-scoring target groups
of various sizes, from 40 to 200. For all three TFs, the 40 most con-
fident NetProphet predictions were highly enriched for ChIP-posi-
tivetargets, as compared to thenumber thatwouldbeexpected if40
genes were chosen at random (Fig. 5A–C). For Usv101 andGat201,
enrichment remained strong for the 200 most confident targets.

To further test our predictions, we compared models of TF
binding specificity inferred from the NetProphet-predicted targets
to specificity models derived from ChIP (Fig. 5D–F, top two logos).
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For both Usv101 and Gat201, the Cryptococcus motifs derived
fromNetProphet predictions and fromChIP data were highly sim-
ilar, whereas for Nrg1, there were significant differences between
the two. For comparison, we extracted a motif for the closest ho-
molog of each TF in S. cerevisiae from the ScerTF database (Fig.
5D–F, bottom logo; Spivak and Stormo 2012). The motif of C. neo-
formans Usv101 (confirmed independently by NetProphet and
ChIP) has diverged substantially from the motif of S. cerevisiae
Usv1 on one side. No motif is available for Gat2, the ortholog of
Gat201, but the motif of Ecm23, the next best homolog, shows
the expected GATA family resemblance. The motif for S. cerevisiae
Nrg1 supports the ChIP-derived Cryptococcus motif over the

NetProphet-derived motif; this is likely because the NetProphet-
predicted Nrg1 targets include some indirect targets regulated by
TFs downstream from Nrg1 (see Supplemental Table S4, targets
of Nrg1 and Mbs1).

We then attempted to infer binding specificity models
(PWMs) for all other Cryptococcus TFs from their NetProphet-pre-
dicted target sets (Elemento and Tavazoie 2005). We tested these
PWMs for significant conservation in the genome of a related
species (JEC21, serotype D). We also tested each TF to determine
whether there was a highly homologous TF in S. cerevisiae with
highly similar binding specificity, as in Figure 5D,E. In total, 18
PWMs showed both types of conservation and were therefore
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deemed reliable models (Supplemental Fig. S3; Supplemental File
5). Previously, binding specificity was known for only 2 TFs in
Cryptococcus (Chun et al. 2011; O’Meara et al. 2014), both of which
strongly support our independently derived PWMs.

We also used the NetProphet-predicted target sets of 223 reg-
ulators encoded in theC. neoformans genome (including 188DNA-
binding TFs) to predict regulator functions. Supplemental Table S3
reports GO term enrichment for each regulator.

ChIP-experiments validate NetProphet predictions

We combined NetProphet and ChIP results from Usv101, Gat201,
and Nrg1 to produce a high-confidence core for our model of
the network regulating virulence in C. neoformans (Fig. 5G). This
reveals a highly interconnected subnetwork in which Usv101
represses GAT201, consistent with their opposite capsule pheno-
types (large versus small). Usv101 also represses several sugar trans-
porters while activating HXT1, a hexose transporter that has a
hypercapsular phenotype (Chikamori and Fukushima 2005).
Usv101 represses, and Gat201 activates, BLP1, which is involved
in a capsule-independent anti-phagocytic mechanism (Chun
et al. 2011). The opposing effects of Usv101 and Gat201 on
BLP1, which promotes fungal survival during infection, are consis-
tent with their generally opposing roles in regulating virulence
and their opposite capsule phenotypes. Usv101 represses BLP1
both directly and via its repression of GAT201, forming a coherent
feed-forward loop.

Our data support a previous report (Chun et al. 2011) that
Gat201 activates ECM2201, encoding a TF, and we report for the
first time that the ecm2201 mutant is hypocapsular (Fig. 2).
Gat201 has the same effect on capsule size as Nrg1 and works
with Nrg1 to stimulate expression of GAT204, which encodes a
second TF involved in the capsule-independent anti-phagocytic
mechanism (Chun et al. 2011). Both Gat201 and Nrg1 repress
some genes involved in cell wall synthesis, but Nrg1 also activates
other genes involved in cell wall synthesis, consistent with cell
wall remodeling during capsule induction. Nrg1, which is activat-
ed by cAMP signaling in Cryptococcus (Cramer et al. 2006), also ac-
tivates PDE2, encoding a phosphodiesterase that reduces cAMP
levels (Zaman et al. 2008), thus adding a slow, transcriptionally
mediated negative feedback loop in cAMP signaling to the fast,
post-translational negative feedback loops that have been reported
(Hicks et al. 2005; Kronstad et al. 2011).

Nrg1 further activates UGD1, MAN1, and UXS1, which en-
code glycoactive proteins (Fig. 5G), as well as CLC-A and CPL1,
which encode proteins involved in maintaining ion balance
(Zhu and Williamson 2003; unpubl.). Deletion of any of these
five genes results in a hypocapsular phenotype. Thus the hypocap-
sular phenotype of the nrg1mutant may be caused by its failure to
activate expression of these five genes. Broadly speaking, the TFs in
Figure 5 have the same phenotypes as the targets they activate.
Furthermore, TFs whose absence affects capsule thickness in op-
posite directions (Usv101 versus Gat201 and Nrg1) regulate their
common targets in opposite directions, whereas TFs whose ab-
sence affects capsule in the same direction (Gat201 and Nrg1)
also regulate their common targets in the same direction.

NetProphet illuminates transcriptional dynamics

To gain insight into the transcriptional dynamics of cryptococcal
capsule induction, we performed RNA-seq onWT cells immediate-
ly before transfer from rich media into capsule-inducing condi-
tions and at 1.5, 3, 8, and 24 h after transfer. Considering all

genes across the time course (Fig. 6A), one pattern that emerged
was repression of genes involved in ribosome biogenesis, tRNA
synthesis and processing, amino acid biosynthesis, and protein
transport, along with induction of genes involved in specific ami-
no acid degradation and protein degradation; this is consistent
with the cells accommodating to scarcer nutrients and slower
growth. Expression of some nuclear genes encoding cytochrome-
C oxidase (COX) components declined, whereas expression of mi-
tochondrial genes encoding COX components increased. Expres-
sion of all 13 mitochondrial genes increased significantly (mean
fold-change 57, median 20).

To map the transcriptional dynamics onto our network, we
divided TFs whose deletions alter capsule thickness into four
groups based on their temporal expression patterns (Fig. 6B, cir-
cles). Themost “upstream” acting TFs in the network form a group
with slightly increased expression at 90 min followed by sharply
decreased expression over the next 24 h (Fig. 6B, Regulator
Group 1). This group includes activators of ribosome biogene-
sis genes and repressors of mitochondrially encoded respiration
genes. It also contains repressors of a cluster of capsule-involved
genes whose expression increases steadily through capsule induc-
tion (Fig. 6B, Box a). This target group includes genes encoding
proteins involved in nucleotide sugar synthesis and transport,
polysaccharide synthesis, and maintenance of inorganic ion and
osmotic balances. Group 1 includes activators of a set of capsule-in-
volved genes that decreases steadily after the first few hours of cap-
sule induction (Fig. 6B, Box b). These declining genes include four
that encode proteins that promote cAMP/PKA signaling, reinforc-
ing the transcriptionally mediated negative feedback on cAMP/
PKA signaling noted above.

Group 2 is the opposite sign partner of Group 1 and cooper-
ates with it in nearly every way: Its expression pattern is opposite
that of Group 1, and it regulates mitochondrially encoded respira-
tion genes as well as each cluster of capsule-involved non-TFs in
the opposite way from Group 1. Since Group 2 is repressed by
Group 1, the indirect effects of Group 1 via Group 2 are consistent
with the direct effects of Group 1.

As with Group 2, the expression of regulators in Group 3 de-
creases from time 0 to 90 min, then reverses course and increases
from 90 min to 24 h. The difference is that Group 2 regulators
rapidly recover to well beyond their initial levels, whereas Group
3 regulators never recover their initial levels. This difference may
result from the tendency of Group 2 regulators to activate each
other, forming positive feedback loops. Group 3 regulators activate
genes involved in the response to reactive oxygen species (ROS)
while repressing certain carbohydrate and amino acid transport-
ers. Group 3 regulates a set of capsule-involved genes that has an
L-shaped expression pattern (Fig. 6B, Box c) and includes genes
involved in amino acid biosynthesis and other growth-related
processes.

Group 4 regulators are regulated by all of the other groups, but
they do not regulate other groups, putting them at the bottom of
the hierarchy. Their expression increases steadily through induc-
tion and they include activators of genes involved in metal ion
transport and synthesis of chitin, a component of the cell wall.

Taken together, these analyses show a hierarchy of TFs (cir-
cles), with those expressed in an “inverted check-mark” (Group
1) at the top, those that first decrease and then increase in themid-
dle, and those that increase steadily at the bottom. Capsule-in-
volved, non-TF genes (boxes) are expressed in temporal patterns
that are generally consistent with those of their regulators—the
same pattern for activators and the opposite for repressors. These
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observations suggest that the temporal patterns of downstream
genes can in many cases be explained by the patterns of their reg-
ulators shown in Figure 6B. For example, Group 1 andGroup 2 reg-
ulators that are connected by an edge in the underlying network
show an average temporal correlation of −0.84. For Group 1 and
Group 3, the average correlation is −0.16, and for Group 2 and
Group 4 it is +0.60.

The fact that we do not see any delay between the changes in
upstream regulators and those in downstream targets is consistent
with the expectation that the translation of TF-encoding mRNAs
and the initial response by target genes should occur on a faster

time scale (<0.5 h) than the interval be-
tween samples in our time course (1.5–
16.0 h).

The hierarchical relationships
among these four regulator groups were
confirmed by comparing the number of
factors regulating each regulator to the
number of its targets (Supplemental Fig.
S4). This analysis shows that the regula-
tors in Group 1 have more targets than
regulators, those in Groups 2 and 3
have about the same number of targets
and regulators, and those in Group 4
have more targets than regulators.

Network analysis reveals mechanisms

of capsule biosynthesis regulation

Although little is known about the gly-
cosyltransferase reactions that generate
capsule polysaccharides, the upstream
pathways that form precursors for this
process are well defined. Nucleotide sug-
ar donors of mannose, galactose, glucu-
ronic acid, and xylose are synthesized
in the cytosol and transported into the
Golgi for use in capsule synthesis (Fig.
7A). We analyzed our network to gain
insight into the regulation of these key
metabolic processes. PSA101 is the most
heavily regulated of the genes we ana-
lyzed, suggesting that it is a key point at
which transcriptional regulation affects
biosynthesis. Of the two genes encod-
ing GDP-mannose transporters, GMT1,
which has a much greater effect on cap-
sule size (Wang et al. 2014), is regulated
by the major capsule regulators Cir1
(Jung et al. 2006), Rim101 (O’Meara
et al. 2014), and Ada2 (Haynes et al.
2011). GMT2, whose deletion shows a
phenotype only whenGMT1 is also inac-
tivated (Wang et al. 2014), is repressed
by Usv101 and activated by Rds2, a TF
without a significant capsule thickness
phenotype. The degree of regulation by
capsule-involved TFs thus highlights
the transporter that is more heavily in-
volved in capsule synthesis.

The TFs that regulate the largest
number of genes involved in upstream

capsule biosynthetic processes are Nrg1, whose mutant is severely
hypocapsular, closely followed by Usv101, whose hypercapsular
deletion phenotype is reported here for the first time, Cir1,
Rim101, and Ada2. Regulation of capsule biosynthetic enzymes
and transporters is sufficient to explain the phenotypes ofmutants
lacking Cir1, Nrg1, Usv1, and Ada2: Usv101 (hypercapsular) pri-
marily represses these pathways, whereas the others (hypocapsular)
primarily activate them. The hypocapsular phenotype of rim101 is
less well explained, as Rim101 appears to repress UXS1 and GMT1
while activating PMM1 and PSA1. Likewise, the phenotypes of
mbs1 and fkh2 are not explained by the relationships we have
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identified, suggesting that some of their other targets may have as-
yet-unknown roles in capsule synthesis.

The TFs that regulate themetabolic pathways shown in Figure
7A also regulate one another in what is largely a feed-forward hier-
archy (Fig. 7B). Cir1, Nrg1, and Usv101 sit at the top of the hierar-
chy, each regulating multiple other TFs. The other regulator at the
top of the pathway is Ccd3, which interestingly does not have a
capsule size phenotype despite activating four TFs with hypo-
capsular phenotypes. Clr2, Mbs1, Fkh2, Hap5, and Bik1 form
an intermediate layer; and Hap3, Rds2, Rim101, and Ada2 appear
at the bottom of the cascade, because they regulate enzymes
and transporters directly but do not regulate other TFs in this
context. Of the seven TFs that regulate only one or two biosyn-

thetic genes in Figure 7A and do not reg-
ulate other TFs in Figure 7B, only one is
required for normal capsule thickness.
In contrast, all five of the TFs that regu-
late three or more genes in Figure 7A are
required.

Discussion

NetProphet andPhenoProphet enable in-
dividual laboratories lacking the resourc-
es of a genome center to systematically
and efficiently study the transcriptional
regulation of a specific physiological pro-
cess. Currently, the TFs that regulate a
processof interestare typicallydiscovered
by large-scalemutant screens, and TF-tar-
get relations are mapped in big-science
projects thatdonot focusonTFswith spe-
cific biological functions (Harbison et al.
2004; Hu et al. 2007; Kemmeren et al.
2014). Our approach brings TF discovery
and mapping together through focused,
iterativenetworkconstructionandanaly-
sis. We demonstrated this approach by
mapping the network that regulates the
majorvirulence factorofCryptococcusneo-
formans, a deadly human pathogen. Key
to the success of this effortwas PhenoPro-
phet’s accuracy in identifying TFs that
are required for normal capsule growth.
This enrichment for TFs involved in cap-
sule regulation enabled us to perform
quantitative capsule-size assays that are
more sensitive, but also more labor-in-
tensive, than those used in traditional
screens. Our approach enables TF net-
works to be mapped using only gene
perturbation and expression profiling,
both of which are straightforward in
most experimental systems. Indeed, the
number of TF-perturbation expression
profiles for mammalian systems is grow-
ing rapidly, facilitating the application
of our approach to mammals. No single
approach has perfect sensitivity and spe-
cificity, so large-scale mutant screens
and ChIP-seq remain important comple-
mentary methods. Nonetheless, we have

filled a significant methodological gap between single-gene ap-
proaches and undirected genomic approaches.

Using the NetProphet–PhenoProphet approach, we produced
a comprehensive map of the TF network that regulates cryptococ-
cal capsule size, increased the number of TFs known to regulate
capsule from 11 to 28, and increased the number of C. neoformans
TFs with known sequence specificity from two to 18. In the course
of this work, we generated a rich resource for systems biology of
fungal virulence. We increased the number of publically available
RNA-seq profiles from C. neoformans TF-deletion studies 20-fold,
more than doubled the total number of Cryptococcus expression
profiles (including microarrays), presented the first time course
of expression during capsule induction, and generated virulence-
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related phenotypes for 41 regulator deletion mutants under
identical conditions, including all known TF mutants that affect
capsule size. Taken together, our data sets form the most com-
prehensive resource for regulatory systems biology available for
any fungal pathogen. We expect that this data set, like large-scale
data sets for S. cerevisiae (Harbison et al. 2004; Hu et al. 2007), will
catalyze the development of powerful new network analysis and
phenotype prediction algorithms.

Our kinetic evaluation of gene expression during capsule in-
duction (Fig. 6) allowed us to cluster major regulators based on
their temporal expression patterns. We found that the TFs com-
prising Group 1 decrease in expression during capsule induction,
releasing repression of Group 2 TFs, which correspondingly in-
crease in expression. Groups 1 and 2 have strikingly similar net ef-
fects through opposite expression patterns and opposite effects
on target expression, forming coherent feed forward loops. Our
dynamic analysis also revealed how regulators interact to influ-
ence general cellular processes as well as capsule synthetic path-
ways. For example, the Group 1 and 2 regulators cooperate to
induce mitochondrially encoded respiration genes, resulting in
massive up-regulation of these genes (mean, 57-fold; median,
20-fold). This is interesting because host conditions are hypoxic
(Erecinska and Silver 2001), and the virulence of Cryptococcus
gatii, which can cause fatal infections in immunocompetent
individuals, is closely associated with up-regulation of mito-
chondrial gene expression (Ma et al. 2009). We also integrated
our broad analysis of transcriptional dynamics with our focused
analysis of nucleotide sugar regulation. Both analyses highlight hi-
erarchies of transcription factors that are largely consistent with
one another. They agree that Nrg1 is at the top, as it regulates
many capsule-involved TFs but is not itself transcriptionally reg-
ulated. They further agree that Hap3, Rim101, and Ada2 are at
the bottom, regulated by many TFs and regulating relatively few,
and Usv101, Mbs1, and Fkh2 play both roles, integrating sig-
nals from master regulators and distributing them to lower level
regulators.

Much of the downstream machinery required for capsule
polysaccharide synthesis has not yet been identified. We expect
that the NetProphet network, in addition to efficiently identifying
novel capsule regulators, will address this gap. For example, we no-
ticed that CNAG_03320 (the more diverged of two cryptococcal
homologs of the S. cerevisiae GDP-mannose pyrophosphorylase
Psa1) was regulated by large numbers of capsule-involved TFs,
suggesting that it might have a role in synthesizing capsule pre-
cursors.Whenwe tested this idea by deleting the gene, nownamed
PSA101, the mutants were indeed severely hypocapsular. Another
way in which the network can highlight relevant biosyntheticma-
chinery is illustrated by Ecm2201, a TF that is required for normal
capsule growth but does not regulate any other genes known to
be required for normal capsule. We anticipate that the targets of
Ecm2201 and other TFs with unexplained phenotypes include
missing elements of capsule biosynthetic pathways. Filling in
these gaps in knowledge about synthesis of a major virulence fac-
tor that has no parallel in human cellsmayhelp identify targets for
future antifungal therapy.

In addition to capsule size, we assayed ourmatched set ofmu-
tants for other virulence-related phenotypes, including capsule
shedding, melanization, and infectivity in a short-term mouse
model. This revealed some surprising relationships among pheno-
types. Many of our novel TF mutants that affected capsule
thickness also affected infectivity, with both hypercapsular and
hypocapsular mutants showing reduced infectivity. Hypercapsular

mutants were particularly impaired in this regard. This is con-
sistent with a recent report that virulence in C. neoformans is pos-
itively correlated with rate of uptake by macrophages, which is
negatively correlatedwith capsule size (Sabiiti et al. 2014). Reduced
capsule shedding was a strong and significant predictor of reduced
infectivity (P < 0.03). Thickness and shedding were not clearly re-
lated, suggesting that these processes are independently regulated
and that enlarged capsules might result from increased production
in some cases and reduced shedding in others. We also observed
that deletion of TFs frequently increases capsule size variability,
showing that variability is controlled by TFs, probably through
negative feedback loops.

In this paper, we report a significant advance in the efficiency
with which TFs that regulate a specific biological process can be
identified and their regulatory networks mapped. We used that
technical advance to gain significant insights into fungal virulence
regulation. In the process, we produced a valuable resource for reg-
ulatory systems biology of fungal pathogens, comprising high
quality gene expression and phenotype data produced by a single
laboratory using a consistent strain background. We expect that
our methodological advances will have a broad impact in systems
biology and that our discoveries and data resources will transform
our understanding of fungal virulence.

Methods

Materials, strains, and cell growth

Cell culture media (i.e., Dulbecco’s Modified Eagle’s Medium,
D6429), chemicals (i.e., L-DOPA for melanization, D9628), and
PCR primers were from Sigma-Aldrich; PCR purification (28106)
and gel extraction (28706) kits from Qiagen; and reagents used
for RNA-seq, such as the SuperScript III Kit (18080) and the
mRNA Catcher Plus Kit (K1570), from Life Technologies. Strains
were made in C. neoformans KN99α (Nielsen et al. 2005) with stan-
dard growth at 30°C in yeast peptone dextrose (YPD) medium. For
capsule induction, an overnight culture in YPDwas washed, resus-
pended in DMEM, and grown at 37°C in 5% CO2.

Gene manipulation and naming

A split-marker strategy (Fu et al. 2006) was used to replace specific
genomic targets with drug resistance cassettes as in Haynes et al.
(2011) and to incorporate HA tags; see Supplemental Methods
for details and our gene naming protocol. New gene names were
CLR, capsule-linked regulator; MLR, melanin-linked regulator;
and CCD, capsule-correlated DNA-binding protein.

Phenotyping

Growth in vitro was assessed by cell counts, melanization by colo-
ny color on L-DOPA agar, and shed capsule polysaccharide by
the Cryptococcal Antigen Latex Agglutination System (CALAS,
Meridian Bioscience). To assess capsule thickness, duplicate cul-
tures of cells grown for 24 h in inducing conditions were washed
and mixed 3:1 (v/v) with India ink for imaging. The cell wall and
capsule edge of each cell were manually annotated (≥10 images
per culture) using custom software, and the capsule thickness (out-
er capsule edge diameter minus cell wall diameter) of mutants
relative to WT cells grown in parallel was calculated. Only signifi-
cant differences (P < 10−7) of more than 2.5 pixels were reported
as altered capsule thickness. Additional details are provided in
Supplemental Methods section “Phenotyping.”
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RNA isolation, RNA-seq, and ChIP-seq

RNA was isolated by standard methods from ≥3 biological repli-
cates for each strain grown for 90 min in capsule-inducing condi-
tions. Libraries for RNA-seq were prepared as in Haynes et al.
(2011), barcoded, and pooled in equimolar ratios for multiplex se-
quencing. ChIP studies were performed as in Haynes et al. (2011),
usingWT andHA-tagged strains and comparing samples subjected
to immunoprecipitation (IP) to input material and mock precipi-
tated samples. Additional details are provided in Supplemental
Methods sections “RNA Isolation,” “RNA-seq,” and “ChIP-seq.”

Animal studies

All animal studies were reviewed and approved by the Animal
Studies Committee of Washington University School of Medicine
and conducted according to NIH guidelines. Groups of six 6-wk-
old female C57BL/6 mice were inoculated intranasally with
1.25 × 104 cryptococci, and lung CFU were determined at 2 h
and 7 d post-infection; details are in the Supplemental Material.

Comparison of phenotype prediction methods

The accuracy of eachmethodwas assessed by comparing its predic-
tions to the phenotypes of 50 single-regulator deletion strains that
have been analyzed for capsule thickness either by us or in pub-
lished works (Supplemental Table S2, Tab B). Most of these genes
were deleted because they were thought likely to have capsule phe-
notypes—they are not a random sample of all cryptococcal TFs,
and 32 of them had altered capsule thickness. Differential expres-
sionwas assessed using standardmethods. Capsule size correlation
was assessed as in Haynes et al. (2011). Phenologs were assessed as
inMcGary et al. (2010). The PhenoProphet score of a TF for capsule
thickness is −log P-value from the hypergeometric test for en-
richment of its NetProphet-predicted targets for genes that are
known to have capsule thickness phenotypes. Specifically, the
PhenoProphet score is the maximum −log P-value over all net-
works consisting of the top nNetProphet predictions, with n rang-
ing from 500 to 40,000 in increments of 500. To compute the
NetProphet and PhenoProphet scores of a TF, we did not use any
information about the phenotype or expression profile of the cor-
responding deletion mutant. Additional details are provided in
Supplemental Methods section “Comparison of phenotype pre-
diction methods.”

Network validation

For Gat201 (CNAG_01551), we used published ChIP data
(Chun et al. 2011). For Nrg1 (CNAG_05222) and Usv101
(CNAG_05420), we carried out ChIP-seq as above. For each TF, a
ChIP-based sequence-specific binding motif was inferred using
BioProspector (Liu et al. 2001). Promoter regions were defined as
the 1000 bp upstream of the start codon. A NetProphet-based
binding motif was also inferred by inputting NetProphet’s target
confidence scores for each TF to FIRE (Elemento et al. 2007). The
motifs of orthologous TFs from S. cerevisiae were obtained from
ScerTF (Spivak and Stormo 2012). If the motif for the best S. cerevi-
siaematchwas unknown, the next bestmatchwas used. A network
of interactions that were supported by both ChIP and NetProphet
was constructed using the top 10,000 NetProphet predictions.
Additional details are provided in Supplemental Methods section
“Network validation.”

Transcriptional dynamics of capsule induction

Triplicate cultures of WT cells were sampled for RNA-seq at 0, 1.5,
3, 8, and 24 h after a shift to capsule-inducing conditions. For

each gene, a temporal expression signature was constructed from
its median expression level at each time point. For each pair of
genes, the correlation between their temporal signatures was con-
verted to a dissimilarity (see SupplementalMaterial). Gene clusters
were formed by applying hierarchical agglomerative clustering
and cutting the resulting dendrogram at the 10-branch level. For
each cluster, GO and KEGG functional enrichment analysis were
performed, overrepresented terms were examined in detail, and
relevant terms were selected. The heatmap was created by scaling
the expression of each gene to span the range from 0 to 1.

Temporal expression signatures for capsule-involved regula-
tors and capsule-involved nonregulators were clustered separately
into four groups each (Fig. 6, circles and boxes, respectively). One
of the groups of nonregulators is not shown, as we had no com-
ment on it. A combined signature was generated for each cluster
by taking the median expression level of all genes in the cluster
at each time point. If the number of NetProphet-predicted activat-
ing (repressing) edges from one regulator group to another was en-
riched 1.5-fold relative to an even distribution of the activating
(repressing) edges among regulator groups, then the correspond-
ing activating (repressing) edge was shown in Figure 6B. The anal-
ogous calculations were made for edges from regulator groups to
nonregulator groups.

Data access

All generated RNA-seq and ChIP-seq data have been submitted to
the NCBI Gene Expression Omnibus (GEO; http://www.ncbi.nlm.
nih.gov/geo/) under accession number GSE60398. A software
package that implements PhenoProphet is available as Supple-
mental File 6.
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