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Short tandem repeats (STRs) are implicated in dozens of human genetic diseases and contribute significantly to genome

variation and instability. Yet profiling STRs from short-read sequencing data is challenging because of their high sequencing

error rates. Here, we developed STR-FM, short tandem repeat profiling using flank-based mapping, a computational pipe-

line that can detect the full spectrum of STR alleles from short-read data, can adapt to emerging read-mapping algorithms,

and can be applied to heterogeneous genetic samples (e.g., tumors, viruses, and genomes of organelles). We used STR-FM to

study STR error rates and patterns in publicly available human and in-house generated ultradeep plasmid sequencing data

sets. We discovered that STRs sequenced with a PCR-free protocol have up to ninefold fewer errors than those sequenced

with a PCR-containing protocol. We constructed an error correction model for genotyping STRs that can distinguish het-

erozygous alleles containing STRs with consecutive repeat numbers. Applying our model and pipeline to Illumina sequenc-

ing data with 100-bp reads, we could confidently genotype several disease-related long trinucleotide STRs. Utilizing this

pipeline, for the first time we determined the genome-wide STR germline mutation rate from a deeply sequenced human

pedigree. Additionally, we built a tool that recommends minimal sequencing depth for accurate STR genotyping, depend-

ing on repeat length and sequencing read length. The required read depth increases with STR length and is lower for a PCR-

free protocol. This suite of tools addresses the pressing challenges surrounding STR genotyping, and thus is of wide interest

to researchers investigating disease-related STRs and STR evolution.

[Supplemental material is available for this article.]

Short tandem repeats (STRs) of 1–6 base pairs per motif constitute
∼3% of the human genome (Lander 2001). Due to the high inci-
dence of polymerase slippage at STRs (Levinson and Gutman
1987; Abdulovic et al. 2011; Baptiste and Eckert 2012), these re-
peats have elevated germline mutation and polymorphism rates.
After a certain threshold length, STRs are termed microsatellites
(Kelkar et al. 2010; Ananda et al. 2013). The high level of polymor-
phismmakes microsatellites attractive markers for population and
conservation genetics studies (Jarne and Lagoda 1996; Sunnucks
2000; Wan et al. 2004; Kim and Sappington 2013) and for identi-
fying individuals in forensics (Hagelberg et al. 1991; Chambers
et al. 2014). Many STRs are involved in gene regulation and pro-
tein function (Li et al. 2004), with ∼17% of human genes con-
taining STRs in their open reading frames (Gemayel et al. 2010).
Although long microsatellites have attracted much attention,
length alterations even within relatively short repeat tracts are

sometimes associatedwith disease (Li et al. 2004). For instance, dif-
ferences in the number of repeats at the (TG)10-13(T)5-9 STR located
within the splicing branch/acceptor site of theCFTR gene (exon 9)
can affect in-frame exon skipping and, as a result, can influence
the severity of cystic fibrosis (Cuppens et al. 1990; Chu et al.
1991). The purity of STRs (the degree to which the perfect STR
sequence remains uninterrupted) also has a functional effect.
Interrupted STRs have lower mutation rates (Ananda et al. 2014),
and this can diminish disease risk. For instance, ∼6% of Ashkenazi
Jews have a T to Amutation in the APC gene (encoding for a tumor
suppressor) that alters an interrupted STR (A)3T(A)4 into a perfect
(A)8 (Laken et al. 1997). This increases the probability of somatic
frameshift mutation within the STR, leading to APC protein in-
activation. As a result, Ashkenazi Jews have a higher colorectal can-
cer risk (Gryfe et al. 1999). Since even small changes in STR length
and purity can have functional effects, accurate STR profiling is
crucial.
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Despite the importance of STRs in evolution and disease,
their accurate genotyping from next generation sequencing
(NGS) data has been challenging (for review, see Treangen and
Salzberg 2012). Sequencing library construction frequently in-
cludes polymerase chain reaction (PCR) steps during which a poly-
merase might undergo slippage at STRs, leading to amplicons that
differ in length due to expansion and contraction of repeat units
(Ellegren 2004; Wang et al. 2011). Additionally, base calling by
NGS instruments at repetitive regions is frequently imprecise.
These factors result in high sequencing errors at homopolymer
runs produced by the 454 (Roche) and Illumina instruments
(Balzer et al. 2010; Albers et al. 2011).

From a bioinformatics perspective, if STR-containing reads
are mapped in their entirety, some reads cannot be mapped
because of high mismatch/indel penalties associated with STR
lengths different than those at the corresponding positions in
the reference genome. This obscures accurate estimation of allele
frequency and underestimates the real level of STR variation in
the genome. To alleviate this problem, a short-read alignment ap-
proach using nonrepetitive flanks of STR-containing reads has
been proposed recently (lobSTR) (Gymrek et al. 2012). This tool
has fast running time and takes into account PCR stutter noise
during the genotyping stage. However, the entropy scanning im-
plemented by lobSTR to detect STRs has low sensitivity for mono-
nucleotide STRs and short STRs (<25 bp), which constitute a large
proportion of STRs in the genome. Additionally, the allele frequen-
cy at STRs for genetically heterogeneous samples, for which a simple
1:1 ratio in allele frequency present in heterozygous diploids is
not expected (e.g., for tumors, viral populations, and organelles),
cannot be determined. Furthermore, lobSTR uses a fixed (embed-
ded in the program) mapping algorithm. Novel short-read map-
ping and STR detection algorithms (Pellegrini et al. 2010; Lim
et al. 2013) are constantly being developed; an STR-profiling tool
that can be customized to incorporate emerging mapping algo-
rithms is needed.

The recently released PCR-free Illumina library preparation
protocol (hereafter called “PCR−”) is expected to improve STR
genotyping accuracy. The direct advantage of limiting PCR steps
during NGS is the increased uniformity of the sequencing depth
(Kozarewa et al. 2009). Also, this protocol eliminates duplicate
reads that obscure allele frequency profiling for heterogeneous
genetic samples. Importantly, the degree to which the accuracy
of calling STR alleles is improved using the PCR-free protocol has
not been evaluated previously. Moreover, massive amounts of
data have already been generated by the NGS technology with
the PCR-containing library preparation protocol (hereafter called
“PCR+”), and some such data cannot be regenerated due to the
scarcity of samples and/or time and cost constraints. Therefore,
universal methods are urgently needed that can evaluate and
correct STR errors generated by NGS technology (both PCR− and
PCR+) and accommodate evolving protocols and sequencing
techniques.

Some efforts have been made to evaluate errors generated by
NGS at STRs. For instance, errors at STRs sequenced with the PCR+
protocol vary with repeat number and motif size (Luo et al. 2012).
However, an explicit quantitation of various sources of STR-related
sequencing errors has been lacking, which hinders an unambigu-
ous estimation of STR mutational properties. Indeed, as both mu-
tation and sequencing error rates increase with STR length (Kelkar
et al. 2008; Luo et al. 2012; Highnam et al. 2013), one cannot con-
fidently decipher mutation rates without accounting for sequenc-
ing error rates. Recently, a tool to guide genotyping of STRs using

informed error profiles from inbred Drosophila lines (RepeatSeq)
has been released (Highnam et al. 2013). This tool utilizes reads
mapped by other programs, such as BWA (Li and Durbin 2009)
and Bowtie (Langmead et al. 2009), and predicts themost probable
genotype at a locus based on STR motif, length, and base quality.
However, RepeatSeq uses the whole-read mapping approach,
which introduces a bias toward the STR length in the reference ge-
nome (Gymrek et al. 2012) and thus might obscure the true STR
variation spectrum. Such biases can be accounted for by an error
correction model based on the STR flank-based method.

To profile the full spectrum of STR lengths in the human and
other genomes, and to correct for NGS-associated STR errors, we
developed STR-FM (short tandem repeat profiling using a flank-
based mapping approach), a flexible pipeline for detecting and
genotyping STRs from short-read sequencing data. Our pipeline
can detect STRs of any length, including short ones (as short as
only two repeats), includes an error-correctingmodule, and can in-
corporate any NGS mapping algorithm with paired-end mapping
capability, making it adaptable to new mapping methods as they
become available. Applying this pipeline, we asked the following
questions. First, what are the rates and patterns of sequencing er-
rors associated with STRs of different motif sizes (mono-, di-, tri-,
and tetranucleotides), motif compositions, and repeat numbers?
These were contrasted between publicly available genome-wide
data sets sequenced with PCR+ and PCR− protocols and validated
with in-house generated, ultradeep sequencing of plasmids har-
boring individual STR sequences. Second, do technical errors
have different patterns from true STR mutations? Third, based
on the detailed knowledge of the error profiles, what is the mini-
mum sequencing depth required for producing reliable STR geno-
types for PCR+ and PCR− protocols? As a result, we provide the
scientific community with STR-FM, a reproducible and versatile
pipeline for genotyping STRs that incorporates an error correction
model. To illustrate the utility of STR-FM, we applied it to the
completely sequenced human genomes from the Platinum
Genomes Project (Ajay et al. 2011) and determined human ge-
nome-wide germline mutation rates at STRs.

Results

The STR-FM pipeline

We designed the STR-FMpipeline as a collection of tools in Galaxy
(Giardine et al. 2005; Blankenberg et al. 2010, 2014; Goecks et al.
2010), providing integration with various mapping algorithms
and customization for a variety of applications. Either single-end
or paired-end sequencing data can be utilized; for paired-end
read data, each read is treated separately. The core of the pipeline
consists of the following three procedures (Supplemental Fig.
S1). First, STR-FM runs a short-read STR detection tool using a
string comparison algorithm (see Methods for details). The algo-
rithm can detect exact (pure, or uninterrupted) STRs (mono-
through hexanucleotide STRs greater than or equal to two repeats),
incomplete motifs (e.g., ATATATA), interrupted STRs (e.g., AAAA
TAAAAA), or multiple STRs in a read. Reads that do not have suffi-
cient upstreamor downstream sequences flanking the STRs are dis-
carded (we used a threshold of 20 bp on each side of an STR). Next,
each read is split into two “pseudoreads,” containing the upstream
and downstream flanks surrounding the STR. These are mapped to
the reference genome using a standard paired-end read-mapping
algorithm, e.g., BWA (Li and Durbin 2009, 2010), Bowtie (Lang-
mead et al. 2009), or Bowtie 2 (Langmead and Salzberg 2012),
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treating each pair of flanking sequences as a faux paired-end read.
Finally, STR-FM runs a profiler tool, which groups all reads with
STRs that are mapped to the same location in the reference ge-
nome. As a result, an array of all STR lengths from the reads map-
ping to a particular STR-containing locus is generated. The number
of reads that completely cover an STR and its flanks is referred to as
the “informative sequencing depth.” See Supplemental Text for
details about running time and sensitivity of detection (Supple-
mental Tables S1–S5; Supplemental Fig S2).

Assessment of error profiles at STRs for PCR+

and PCR− library preparation protocols

TheNGS errors at STRswere evaluated using two data sets. First, we
utilized the PCR+ DNA sequencing data generated on a HiSeq in-
strument (150× depth) for a human male (SAMN00716185) se-
quenced as a part of the iPOP study (Chen et al. 2012). We
combined the blood and saliva samples, as they had similar error
profiles (see below). Second, we utilized the PCR− sequencing
data generated on a HiSeq instrument (245× depth) for a human
male blood sample (NA12882) sequenced as a part of the
Platinum Genome Project (Ajay et al. 2011). The PCR− data were
down-sampled to obtain the same number of filtered STRs (for
eachmotif size) as present in the PCR+ data set for fair comparison,
i.e., to obtain the 150× depth. These two data sets are comparable
because both were generated on a HiSeq instrument using paired-
end 100-bp reads. Therefore, the differences in their STR error
profiles are expected to reflect the contribution of the PCR step
during library preparation. To avoid heterozygous sites, we limited
our analysis to the non-pseudoautosomal regions of Chromosome
X. As this chromosome is hemizygous inmales, any STR variability
within an allele should result primarily from PCR and sequencing
errors. We analyzed mono-, di-, tri-, and tetranucleotide STRs,
which have lengths of at least 5, 6, 9, and 12 bp, respectively
(the numbers of STRs analyzed are listed in Supplemental Table
S6; fewer loci were detected in the regions occupied by Alu and
L1 repetitive elements [Supplemental Table S5]). Only uninter-
rupted (perfect) STRs were considered. A stringent procedure was
used to reduce bioinformatics errors (e.g., we removed non-
uniquely mapped reads and reads with improper orientation be-
tween pairs, etc.; see Methods for details). For each STR locus in
the reference genome’s Chromosome X, we collected all mapped
STR-containing reads using STR-FM and assigned the most fre-
quent STR length as the major allele length for that particular lo-
cus. All STR lengths that differed from the major allele length
were considered to represent sequencing errors. As the rate of
sequencing errors correlates with STR length (Luo et al. 2012;
Highnam et al. 2013), we grouped STR loci by the major allele
length and evaluated their error profiles.

The PCR+ data had significantly higher error rates than the
PCR− data for both mono- and dinucleotide STRs (Fig. 1A), except
for very short ones (repeat number ≤5). For mononucleotide STRs,
the difference in error rates increases until ∼11 bp, after which it
plateaus at an ∼2.5-fold difference. For dinucleotide STRs, the
difference increases until ∼16 bp, plateauing at an ∼3.6-fold differ-
ence. For most tri- and tetranucleotide loci studied (Supplemental
Fig. S3), the PCR+ data also had higher error rates than the PCR−
data; however, the confidence intervals of the two curves frequent-
ly overlapped. Blood and saliva PCR+data had similar error profiles
(Supplemental Fig. S4). Our overall results did not change consid-
erably depending on whether we used the complete (245×) or
down-sampled (150×) PCR− data (Supplemental Fig. S5); there-

fore, in the subsequent analyses we used the error rates from the
complete (245×) PCR− data set, because it produces more narrow
confidence intervals.

We observed several trends that were similar for both PCR+
and PCR− data. For all four repeat motif sizes, the error rates in-
creased exponentially with repeat length and approached a pla-
teau at longer repeats (Fig. 1A; Supplemental Figs. S3, S5),
corroborating previous studies (Albers et al. 2011; Gymrek et al.
2012; Montgomery et al. 2013). For a fixed repeat length, error
rates were highest for mononucleotide, intermediate for di-
nucleotide and trinucleotide, and lowest for tetranucleotide
STRs (Fig. 1A; Supplemental Figs. S3, S5). We also classified se-
quencing errors into four categories: (1) shorter than the major al-
lele length by one repeat (1-unit-del); (2) shorter bymore than one
repeat (>1-unit-del); (3) longer by one repeat (1-unit-ins); or (4)
longer by more than one repeat (>1-unit-ins). The “1-unit-del”
was the most common error category for all STRs (Fig. 1B,C;
Supplemental Figs. S6, S7). For mono- and di-nucleotide STRs,
the “1-unit-del” was followed (in the order of diminishing preva-
lence) by “1-unit-ins”, “>1-unit-del”, and “>1-unit-ins” (Fig. 1B,
C; Supplemental Fig. S6A,B). For the other STRs, no further conclu-
sions could be drawn due to the limited number of sites and over-
lapping confidence intervals (Supplemental Figs. S6, S7).

We also studied the effect of motif composition on the error
rate. For dinucleotide STRs at least 14 bp (seven units) long, signifi-
cantly higher error rates were observed at (AT/TA)n repeats than at
(AC/GT)n, (AG/CT)n, and (GC/CG)n repeats, in both PCR+ and
PCR− data (Supplemental Fig. S8B,D). For mononucleotide STRs,
no significant differences in error rates between (A/T) and (G/C) re-
peats were observed for the lengths studied (Supplemental Fig.
S8A,C). For tri- and tetranucleotide STRs, the number of loci was
insufficient to evaluate the influence of motif composition on er-
ror rates.

Somatic mutations also might contribute to the STR variabil-
ity in the two data sets analyzed here; however, both the PCR+ and
PCR− data should be affected by them equally. Moreover, the
somatic mutation rates of dinucleotide STRs estimated in previous
studies (Hile et al. 2000; Baptiste and Eckert 2012) are 100- to 1000-
fold lower than the error rates estimated here (for the same repeat
number). Therefore, the contribution of somatic mutations to STR
error rates estimation here is negligible.

Confirmation of STR error patterns via ultradeep

sequencing of plasmids

The genome-wide PCR+ and PCR− data sets utilized above were
generated in two different sequencing facilities, and this might
have contributed to the discrepancy in their error rates, e.g., due
to batch effect. We therefore sought to confirm our findings
with an additional data set that we generated entirely in our own
laboratory; namely, using both PCR+ and PCR− protocols, we se-
quenced STRs cloned in a plasmid vector. All data were generated
in our facility using the same DNA samples, personnel, and equip-
ment. We sequenced 11 plasmid libraries containing STR inserts
(Supplemental Tables S7, S8) and a control vector plasmid library
without an STR insert. We generated ∼100,000× depth on a
MiSeq instrument, which has error rates comparable to those of
HiSeq (Quail 2012). In addition to the inserts, all plasmid vector se-
quences contained 49, 14, and one mono-, di-, and trinucleotide
STRs, respectively (Supplemental Table S8). Our plasmid analyses
confirmed that PCR+ data had significantly higher STR error rates
than PCR− data for mono- and dinucleotide STRs (Fig. 1D). The
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error rates between PCR+ and PCR− datawere comparable for short
STRs; however, for bothmono- and dinucleotide STRs that were at
least seven repeats long, the PCR+ data had consistently higher
STR rates than PCR− data—by ∼4.2- and ∼9.3-fold for mono-
and dinucleotide STRs, respectively.Our plasmid analysis also con-
firms that the “1-unit-del” is the most common category of errors
(Supplemental Fig. S9).

Statistical model for genotyping STRs from NGS data

The error profiles estimated in this study can be used to correct for
TR errors in several applications, including genotyping of diploid
samples (distinguishing betweenhomozygotes andheterozygotes)
and of heterogeneous genetic samples (e.g., tumors, viral popula-
tions, and DNA-containing organelles). To achieve this, we devel-
oped an error correction model that takes STR features (repeat
number andmotif identity) into account (seeMethods for details).
Our error correctionmodel can utilize error profiles (error rates de-
pending on repeat numbers and motif identity) provided by the

user (e.g., for novel sequencing technology), and thus is not limit-
ed to those generated by this study. The model determines the
threemost frequent STR lengths for an individual locus, and, based
on the STR error array for this motif and repeat number, calculates
the probability of generating this profile by a homozygote (all
three possible homozygotes are evaluated) versus a heterozygote
(all three possible heterozygotes are evaluated). For instance, the
model is able to decipher the true genotype (A)9/(A)11, even in
the presence of (A)10 variant calls. It determines themost probable
heterozygote and homozygote alleles at a locus from the NGS data
and reports the log odds ratio between their probabilities, which
can be interpreted as a confidence of genotyping (the higher this
value is from 0, the more confidence we have in this genotype).
For example, if for an STR locus sequenced at depth 9×we observed
three, three, and three reads with (A)9, (A)10, and (A)11, respective-
ly, themost probable heterozygote is (A)9(A)11, and themost prob-
able homozygote is (A)10. According to the model, the log odds
ratio for (A)9(A)11 compared to (A)10 is 8.64 × 104, strongly favoring
a heterozygote in this case.
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Figure 1. Erroneous call rates for Illumina data. The dotted lines represent the 95% confidence intervals of themultinomial sampling. Only repeat lengths
with ≥100 read support (all loci combined) were plotted. (A) Humanmale X Chromosome for PCR-containing (PCR+) and PCR-free (PCR−; down-sampled
data) library preparation protocols. (B) PCR−mononucleotide STR error rates by error categories. See text for the explanation of the categories. (C ) PCR−
dinucleotide STR error rates by error categories. (D) Error rates for ultradeep sequencing of plasmids with PCR+ and PCR− protocols.

Short tandem repeat typing

Genome Research 739
www.genome.org



Accuracy of the genotyping model in diploid samples

To test the performance of our error correction model, we generat-
ed a pseudodiploid data set. For each class of STRs, we selected loci
on the humanmale X Chromosome (from the same data sets that
we used to evaluate the STR error profiles of the PCR+ and PCR−
data above) that are supported by at least five reads. Then, we gen-
erated 10,000 sets of “homozygous” loci by randomly selecting
two loci with the same motif and repeat number and combining
their reads. Similarly, 10,000 “heterozygous” loci were generated
by randomly selecting two loci with the same motif but different
repeat numbers and combining their reads. We focused on the
repeat numbers for which we could esti-
mate error profiles with high confidence:
length ranges of 6–15 bp, 8–23 bp, 12–20
bp, and 16–23 bp for mono-, di-, tri-,
and tetranucleotide STRs, respectively
(see Methods; Supplemental Tables S9,
S10). Here we used error profiles from
the human X Chromosome data as they
includewider STR length range andhigh-
er resolution compared with the plasmid
data.

The genotyping model correctly de-
termined the genotype for 98%–100% of
both homozygotes and heterozygotes
(Table 1). For STRs with motif size of
at least two, our model’s accuracy was
at least 99.68%. Mononucleotide STRs
were slightly more difficult to genotype
correctly than the other STR classes
(1%–2% lower accuracy) and were more
difficult to genotype with PCR+ data
than with PCR− data (∼1% lower accura-
cy). This is consistent with mononucleo-
tide STRs having higher error rates (Fig.
1A,D; Supplemental Fig. S5).

To investigate factors contributing
to erroneous genotyping of mononucle-
otide STRs, we used logistic regressions
with the correct prediction of an allele
combination as the response and with
four predictors: the read depth, STR
length, the difference in the lengths of
STR alleles (for heterozygotes), and the
ratio of read depths supporting each
allele (for heterozygotes; see Methods
for details). A separate logistic regression
was run for PCR+ and PCR− data and
for heterozygous versus homozygous al-

leles. All four predictors were significant in at least one of the
fourmodels (Supplemental Table S11), although the sets of signifi-
cant predictors and their relative contribution to the explained
variability differed among models. However, we observed that
high sequencing depth, small STR length, large difference between
two alleles in heterozygotes, and similar ratio of read depths sup-
porting each allele in heterozygotes increased the prediction pow-
er of each model (see Fig. 2 for examples).

We also evaluated the robustness of genotyping using techni-
cally replicated samples—two PCR− libraries (43× and 60×) of the
whole genome for sample NA12882 from the Platinum Genome
Project (Ajay et al. 2011). We profiled the STR lengths and

Table 1. Evaluation of the STR genotyping model by pseudodiploid genotyping

Repeat class

Percentage of correctly determined genotypes from 10,000 simulations

PCR+ PCR−

Homozygous loci Heterozygous loci Homozygous loci Heterozygous loci

Mononucleotides 98.41 98.73 99.73 99.63
Dinucleotides 99.83 99.73 100.00 99.68
Trinucleotides 99.81 100.00 99.77 99.90
Tetranucleotides 100.00 100.00 100.00 99.98
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Figure 2. Factors that affect the accuracy of STR heterozygote genotyping, using the error correction
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genotyped those sites that had aminimum informative read depth
of 5× in both samples. The ratio of loci that had different geno-
types (the genotype discordance rate) between the two replicated
libraries was only 0.29%.

Accuracy of the genotyping model in heterogeneous genetic

samples

Our error correction model is able to accommodate applications
other than standard diploid genotyping. For example, the allele
contribution ratio can be modified to allow for a nondiploid allele
frequency ratio commonly present in tumors and genomes of or-
ganelles (e.g., mitochondrial DNA). The user can find the percent-
age of heterogeneity thatmaximizes the likelihood of the observed
STR length array or test the ratio that was suggested by a linked ge-
netic marker (e.g., a SNP). To demonstrate this capability, we gen-
otyped a sample of two plasmids with cloned mtDNA D-loop
sequence, premixed at five different ratios—98:2, 99:1, 99.5:0.5,
99.75:0.25, and 99.9:0.1. The two plasmids differ at only one
STR-containing region: the plasmid Z1-1 with a higher proportion
of DNA in the mixture has a (C)8 allele, whereas the lower propor-
tion plasmid R2 has a (C)7 allele (Rebolledo-Jaramillo et al. 2014).
EachmixedDNA samplewas sequenced on aMiSeq instrument us-
ing 250-bp paired-end reads at the depth of 300–2000× per site.
Each mixture was sequenced twice to generate two replicates. We
ran our STR-FM pipeline separately on each mixture and each rep-
licate and genotyped the STR locus in each case. Since the plasmids
were sequenced at a very high depth, the prediction should reflect
the competency of the model to detect the rare allele and not the
sequencing depth (see below). The minor allele was detected for
both replicates at ratios of 98:2 and 99:1 and in one of the two rep-
licates for the other three mixing ratios (Supplemental Table S12).

Genotyping disease-associated long trinucleotide STRs

We explored the abilities of the STR-FM pipeline and statistical
model to genotype long trinucleotide repeats associated with
diseases. Using the PCR−data described above (NA12882 se-
quenced with 100-bp reads at 245× depth) (Ajay et al. 2011), we
genotyped 10 disease-related trinucleotide STRs from Supplemen-
tal Table S1 in Castel et al. (2010). Five of them had read depths
above 5× (repeat length 16–48) and thus could be genotyped
with confidence >90%. These included a 48-bp (homozygote)
CAG repeat in the JPH3 gene (Wilburn et al. 2011), which is asso-
ciated withHuntington’s disease-like 2, and a 32-bp (also homozy-
gote) CCG repeat in the RELN gene, which is associated with a
higher risk of autism (Supplemental Table S13). For the remaining
five loci (including those associated with spinocerebellar ataxia 6,
Jacobsen syndrome, dentatorubral-pallidouysian atrophy, and
Huntington’s disease; repeat length of 34–55 bp), the informative
read depth was below 5× preventing us from genotyping such loci
with confidence (Supplemental Table S13).

STR germline mutation rates and patterns

The germline mutation rate is a fundamental parameter in molec-
ular evolution; however, it has not been evaluated for human STRs
on a genome-wide scale. We utilized our genotyping model to es-
timate STR germline mutation rates using a three-generation ped-
igree—four grandparents, two parents, and 11 children (Fig. 3A)—
sequenced at high depth (43–64×) with a PCR− protocol as part of
the Platinum Genome Project (Ajay et al. 2011). For each se-
quenced individual, we detected and genotyped uninterrupted

(perfect) STRs with at least 6, 8, 9, and 12 bp for mono-, di-, tri-,
and tetranucleotide STRs, respectively.

Overall, the distribution of STR allele lengths as evaluated
from sample NA12882 (one of the 11 children) was similar to that
described in the recent studies (McIver et al. 2011; Payseur et al.
2011; Gymrek et al. 2012; Willems et al. 2014): The proportions
of variable loci increasedwith repeat length and, at the same repeat
length, were lower for STRs with longer motifs (Supplemental Fig.
S10). Here we confirm these trends for mononucleotide STRs,
whichwere removed fromprevious studies due to high sequencing
error rates or inadequacy of error profiles. We also confirm that al-
leles at most heterozygous STRs differ by just one motif unit
(Supplemental Fig. S11; Payseur et al. 2011; Gymrek et al. 2012).
Thus, accurate genotyping of such heterozygotes is important.

We studied germline indelmutations (insertion or deletion of
whole repeat units) in autosomes that occurred in transmissions
from grandparents to parents and that were confirmed by geno-
types of children (Supplemental Figs. S12, S13). To be scored as a
germline mutation, the event was required to have the following
characteristics: (1) a parent having an allele absent fromhis/her fa-
ther or mother (a “putative mutant allele”); (2) a putative mutant
allele present in at least two children to confirm that it is a germ-
line variant; and (3) a putative mutant allele absent in the second
parent (Supplemental Fig. S12A). If a variant STR allele is present in
both parents, the child’s genotypewas required to unambiguously
identify the parent of origin for the putative mutant allele
(Supplemental Fig. S12B; Supplemental Table S14). We included
all 11 children in our data set to capture the vast majority of germ-
line mutations occurring between grandparents and parents. The
cases when putative mutant alleles were present in only one child
were not considered to reduce false positives resulting from incor-
rect genotyping in children.

We required STR-containing loci to be sequenced to at least
5× informative read depth in all children, parents, and grandpar-
ents (Fig. 3A). The number of loci satisfying this requirement to-
taled 9,726,196 (4,863,098 loci in father and 4,863,098 in
mother, equal to 19,452,392 transmitted STR alleles, as one allele
is transmitted from each grandparent). At such loci, we detected
1470 germline mutation events, which is equivalent to 7.6 ×
10−5 mutations per locus per generation (Supplemental Tables
S14, S15). Among these mutations, 452 and 426 occurred in the
male and female germ line (Supplemental Table S14), respectively,
corroborating male mutation bias (Kelkar et al. 2008; Sun et al.
2012). The parental origin of the remaining 592 de novo muta-
tions could not be determined. The level of male mutation bias
varied among STR classes and motifs (Fig. 3B; Supplemental Fig.
S14). The germline mutation rate increased with repeat length
and, among STRs of the same length, was highest for mononucle-
otide repeats (Fig. 3C). The STRs with C and AT motif are the most
mutable among mono- and dinucleotide STRs (Supplemental Fig.
S15), corroborating previous studies (Denver et al. 2004; Kelkar
et al. 2008; Sun et al. 2012). For mono- and dinucleotide STRs,
the “1-unit-ins” were only slightly more abundant than “1-unit-
del” among STR de novo mutations (Fig. 3D; Supplemental Fig.
S16); the confidence intervals highly overlapped. This is in con-
trast to STR NGS sequencing errors that were predominantly “1-
unit-dels” (Fig. 1B,C; Supplemental Figs. S6, S7).

We next examined whether these mutations were distributed
randomly along the genome. The observed number of mutant
mononucleotide STR loci estimated in 50-Mb windows had high
correlation with the number of mutations expected based on our
estimated mutation rates by repeat number and corrected by the
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numberof loci present in eachwindow (Pearson correlation = 0.77;
Spearman correlation = 0.79) (Supplemental Fig. S17), suggesting
that thesemutationswere randomlydistributed along the genome.
Only two windows (Chr 6: 0–50000000 and Chr 11: 100000000–
135006516) had a significantly higher number of mutations
than expected (the P-value of the post-hoc binomial exact test of
these two windows was 1.3 × 10−5 and 4.7 × 10−5, respectively)
(Supplemental Fig. S17). Our data are insufficient to test the ran-
domness of the distribution at smaller windows or for repeats
with a larger motif size.

Required depth for accurate genotyping

The power to accurately genotype a locus depends onmany factors
(Fig. 2), including the lengthof true alleles, the combinationof true
alleles, the ratio of read depths supporting each allele, and the in-
formative read depth at that locus. Based on the error profile we as-
sessed and the genotyping model we formulated, we can estimate
the minimal read depth required to correctly determine an allele

combination for a locus, given the observed STR length array
from the reads mapping to this locus. Recall that informative read
depth at a locus is the number of reads that span the entire STR
and possess ≥20-bp flanks on both of its sides.

We first evaluated the minimum informative read depth re-
quired to accurately genotype a locus as a function of the allele
length. We focused on heterozygous loci with the two alleles con-
taining consecutive repeat numbers, since these are the hardest
cases to genotype. We used simulations (see Methods) to compute
the minimal number of informative reads required to correctly ge-
notype with 90% accuracy (Fig. 4; Supplemental Table S16). For
instance, to correctly genotype (A)13(A)14, 13 informative reads
are required for the PCR+ protocol, whereas only seven informa-
tive reads are required for the PCR− protocol. For PCR− data,
only five informative reads per locus is required for genotyping
of STRs for all motif sizes and repeat numbers up to nine. The
PCR+ data usually requires a higher number of informative reads
for mono- and dinucleotide STRs. For tri- and tetranucleotide
STRs up to 11 repeats, the number of informative reads required
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is only five (Fig. 4), as they have lower error rates (Fig. 1A; Supple-
mental Figs. S3, S5). The sequencing depth requirements for longer
tri- and tetranucleotide STRs could not be evaluated because we
lacked error profile data for such long STRs. We also evaluated
the effect of themotif itself, since somemotifs aremore error prone
than others (Supplemental Table S16). For the STR lengths studied,
we observed a difference in the number of informative reads re-
quired to genotype dinucleotides of allele combination 7/8—sev-
en informative reads are required to genotype (AT)7(AT)8 but
only five for (AC)7(AC)8 and (AG)7(AG)8. The trends for minimum
informative read depth for genotyping with 95% accuracy are sim-
ilar (Supplemental Table S17).

Next, we calculated the average genome-wide depth needed
to achieve a given number of informative reads with 90% likeli-
hood (see Methods). This depth is defined as the ratio of the num-
ber of sequenced bases to the genome length. The needed genome-
wide depth is higher than the informative depth due to the
randomness of the sequencing process and the need to have suffi-
ciently long nonunique flanking regions. Because our calculations
do not account for sequencing quality score, genome location se-
quencing bias, ormapping bias, they only serve as approximations

for what is minimally needed in practice. Figure 5 shows the re-
quired average genome-wide depth as a function of repeat length
of interest and read length utilized. The advantage of long reads
is more pronounced for higher repeat lengths. For instance, to
achieve 10× informative read depth for 10-bp STRs (independent
of their repeat numbers), one needs to accomplish genome-wide
sequencing depth of 26× and 17× for 100-bp and 300-bp single-
end reads, respectively. However, to achieve the same depth for
50-bp STRs, one needs 104× and 21× genome-wide sequencing
depth for 100-bp and 300-bp single-end reads, respectively.

The conversion from informative to genome-wide sequenc-
ing depth substantially increases the difference in depth require-
ments between PCR+ and PCR− protocols. For instance, in the
(A)13(A)14 genotyping example above, the difference in the re-
quired informative sequencing depth between PCR+ and PCR−
protocols was only 6× (13× versus 7×). To achieve these informa-
tive read depths with 100-bp reads, the genome-wide sequencing
depth required for PCR+ and PCR− protocols is 35× and 21×, re-
spectively, leading to the difference of 14×. This result emphasizes
the advantage of the PCR− library preparation protocol in STR
genotyping.

Discussion

STRs are important causative agents of human diseases (Pearson
et al. 2005; Castel et al. 2010) and are useful genetic markers
(Wright and Bentzen 1994; Gupta and Varshney 2000; Miah
et al. 2013; Abdul-Muneer 2014), but their genotyping with NGS
technology is a challenge. To overcome this, we developed STR-
FM, a versatile STR profiling method that is applicable to a wide
range of STR lengths and motifs. We have thoroughly evaluated
STR error profiles generated using Illumina PCR+ and PCR− library
preparation protocols, using both computational and experimen-
tal approaches. As a result, we provide the scientific community
with an STR genotyping tool, including an error correction model
and a tool to evaluate the sequencing depth required for accurate
genotyping of STR loci.

Factors that determine STR error rates and patterns

STR error profiles depend on repeat length (Fig. 1A,D; Supplemen-
tal Fig. S5), motif length (Fig. 1A,D; Supplemental Fig. S5), and
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motif composition (Supplemental Fig. S8), corroborating previous
findings (Shinde et al. 2003; Highnam et al. 2013). For the STR
length ranges considered in this study, mononucleotide STRs
have the highest error rate, followed by di-, tri-, and tetranucleo-
tide STRs, respectively (Fig. 1A,D; Supplemental Figs. S3, S5). The
patterns of STRNGS errorswe describehere are similar to those pre-
viously reported for STRs typed via gel electrophoresis (Murray
et al. 1993; Walsh et al. 1996; Shinde et al. 2003): the most com-
mon STR error category resulting from slippage during PCR ampli-
fication is the “1-unit-del” (e.g., Murray et al. 1993; Walsh et al.
1996). The error rate from 10−6 to 10−5, observed by us here for
five-unit mononucleotide STRs (Fig. 1), is consistent with an ex-
perimentally measured one-base deletion error rate within a five-
base mononucleotide STR (∼1 error per 20,000 nucleotides) syn-
thesized by Taq polymerase (Eckert and Kunkel 1990). Also, our re-
sults based on the NGS data (Supplemental Figs. S3, S5) agree with
previous observations that tri- and tetranucleotide microsatellites
have fewer stutter bands compared with di- and mononucleotide
STRs (Ellegren 2004). The Illumina NGS data studied by us were
generated using the Phusion polymerase (Ajay et al. 2011; Chen
et al. 2012; Oyola et al. 2012); therefore the observed error patterns
might be driven by the error profile of this enzyme. The error rates
of the Phusion enzyme are ∼50-fold lower than those of the Taq
polymerase (Frey and Suppmann 1995). However, the similarity
between our error patterns and those of the Taq polymerase
(Shinde et al. 2003) suggest that the error patterns of these two po-
lymerases are comparable.

The PCR− library preparation protocol is expected to reduce
bias in sequencing coverage (Kozarewa et al. 2009). Our findings
reveal that eliminating the PCR step reduces STR errors as well.
Based on our Chromosome X data, approximately a 1.5–2.8-fold
and 2.0–3.7-fold error reduction was observed for mono- and di-
nucleotide STRswith greater than six and five repeats, respectively.
This allows the PCR− protocol to achieve the equivalent power of
the PCR+ with lower sequencing depth. For example, to dis-
tinguish (A)14 from (A)15 using 100-bp reads, weneed 39× sequenc-
ing depth for PCR+ data, but we need only 29× depth for PCR−
data.

Here we used the hg19 reference genome sequence. Mapping
STRs to GRCh38 (Rosenbloom et al. 2015) might increase the
number of loci that wewill identify, but should not affect our over-
all conclusions. Indeed, we utilized stringent mapping parameters
to map STR flanking regions without mismatches and indels. This
minimized incorrect mapping to paralogous loci that are poten-
tially more abundant in the new reference genome.

Minimum sequencing depth

We developed a method to estimate the informative and genome-
wide sequencing depths required for STR genotyping. We demon-
strate that the required sequencing depth depends on the STR error
profile (as discussed above), sequencing read length, allele combi-
nation, and allele sequencing depth skew in a heterozygote. The
depth-estimating tool integrated in Galaxy (Giardine et al. 2005;
Blankenberg et al. 2010, 2014; Goecks et al. 2010) can be used
for (1) selecting sequencing depth while planning a new project;
and (2) evaluating which STRs can be accurately genotyped from
a completed sequencing project (e.g., using a publicly available
data set). The desired level of resolution contributes to determin-
ing the required read depth. For instance, for some questions (e.
g., for studying allele spectrum in search of loci evolving under se-
lection), distinguishing alleles of consecutive lengths in a hetero-

zygote is important. For other questions (e.g., scoring normal
versus premutation disease-causing alleles separated by several
repeat numbers), such high resolution might not be needed.
Therefore, the recommendedminimal depth for accurate genotyp-
ing is not a fixed number and depends on the research question
and STR loci of interest.

We found that to accurately (with 90% success rate) genotype
STRs with less than nine repeats using the PCR− library protocol,
the required informative read depth is only 5×, which corresponds
to genome-wide sequencing depths of 15×, 17×, 21×, and 26× for
mono-, di-, tri-, and tetranucleotide STRs, respectively (for 100-bp
reads). These sequencing depths are comparable to those present
in most publicly available data sets.

Our genotyping model and minimum sequencing depth
study provide us with an opportunity to recommend the minimal
depth needed for sequencing of disease-causing STRs. For instance,
a change from 10 to 12–17 repeats at the (CGC)n repeat, present at
the gene PABPN1 encoding poly(A) binding protein, causes oculo-
pharyngealmuscular dystrophy (OPMD) (Brais et al. 1998; Pearson
et al. 2005). Running our simulations, we came to a conclusion
that at least five informative reads are required to correctly geno-
type the (CGC)10(CGC)12 heterozygote with a 90% success rate.
This corresponds to a genome-wide sequencing depth of 20× for
100-bp reads, using either the PCR+ or PCR− protocol.

Tools for STR length profiling

The STR-FM pipeline allows one to: (1) detect a broad range of STR
lengths and motifs (including mononucleotide STRs and short
STRs) (Supplemental Table S1); (2) clearly distinguish between per-
fect (uninterrupted) and interrupted STRs (Supplemental Table
S2); and (3) be flexible with respect to the algorithm to be used
formapping the STR flanking sequences. Unlike other approaches,
STR-FM can profile mononucleotide STRs, can profile heteroge-
neous genetic samples that do not follow a 50:50 allele frequency
distribution (down to an allele frequency of 0.01), and can detect
STRs in species without annotated STRs in the reference genome.
Because STR-FM aligns only the flanking sequences and not the
whole read, it is not susceptible to bias of STR length and can be
used to compare themutational spectrum across different lengths.
Our pipeline is integrated into Galaxy (Giardine et al. 2005;
Blankenberg et al. 2010, 2014; Goecks et al. 2010) and thus can
be customized via a graphical user interface.

The STR-FM pipeline also could be used to extract STRs from
mapped long reads generated by SMRT technology (Pacific
Biosciences) (Roberts et al. 2013; Chaisson et al. 2015) or
MinION (Oxford Nanopore) (Schneider and Dekker 2012). The
long reads from these technologies would allow us to study longer
microsatellites, which exceed the current read length of Illumina
technology. Due to the differences in read lengths and sequencing
errors between Illumina and these technologies, however, such
data would require special mapping procedures and the develop-
ment of separate error models. Alternatively, STR-FM can take
mapped reads in standard SAM format, detect STRs in the mapped
reads, and profile the STR length. Although the unbiased property
of flank-basedmappingwill be lost this way, this demonstrates the
versatility of the STR-FM in profiling STRs, even when an ad hoc
mapping algorithm is utilized.

Germline mutation rates of STRs in the human genome

We report here the first genome-wide study of STRmutation rates.
Using the NGS data, we genotyped >4.8 million STR loci, as
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compared to 2477 loci examined in a previous study (Sun et al.
2012). The pattern of de novo STR mutations we observed differs
from that of STR sequencing errors (Figs. 1B,C, 3D; Supplemental
Figs. S6, S7, S14), a result that demonstrates the importance of ap-
plying our error correction genotyping model when studying STR
mutations in genomes. Specifically, germline mutations have
comparable rates for expansions and deletions among the repeat
lengths we studied, whereas STR sequencing errors have a very
strong deletion bias.

The male mutation bias of dinucleotide STRs observed here is
lower than that described in another recently published study (Sun
et al. 2012), which was not genome-wide and included a higher
proportion of AC-repeats than we find genome-wide (cf. Sun
et al. 2012, Supplemental Table S3, with Supplemental Table S18
in the present study). Because AC-repeats have the highest male
mutation bias among the dinucleotide repeats we studied
(Supplemental Fig. S14), this could have inflated male mutation
bias in the study by Sun et al. (2012). Also, a confounder in our
study is that we could identify the parental origin for only 60%
of de novo mutations. We could not assign a parental mutation
bias when both grandparents carried an allele identical to the mu-
tant allele in the next generation, e.g., mutation from (A)6 to (A)7
when both grandparents had (A)6 allele, which could underesti-
mate the real male mutation bias in our study.

The germline mutation rates we estimated for STRs are higher
than recently obtained estimates (Sun et al. 2012). Several factors
could contribute to this difference. We hypothesize that a major
factor is that we used perfect (uninterrupted) STRs exclusively in
this study, whereas the study of Sun et al. (2012) included inter-
rupted STRs that, as we have shown, have significantly lower mu-
tation rates genome-wide (Ananda et al. 2014). Additionally, our
study presents a genome-wide analysis including all STR-contain-
ing loci in the genome for which we could obtain data of high
depth. In contrast, Sun and colleagues analyzed loci used in
large-scale gene-mapping studies, and thus potentially affected
by ascertainment bias. Finally, our analysis is based on the analysis
of a single family, whereas Sun et al. (2012) included hundreds of
families, and this can also lead to differences in mutation rates.

We can apply these STR germlinemutation rates and patterns
in several areas. In population genetics, these rates can be used to
estimate divergence times of recent population splits. Since STRs
have higher mutation rates than SNPs (Ellegren 2004; Campbell
and Eichler 2013), the former can accumulate many mutations
in a short period of time and thus can provide higher resolution.
In forensics, knowingmutation rates can aid in estimating the lev-
el of STR polymorphism, in computing the number of STRmarkers
necessary for individual identification or kinship testing, and in
computing the probability of relatives having different alleles
due to a mutation. Also, in medical research, we can evaluate the
likelihood of premutation STR loci to become disease-causing
STRs in the next generation. Although most studied disease-caus-
ing STRs are long trinucleotide repeats (Pearson et al. 2005),
some short STRs were also shown to have strong implications in
several diseases (Cuppens et al. 1990; Chu et al. 1991; Pearson
et al. 2005).

Methods

Data sets used to assess STR error rates

The PCR+ data were downloaded from the NCBI Sequence Read
Archive (http://www.ncbi.nlm.nih.gov/sra) with accession num-

bers SRR345592–SRR345594. SRR345592 is a 100-bp paired-end
data set sequenced from blood of a human male at the 50×
depth. SRR345593 and SRR345594 are 100-bp paired-end data
sets sequenced from saliva of a human male at the 100× depth.

The PCR− data were downloaded from the European Se-
quence Read Archive (http://www.ebi.ac.uk/ena/) with accession
numbers ERR194151, and ERR174342–ERR174360. This male in-
dividual is a Utah resident (NA12882 from the CEPH collection)
whose blood was sequenced at the 245× depth.

Using STR-FM to assess error profiles in the context of STRs

for Illumina data

Detecting STRs in short reads

Our STR detectionmodule for uninterrupted STRs executes the fol-
lowing three steps: (1) Scanning reads using sliding windows. For a
given “k” (e.g., k = 2 for dinucleotide STRs), we compared consecu-
tive k-mer window size sequences, with a step size of k. If a se-
quence at a given position matches the previous k-mer, it was
marked with a plus and with a minus if otherwise. (2) Since we
donot allowmutations in the reported STR, consecutive plus signal
sequence means that a k-mer STR is present in this sample. (3)
Report k-mer STRs if the length is larger than the threshold provid-
ed by the user.

The method to detect interrupted STRs can be found in
the Supplemental Text. Using the STR-FM pipeline, we detected
mono-, di-, tri-, and tetranucleotide STRs, with lengths ≥5, ≥6,
≥9, and ≥12 bp, respectively, in raw sequencing reads. These
four classes of STRs were analyzed separately throughout the anal-
ysis.We also required that all bases in the STRs, and the 20 flanking
bases on both sides have a Phred quality score of ≥20.

Mapping flanking bases of STRs to the reference genome

At least twenty bases flanking the STRs upstream and downstream
in the STR-containing reads were extracted as FASTQ files and
mapped to the human reference genome (GRCh37) with BWAver-
sion 0.7.5a-r405 (Li and Durbin 2009) as paired-end reads using
aln and sampe mode. To minimize incorrect mapping, mismatch-
es and indels were not allowed in mapping. The resulting align-
ments were filtered to retain only the uniquely mapping flank
pairs with proper orientation of the upstream and downstream
flanks. We discarded STRs that mapped to the Y Chromosome
(pseudoautosomal regions) and human self-alignment regions
from the UCSC Genome Browser to obtain only unique hemizy-
gous loci on Chromosome X (reads mapping to autosomes were
discarded). Duplicated reads were not removed throughout the
analysis to get accurate magnitude of errors generated by the PCR
+ and PCR− library preparation protocols.

Profiling STR length at each locus

At each STR locus in the reference genome (identified using the
same script to detect STRs in reads starting from the FASTA-format-
ted human reference genome [GRCh37]), all mapped STR-contain-
ing reads were binned, and the STRs contained in these reads were
collated. Only uninterrupted reference STR loci were considered.
STRs with the same motif size (mono-, di-, tri-, or tetranucleotide
repeats) on the X Chromosome that are closer than 10 bp were ex-
cluded to avoid incorrect STRs profiling from overlapping STRs.
In total, 789,401, 378,730, 59,383, and 19,322 loci mono-, di-,
tri-, and tetranucleotide STRs, respectively, were studied. The
STRs were checked for motif compatibility with STR motifs in
the reference genome. The major allele length for each locus was
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determined for each STR at each reference locus. Loci supported by
<5 reads or with frequency of major allele <50% were removed.
Thenwe grouped loci by theirmajor allele lengths to evaluate their
error profiles. Any STR length differences from the major allele
length were considered to be erroneous calls.

Construction of bootstrap confidence intervals

For every STR motif size, motif composition, and allele length, us-
ing the observed counts of error variants of different lengths, we
generated multinomially distributed random counts of error vari-
ants and computed the error rate using these counts. This was re-
peated 10,000 times, and the 95% confidence intervals for the
error ratewere constructed from the 2.5th to the 97.5th percentiles
of the error rates. The bootstrap confidence intervals were not
drawn when the sampling numbers of error counts at particular
percentiles were zero. For example, several data points miss the
lower bound of confidence intervals due to the small number of er-
ror counts.

Plasmid construction, sequencing, and analysis

The construction of plasmids containing artificially inserted tan-
dem repeat sequences has been previously described (Eckert et al.
2002; Kelkar et al. 2010; Ananda et al. 2013, 2014; Baptiste et al.
2013). The standard procedures were used for library preparation
and the sequencing on MiSeq. The analysis was performed using
comparable parameters with the analysis in human X Chromo-
some. See Supplemental Text for complete description.

Building an error correction model for genotyping

The raw reads were processed to generate an STR length array using
the STR-FM pipeline. The STR length array for each locus con-
tained repeat length(s), number of repeats, and motif. The three
most common STR lengths from the input STR length array of a
single locus were considered for formulating homozygotes and
heterozygotes.

The probability for any given allele length to be observed was
retrieved from either PCR+ or PCR− error profiles generated from
XChromosome data. When the conversion could not be observed
from an error profile, e.g., (AG)3 was not observed to change to
(AG)8, the base substitution rate (Kong et al. 2012) was used. The
probability value for all the repeat lengths in the input STR length
array was multiplied to calculate the probability to generate
the whole STR length array from either a homozygote or a
heterozygote.

For homozygotes, each of the three most common STR
lengthswas considered. The allele that gave the highest probability
to generate the observed STR array at a locus was considered to rep-
resent the probable homozygous allele. For heterozygotes, the
three most common STR lengths were grouped into three sets of
alleles. For each set, the probability of the two alleles to generate
the observed repeat lengths was averaged. The most probable set
of alleles was used as a probable heterozygous form. The log-
odds ratio of the homozygous form to the heterozygous form
was then reported, with a score greater than zero indicating a ho-
mozygote and a score below zero indicating a heterozygote.

Evaluation of the error correction model’s correct

prediction rate for diploid samples

We used the male X Chromosome sequencing data from the iPOP
study (Chen et al. 2012) (for PCR+) and the Platinum Genome
Project (Ajay et al. 2011) (for PCR−) to in silico generate pseudodi-
ploid data to test the genotypingmodel (see Results).We generated

10,000 homozygous loci by combining two loci with the samemo-
tif and major allele length. Heterozygous loci were generated sim-
ilarly. To ensure that the test data set had an error profile similar to
the actual data, we focused on loci in which the major alleles were
at least one repeat longer than our minimum cutoff (≥6, ≥8, ≥12,
and ≥16 bp, for mono-, di-, tri-, and tetranucleotide STRs, respec-
tively) to allow STR contractions, which are the major category
of STR errors. We considered only the range of STR lengths that
had at least 500 reads in both PCR+ and PCR− data in the STR
genotyping model to ensure reliability of error rates. Motifs that
had only one STR length that passed the criteria were removed
because they would always have a 100% correct prediction and
therefore would not be useful for evaluating our error correction
model. The predictionwas considered to be correct when the allele
combination was determined correctly.

Logistic regressions were performed using the standard R
package (R Core Team 2013). Pseudo R-squared of a model was cal-
culated as (Do−D)/Do, where Do is the null deviance and D is the
residual deviance of the model. Relative contribution of each pre-
dictor to a model was calculated using [(Do−D)− (Do−D(-p))]/(Do

−D), where D(-p) is the deviance of a model obtained by removing
the predictor of interest (Fungtammasan et al. 2012).

The genotype concordance/discordance rate was evaluated
on libraries ERR194151 and ERR324433 from the European
SequenceReadArchive (http://www.ebi.ac.uk/ena/). The genotype
discordance was defined as the incongruence of at least one allele
between genotypes of two replicated libraries (Pompanon et al.
2005). Minimum read depth was set at 5×.

Evaluation of the genotyping model’s correct prediction rate

for heterogeneous genetic samples

To assess the accuracy and precision of the error correctionmodel,
we prepared heterogeneous genetic samples by mixing DNA from
two different plasmids (see Supplemental Text for details). The
ratios of artificial heterogeneous genetic samples (clones R2 to
Z1-1) were designed as 0.1%, 0.25%, 0.5%, 1.0%, and 2.0%. The se-
quencing data of mixed clones were profiled using the STR-FM
pipeline described above. The sequences from the two plasmids
were also profiled to check STR lengths in the inserted DNA region
that were different between the two plasmids. The error correction
and genotyping were performed using the error rates estimated
from the two unmixed Z1-1 and R2 plasmids. Also, the ratios of
contributed alleles were adjusted from 50:50 to the ratios present
in each mixed sample.

Using an error correction model to evaluate germline mutation

rates and patterns

PCR− whole-genome sequencing data of the three-generation
pedigree from the Platinum Genome Project (Ajay et al. 2011)
was downloaded from http://www.ebi.ac.uk/ena/data/view/
ERP001960. This family consists of four grandparents, two par-
ents, and 11 children. The data include libraries ERR194146–
ERR194148, ERR194151–ERR194152, ERR194154–ERR194155,
ERR194157–ERR194162, ERR218433, and ERR324432–ERR324435.
Sequencing depth for each individual is 43.76–64.98×.We consid-
ered only autosomal STR-containing loci, which are sequenced to
atleast5×informativereaddepthinallchildren,parents,andgrand-
parents.STRsonsexchromosomeswereexcluded.Wegenotypedall
individuals of the pedigree using error rates estimated from X
Chromosome of PCR− data, which was evaluated from an individ-
ual of this pedigree (NA12882) to reduce potential differences due
to batch effect. The germline mutations were classified by the gen-
der of mutated germ line (male versus female), original length,
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andmutated length.Thegermlinemutationrateswerecalculatedas
the fraction of mutations per the total number of transmissions
(each locus has two transmissions). The expected numbers of
mutations in 50-Mb windows were calculated using the germline
mutation rates obtained in this study separately for different STR
classes, lengths, and motifs multiplied with the numbers of corre-
sponding STR loci that were genotyped in all members of the pedi-
gree. The deviation from the expected number of mutations in 50-
Mbwindows was tested using a binomial exact test.

Computing minimum informative read depth required

for accurate genotyping

We simulated a series of read profiles of all possible combinations
of alleles with consecutive repeat numbers for 2–50×, 60×, 70×,
80×, and 100× depth for motifs A, T, AT, AC, AG, combined motif
of trinucleotide STRs, and combined motif of tetranucleotide
STRs. First, for eachmotif and STR length combination,we selected
the range of observed STRs fromour error profiles and generated all
possible combinationsof STRarrays. In this step,wedidnot include
the observed STR lengths that have the probability of occurrence
<0.01 (rare error form) to reduce computational time. We limited
our study to a range of STR lengths for which we observed at least
500 reads in our error profiles in both PCR+ and PCR− data.
Second, we used our error correction models to analyze these STR
arrays and select only those that can be predicted to be heterozy-
gotes. Third, we calculated the probability of ourmodel to generate
the observed STR arrays from predicted heterozygous allele pairs
and multiplied by the number of all possible rearrangements in
these STR arrays. A sumof these productswas equal to the probabil-
ity to detect heterozygous alleles for each allele pair at each depth.

Estimation of required sequencing depth

First, we derived an equation to calculate the locus-specific se-
quencing depth needed to achieve a certain informative read
depth by assuming uniform sequenced reads along the genome.
Suppose that the sequenced reads of length L uniformly represent
parts of a genome that has an infinite size and no redundant se-
quences. If we place these reads on every position of this genome,
the sequencing depth will be equal to read length L. If an STR of
interest is r bp long, and we require at least F bp of flanking regions
both upstream and downstream, there will be L + 2F + r− 1 reads
that are associatedwith at least one base of STR or flanking regions.
Among these reads, 2F + r start positions and 2F + r end positions of
reads locate within STR or flanking regions. These positions are
mutually exclusive as long as reads are longer than 2F + r. Thus,
2(2F + r− 1) reads do not cover at least one base of STR and F bases
either upstream or downstream (−1 is the correction for start and
end position at the outer edge of flanking regions which can still
map). Since the reads that do not cover the whole STR of length
r or do not cover at least the required minimum flanked bases are
not useful for profiling, the informative read depth of L is L + (2F
+ r− 1)− 2(2F + r− 1) = L− (2F + r− 1). To achieve the informative
read depth of X, an STR at a specific locus needs to be sequenced
at depth

X× L
L− (2F + r − 1) , (1)

where L is read length; F is the number of flanked bases required at
each flank; and r is the expected repeat length of an STR of interest.
Wewill use yrequired to represent this value. This equation is true for
all flank-based mapping approach programs that require certain
lengths for both flanking regions.

In reality, the sequenced reads are not evenly distributed
along the genome. Therefore, we used Poisson distribution to esti-
mate the required genome-wide sequencing depth (the average
depth for all loci in the genome) that guarantees that a certain per-
centage of STRs in the genome (e.g., 90%) have at least a certain
level of locus-specific sequencing depth and informative read
depth. Using y to represent specific level of sequencing depth
and λ to represent genome-wide sequencing depth, we can write
the equation that the probability of observing a locus with depth
y or P(Y = y) is

(ly × e−l)
y!

. (2)

We are interested in finding the required genome-wide se-
quencing depth λ that gives sufficient informative read depth for
a certain percentage (e.g., 90%) of the genome. In other words,
we want to find the minimum value of λ that makes P(Y≥ yrequired)
greater than or equal to a specific percentage of the genome. The
P(Y < yrequired) can be calculated from

P(Y = 0) + P(Y = 1) + · · · + P(Y = yrequired − 1). (3)

Each term of the Poisson distribution can be calculated from
Equation 2, and yrequired can be calculated from Equation 1. The
tool to estimate locus-specific yrequired and genome-wide sequenc-
ing depth “λ” is provided in the Galaxy toolshed.

Galaxy tool description

The tools from the STR-FM pipeline are freely available on Galaxy
(https://usegalaxy.org/) (Giardine et al. 2005; Blankenberg et al.
2010, 2014; Goecks et al. 2010). Users can install local Galaxy
and download all tools used in this research from repository
“str_fm” (see Supplemental Text for details). These tools are also
available at github (https://github.com/Arkarachai/STR-FM). The
STR error rates estimated in this study can be downloaded from
https://usegalaxy.org/u/guru%40psu.edu/h/error-rates-files.

Data access

The sequencing data of the plasmid containing artificially inserted
tandem repeat sequences in both PCR+ and PCR− systems, all the
ratios of heterogeneous genetic samples, and the original plasmids
before mixing have been submitted to the NCBI Sequence Read
Archive (SRA; http://www.ncbi.nlm.nih.gov/sra) under accession
number SRP047377.
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