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Short tandem repeats (STRs) are highly mutable genetic elements that often reside in regulatory and coding DNA. The cu-
mulative evidence of genetic studies on individual STRs suggests that STR variation profoundly affects phenotype and con-
tributes to trait heritability. Despite recent advances in sequencing technology, STR variation has remained largely
inaccessible across many individuals compared to single nucleotide variation or copy number variation. STR genotyping
with short-read sequence data is confounded by (1) the difficulty of uniquely mapping short, low-complexity reads; and
(2) the high rate of STR amplification stutter. Here, we present MIPSTR, a robust, scalable, and affordable method that ad-
dresses these challenges. MIPSTR uses targeted capture of STR loci by single-molecule Molecular Inversion Probes (smMiIPs)
and a unique mapping strategy. Targeted capture and our mapping strategy resolve the first challenge; the use of single
molecule information resolves the second challenge. Unlike previous methods, MIPSTR is capable of distinguishing technical
error due to amplification stutter from somatic STR mutations. In proof-of-principle experiments, we use MIPSTR to deter-
mine germline STR genotypes for 102 STR loci with high accuracy across diverse populations of the plant A. thaliana. We show
that putatively functional STRs may be identified by deviation from predicted STR variation and by association with quan-
titative phenotypes. Using DNA mixing experiments and a mutant deficient in DNA repair, we demonstrate that MIPSTR
can detect low-frequency somatic STR variants. MIPSTR is applicable to any organism with a high-quality reference genome

and is scalable to genotyping many thousands of STR loci in thousands of individuals.

[Supplemental material is available for this article.]

Variation in short tandem repeats (STRs), which are also known as
microsatellites, significantly contributes to phenotypic variation,
evolutionary adaptation, and human disease (Gemayel et al.
2012). STRs consist of short (2-10 bp) DNA sequences (units)
that are repeated head to tail. The presence of multiple identical
or nearly identical adjacent sequence units causes frequent errors
in recombination and replication, resulting in loss or gain of units.
Consequently, STR mutation rates are 10-10,000 times higher
than mutation rates of nonrepetitive loci (Legendre et al. 2007;
Eckert and Hile 2009).

In spite of their hypervariability, STRs frequently reside in
functional DNA, including coding and regulatory regions. STRs
are estimated to be present in 6% of human coding regions
(O’Dushlaine et al. 2005; Mularoni et al. 2006), highlighting the
potential of STR variation to affect disease risk and other complex
traits. Coding STRs that vary among humans tend to reside in
genes affecting transcription and neural development (Molla
et al. 2009). Several severe genetic diseases, including the trinucle-
otide expansion disorders Huntington’s and Spinocerebellar
Ataxias (SCA), are a consequence of extended STR alleles that act
as dominant mutations (Gatchel and Zoghbi 2005). The severity
of STR expansion disorders would suggest that natural selection
should remove STRs from functional genomic regions, but some,

Corresponding author: queitsch@u.washington.edu
Article published online before print. Article, supplemental material, and publi-
cation date are at http://www.genome.org/cgi/doi/10.1101/gr.182212.114.

for example the pre-expansion STR allele in ATXN2, are main-
tained by selection (Yu et al. 2005).

Model organism studies have demonstrated significant func-
tional consequences of even subtle unit number variation in select
STRs in plants, fungi, flies, voles, dogs, and fish, among other
organisms (Sawyer et al. 1997; Fondon and Garner 2004;
Hammock and Young 2005; Michael et al. 2007; Undurraga et al.
2012; Scarpino et al. 2013; Rosas et al. 2014). Similar to humans,
STR-containing genes in these organisms tend to be regulatory
genes functioning in transcription, development, and sensing en-
vironmental factors (Fondon and Garner 2004; Verstrepen et al.
2005). Adding or subtracting a single STR unit can have dramatic
phenotypic effects, such as in the polyglutamine-encoding STR
in the circadian clock gene ELF3 in Arabidopsis thaliana
(Undurraga et al. 2012). STR unit number can show striking non-
linear relationships with phenotype, which may in part be due
to extensive epistatic interactions with other loci (Peixoto et al.
1998; Butler et al. 2007; Undurraga et al. 2012). Based on existing
evidence, STR variation likely comprises an important component
of the genotype-phenotype map (e.g., STRs are a viable explana-
tion for some component of the “missing heritability” of ge-
nome-wide association studies) (Press et al. 2014); yet due to
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MIPSTR: high-throughput method for STR genotyping

technological difficulties in genotyping STRs, this component has
remained largely undefined.

STRs have almost entirely escaped genome-wide assessment
across many individuals due to the complexities of uniquely
mapping short, repetitive sequencing reads and the inherently
high error rate of STR amplification (i.e., amplification stutter).
Although traditional Sanger sequencing accurately assesses STR ge-
notypes, this costly method is severely limited in throughput.
Hence, it is not well suited for genotyping STRs across many indi-
viduals. Nevertheless, when researchers compared the three Sanger-
sequenced human genomes (including the reference genome),
they found significant STR variation (Molla et al. 2009). In the
thousands of short-read sequenced genomes available for a variety
of organisms, we would therefore expect to see an even larger de-
gree of STR variation among these many individuals. However,
STR variation is typically excluded or misreported for genomes se-
quenced with short reads. Recently, several tools have been devel-
oped to estimate STR unit number from short read sequencing data
(Gymrek et al. 2012; Highnam et al. 2013; Tae et al. 2013). These
tools rely on the use of STR-spanning reads with unique flanking
regions to improve mappability and ascertain STR unit number.
This restriction imposes size limits (read lengths in extant data
are generally 101 bp or less) and greatly reduces coverage of infor-
mative reads (Supplemental Fig. 1). For example, when assessing
the genotype of an STR locus of ~30 bp for a genome sequenced
with 101-bp reads at 5x coverage, one will have to rely on fewer
than three STR-spanning reads on average. Moreover, these tools
model technical error due to amplification stutter based on STR ge-
notypes from sequenced homozygous or haploid genomes, ignor-
ing the expected diversity of somatic alleles within individuals.
These probabilistic models lose applicability in practice because
STR genotype calls are made with as few as one or two STR-span-
ning reads. Another recent method uses paired-end sequencing
reads to infer variation at STR loci, similar to previous methods
to detect large insertions and deletions (Chen et al. 2009;
Hajirasouliha et al. 2010; Qi and Zhao 2011; Grimm et al. 2013).
Due to the resolution limits of gel size selection, this method infers
only whether STRs are variable rather than calling STR unit num-
ber genotypes (Cao et al. 2014). Thus, the comprehensive assess-
ment of accurate STR genotypes from short-read sequencing data
has remained a largely intractable problem.

Vast numbers of genomes, including genomes of hundreds of
A. thaliana strains, have been generated with 36- to 64-bp read

lengths (Cao et al. 2011; Gan et al. 2011) that are too short for
the aforementioned tools. The existing read lengths and coverage
depths of these genomes are sufficient to call most single nucleo-
tide variants (SNVs), but insufficient to understand STR variation.
It would be inefficient and costly to resequence whole genomes of
hundreds of individuals or strains with sufficient depth and the
longer reads necessary to understand STR variation (~150-300
bp, >30x coverage) when STRs only make up a small portion of
the genome.

The challenges of STR genotyping can be addressed by target-
ed STR capture to increase the number of STR-spanning reads com-
bined with a sequencing technology that accommodates longer
reads to improve mappability and STR genotype calling. Such strat-
egies were recently applied to the human genome, using STR-
targeted microarray capture or RNA probe capture prior to se-
quencing (Guilmatre et al. 2013; Duitama et al. 2014). However,
these STR capture methods produced only limited enrichment
for STR-containing reads with flanking sequence, i.e., 2.2% of
mappable reads (Guilmatre et al. 2013) and 25% of mappable reads
(Duitama et al. 2014), and only marginally improved STR coverage
for unit number calls (Table 1).

Here, we address the major obstacles of STR genotyping with a
robust, scalable, and inexpensive method, MIPSTR. MIPSTR com-
bines STR capture via single-molecule Molecular Inversion
Probes (smMIPs) (Hiatt et al. 2013) with midsize sequencing reads
(250 bp) and a unique mapping strategy. In proof-of-principle ex-
periments, we captured and sequenced STRs genome-wide in
diverse A. thaliana populations, called germline STR genotypes
with high accuracy, and quantified technical error with single-
molecule information. Moreover, enabled by single-molecule
degenerate sequence tags, we demonstrate that MIPSTR can cap-
ture the same STR locus from thousands of different cells, thereby
enabling detection of somatic STR variants with high sensitivity.

Results

Single molecule capture strategy yields highly accurate
STR germline genotypes

We used single-molecule Molecular Inversion Probes (smMIPs)
(Hiatt et al. 2013) to capture STRs, thereby maximizing the num-
ber of STR-spanning, informative reads. In a proof-of-principle ex-
periment, we targeted 102 STRs across the genome of the model

Table 1. Technologies for assessing STR variation by targeted capture and high-throughput sequencing

Reads mapped STR targets
Sequencing and Accepted Reported to STR targets Efficiency of  successfully genotyped
Name analysis strategy coverage® accuracy (total targets) mapped reads (total number) Reference
Array capture  Human, lllumina Two reads 88%-92% 38.7% (7851) 6.5% Average 54.2% of (Guilmatre
HiSeq, RepeatSeq informative targets across eight etal.
(Highnam et al. reads samples (33,947) 2013)
2013)

SureSelect Human, Roche 454, Four reads 88%-95% ~60% (10,764) 40% 30.1%-36.8% of (Duitama
RNA probe locally align flanking informative targets in each of etal.
capture regions reads seven samples 2014)

(~27,699)

MIPSTR- A. thaliana, lllumina Four reads 94%-98% 72% (100) 55%-64% Average 64% of targets
smMIP MiSeq, map to informative across 96 samples
capture locus-specific reads (6144)

synthetic reference

“Minimum coverage of a single STR that is considered sufficient to call a genotype.

Genome Research 751
www.genome.org



Carlson et al.

plant, A. thaliana, including exonic, intronic, regulatory (Sullivan
et al. 2014), and intergenic tri- and hexa-nucleotide STRs (Supple-
mental Fig. 2; Supplemental Table 1). We chose tri- and hexa-nu-
cleotide STRs because these occur commonly in protein-coding
regions, allowing us to compare and contrast coding and non-
coding STR variation. We first applied MIPSTR to the reference
A. thaliana strain Columbia-0 (Col-0), which has been Sanger-se-
quenced and for which accurate STR genotypes are available for
comparison.

For each targeted STR, we designed a MIP, which is an 80-nt
oligonucleotide that contains (1) targeting arms which will
uniquely hybridize to STR flanking regions; (2) a 12-nt degenerate
tag to distinguish individual capture events; and (3) a common
backbone for PCR and sequencing priming (Fig. 1A; Hiatt et al.
2013). In Col-0, we successfully captured all 102 STR target loci
(Supplemental Fig. 3). After capture, MIPs were amplified for sub-
sequent sequencing. Because STR amplification is prone to PCR
stutter and rampant technical error, we performed optimizations,

A single-molecule Molecular Inversion Probe design

Reverse PCR primer and

including modifying amplification conditions, specifically adjust-
ing extension time, extension temperature, and polymerases used
(see Methods).

We designed MIPs to capture 200 bp, a larger target size than
is typically used (Porreca et al. 2007; Turner et al. 2009; O’Roak
et al. 2012; Hiatt et al. 2013), to increase the size range of targeted
STRs. This size range encompasses the majority of STRs (Gymrek
et al. 2012), except those that have undergone extreme expansion
as seen in some human diseases and for the intronic STR in the A.
thaliana IIL1 gene (Gatchel and Zoghbi 2005; Sureshkumar et al.
2009). These extreme expansions are not directly accessible with
MIPSTR due to our inability to capture and sequence both flank-
ing regions. However, the systematic failure of capture and se-
quencing in a particular strain or individual could suggest such
an expansion. Such cases can then be subjected to alternative
methods such as Southern blotting or single molecule sequencing
(Sureshkumar et al. 2009; Chaisson et al. 2015). Another limitation
of MIP-based methods is the well-known high variability in MIP

D Unique mapping strategy

sequencing adapter STR 1 read I IEREEE
Locus-specific synthetic reference
Forward PCR primer and Common smMIP Unit #1 I
i backbone .
sequencing adapter 12 base pair Unit #2 I
degenerate tag Unit #3 e
Unit #4 IeEERp
. Gap-fill e Unit #5 FENEE
igationarm <€----------- xtension arm Unit #6 IEEEEE
o o Unit #7 INEERER
B smMIPs capture STR variation between individuals
m STR1 read T T X
. Unit#1 = e
Strain | I rpma I I
iati STR1 STRZ  natural variation STR 1 read I IENNEm X
no variation gy, between individuals Unit #2 np--------
strain I STR 1 read I IEREEE X
| wua O mDEER------
train N Nep IEEEN .. Unit #3 N
STR1 STR2
STR 1 read | DERRNE ><
C smMIPs capture somatic STR variation within individiauls Unit #4 FEEy----
Strain | ( N ( S STR 1 read I IERNEQm X
DNA molecule 1 - L Unit #5 Frnne
I ppp I I
STR1 d
no somatic STR1 STR2 somatic variation Unit #V;a : : = : : :
variation within an individual
/ % m STR1 read | EENERE - S
Strain | EE U] DS PEEED . Unit #7 IERERER
DNA molecule 2 STR1 STR2
FEBER STR / Unique STR flanking region mwmwwaw Unique degenerate tag I SNP or sequencing error

Figure 1. MIPSTR determines germline and somatic STR variation through targeted capture, sequencing, and a novel mapping strategy. (A) Single-mol-
ecule molecular inversion probe (smMIP) with common backbone for PCR primer binding (dark-green; also shown, PCR and sequencing primers with ar-
rows and purple sequencing adapters); 12 base pair degenerate tag (striped, green/white); and targeting arms with locus-specific, STR-flanking sequence
(blue). One targeting arm is the primer for polymerase extension (extension arm). Ligation closes the circle at the other targeting arm (ligation arm). (B)
Capture across genetically diverse individuals identifies germline STR variation across genetically diverse individuals. (C) MIPSTR distinguishes somatic STR
variation from technical error, using many degenerate tags. STR variation within a tag-defined read group (i.e., reads with the same degenerate tag) is
considered technical error. STR variation across tag-defined read groups is considered somatic variation. (D) MIPSTR maps reads from a given STR locus
(based on targeting arm sequence) to its locus-specific synthetic reference with unit numbers 1-100 (1-7 shown here). The STR 1 read aligns perfectly
to locus-specific synthetic reference Unit #6 (green check mark); all other alignments show gaps (dashed line, red X). SNVs (in pink), even if occurring
in the STR sequence, do not affect mapping or STR unit number genotype calls.
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performance (Porreca et al. 2007; Turner et al. 2009; Boyle et al.
2014). MIPs with intermediate GC content in their targeting
arms are most effective (O’Roak et al. 2012; Boyle et al. 2014). As
in previous studies (Porreca et al. 2007; Turner et al. 2009), we ob-
served a large dynamic range in capture efficiency among MIPS,
which we attempted to correct by increasing the concentration
of poorly performing MIPs (Supplemental Fig. 3). Lastly, purchas-
ing MIPs comes at a considerable upfront cost, yet this one-time in-
vestment allows the interrogation of nearly a million genomes (see
Methods). Like many genome-wide technologies, the value of
MIPs and MIPSTR scales with the number of individuals assessed.

MIPSTR libraries were sequenced using 250-bp forward reads
paired with 50-bp reverse reads on the Illumina MiSeq platform.
The 250-bp forward reads spanned the ~20-bp ligation targeting
arm followed by 200 bp of target sequence (STR sequence and
unique flanking sequence) and ~20 bp extension targeting arm
(large STR expansions will be missing some or all of the extension
targeting arm). MIPSTR can assess STRs up to ~180 bp in length,
considerably longer than the STRs currently assessed from com-
mon I[llumina 100-bp whole-genome-sequencing data. The 50-
bp reverse reads spanned the 12-bp degenerate tag, which identi-
fies each specific MIP molecule, and the extension targeting arm
(Fig. 1A). This experimental design allows MIPSTR to omit the
computationally costly and error-prone step of mapping repetitive
reads of low complexity to whole genomes. We sorted reads ac-
cording to their MIP targeting arms, and for each MIP, used BWA
(Li and Durbin 2009) to map its corresponding reads to a set of syn-
thetic reference sequences designed specifically for each targeted
STR (Fig. 1D). These synthetic references consisted of the STR se-
quence from the Col-O reference genome with all possible STR
unit number alleles between 1 and 100, which suffices for STR al-
leles within our size range. We successfully mapped 72% of all se-
quencing reads to the targeted loci (Table 1).

We called a genotype for each mapped read according to the
quality of its alignment to an STR allele sequence (BWA alignment
scores >180 were called as genotypes). Due to our mapping strat-
egy, variation outside of the STR or SNVs within the STR does
not affect STR unit number genotype calls (Fig. 1D). For Col-0,
55% of our mappable reads yielded informative STR unit number
calls. Relative to previously described methods, this result repre-
sents a dramatic improvement in the number of informative reads
per unit of sequencing effort (Table 1), such that it represents a
substantial improvement in the efficiency and accuracy of STR
genotyping. We required at least four STR-spanning reads at each
locus to call an STR genotype. Ultimately, we called unit number
genotypes for 96 of the 102 examined STR target loci. For these
loci, our calls were 96% concordant with the Col-0 reference allele,
including the highly variable coding STR in the gene ELF3 (Fig. 2;
Undurraga et al. 2012).

Most importantly, unlike any previous method that we are
aware of, each STR is represented by many independent capture
events of STR loci at the preamplification stage. Although amplifi-
cation introduces technical error, MIPSTR distinguishes between
technical error, heterozygosity, and somatic mutations by compar-
ing reads within and between capture events (Fig. 1C). The assess-
ment of independent capture events is enabled by the use of
smMIPs with degenerate tags (Hiatt et al. 2013), i.e., the same
STR locus is captured from many different cells, with each capture
mediated by a MIP with a different tag. For each tag-defined read
group (i.e., reads containing the same MIP tag), we assumed that
the mode of called unit numbers across reads is the true allele for
this capture event (Fig. 3). STR unit number variation within a

tag-defined read group is considered technical error (Fig. 3;
Supplemental Table 1). However, unit number variation observed
among different MIP molecules, each representing independent
capture events, is potentially the result of heterozygosity, somatic
variation, or duplication (Figs. 1C, 3). Using the additional in-
formation of tag-defined read groups resolves the distribution of
total read counts (Fig. 3, cf. A to B and C) and greatly improves
confidence in STR genotype calls. Using information from tag-
defined read groups also identified STR loci with consistently
high technical error (Fig. 3B, middle panel), which can be excluded
in subsequent analyses. Furthermore, using information from tag-
defined read groups has the potential to detect multiple STR alleles
within a single individual (Fig. 3B, right panel).

A. thalianais an inbreeding plant and hence assumed to be ho-
mozygous at the vast majority of loci. Therefore, to test the poten-
tial of our method to detect multiple high-frequency alleles of the
same STR, we assessed two STR loci present in two nearly identical
copies on two different chromosomes in the Col-O reference ge-
nome. For both STRs, the two genomic copies have different STR
unit number genotypes in addition to SNV variation, enabling us
to readily distinguish them. There was no SNV variation in the
flanking regions recognized by the MIP targeting arms, allowing
us to capture the duplicated loci with similar efficiency. Indeed,
for both STRs, we detected both unit numbers at high levels.

Specifically, for the STR (STRID 73a and b) with only one SNV
difference between duplicate copies, we observed near equal repre-
sentation of both alleles (Fig. 3B, right panel). We also observed
two tag-defined read groups supporting unit number six, which
may represent a somatic STR variant in this individual. Without
differentiating tag-defined read groups, reads representing this
STR genotype would be interpreted as technical error, like the
few reads representing ELF3 STR unit number as six (Fig. 3A, cf.
left panel to right panel). This example demonstrates the impor-
tance of including single-molecule information in STR genotype
analysis.

Furthermore, we found evidence for the duplication of an
intergenic STR that is located amid multiple transposons (Fig. 2,
STR ID 89), which we confirmed using PCR. This duplication is
not annotated in the Col-0 reference assembly. In theory, for du-
plicates (and heterozygous loci), each locus (allele) should be rep-
resented by an equal number of tag-defined read groups. In reality,
this ratio deviated from the expected ratio; the more tag-defined
read groups that were available for analysis, the better the results.
We observed ratios as close as 49.9/50.1 (761 tag-defined read
groups/764) and as far as 36/74 (40/71) for the three ascertained
duplicate loci across three Col-O siblings. These results suggest
that with sufficient coverage, MIPSTR can readily identify hetero-
zygous and somatic STR variants, which have been largely inacces-
sible by previous analytical or empirical methods (Gymrek et al.
2012; Guilmatre et al. 2013; Highnam et al. 2013; Duitama et al.
2014; Willems et al. 2014).

MIPSTR accurately determines STR unit number genotypes
across diverse A. thaliana strains

We applied MIPSTR to 96 genetically diverse strains of A. thaliana.
These strains have been assessed for over 100 quantitative pheno-
types and have been previously sequenced, primarily with 36- to
64-bp reads at a coverage of ~20x, to detect SNVs and structural
variation (Cao et al. 2011; Gan et al. 2011). STRs evolve on a differ-
ent time scale than SNV, so linkage disequilibrium between STRs
and SNVs breaks down quickly (Willems et al. 2014). Therefore, we
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Figure 2. MIPSTR accurately determined germline STR unit number in the reference strain Col-0. Raw read counts at 30 representative STR loci, with
reference genome STR unit number indicated in green. UNK indicates gene of unknown function. Numbers shown in parentheses refer to STR IDs (see
Supplemental Table 1). Two instances of genomic duplication (residing in transposons) are shown (STR ID 73 and 89); both alleles showed comparable
read counts. Note that erroneous calls show low read counts or high technical error. Bold red outlines indicate examples discussed further in the text.

cannot use linked SNV data to understand the relationship be-
tween STR unit number genotype and phenotype. Given the
strong potential of STR variation to cause phenotypic variation,
we set out to call STR genotypes across many divergent individuals
and to evaluate the contribution of STRs to the genotype-pheno-
type map.

We attempted to genotype 100 STRs across the 96 diverse
strains of A. thaliana, including the reference strain Col-0, for a to-
tal of 9600 targeted STR loci in one Illumina MiSeq v2 sequencing
run. MIPSTR scaled well to this task; both the number of targeted
loci and the number of examined genomes can be readily in-
creased by several orders of magnitude. STRs tend to be surrounded
by repetitive sequence and AT-rich regions, but in spite of this
challenge, we successfully captured STR loci genome-wide for
these genetically divergent strains. Specifically, we captured at
least 50 STR loci in 86 of 96 strains (90%) (Supplemental Tables
2, 3) and at least 75 STR loci in 59/96 strains (61%). MIP capture
efficiency across strains did not correlate with the presence of

SNPs in the targeting arms (J Fitz, S Ossowski, N Warthmann,
RM Clark, K Schneeberger, and D Weigel, pers. comm.).

To apply MIPSTR to multiple strains, we pooled the 96 strain-
specific capture libraries, each with a unique strain barcode on the
reverse PCR primer, and sequenced as described above. For these
pooled libraries, we sorted reads first by strain-specific barcode,
then by targeting arm to identify the STR locus and degenerate
MIP tag to identify reads originating from the same capture event
(Fig. 1B,C). Similarly to our results with the reference strain Col-0,
we were able to map 72% of sequence reads to their STR target
loci; and of those, 64% were informative for calling STR unit num-
ber genotypes (Table 1; Supplemental Table 3). In this experiment,
the Col-0 library represented ~1% of the total sequence reads,
which should greatly reduce the information for each STR com-
pared to our single Col-0 library run. Despite this dramatic reduc-
tion in information content, we could accurately call germline
STR unit number genotypes in Col-0 for 97% of loci (64 of 66 loci
with at least four STR-spanning reads) (Supplemental Tables 2, 3).
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Comparing MIPSTR calls for the ELF3
STR to genotype calls from previous Sang-
er sequencing (Undurraga et al. 2012),
MIPSTR performed with 98% accuracy
(51 of 52 strains) (Fig. 4). As previously
discussed, using information from tag-de-
fined read groups aided us in resolving
STR genotypes. Forexample, for the strain
Kin-0, total counts supported unit num-
ber 18 and 19 for the ELF3 STR (Fig. 4). Re-
solving read counts by tag-defined read
groups enabled us to eliminate technical
error and call 19 units as the correct Kin-
0 ELF3 STR unit number (Undurraga
etal. 2012). Across all 96 strains, we called
STR unit number for 60% or more of
STR loci in 62% of strains, with a total
of 6179 STR unit number genotypes (of
9600 targets or ~64% of targets) deter-
mined with a single Illumina MiSeq v2
sequencing run. As previously shown, ad-
ditional sequencing is expected to yield
many more capture events and thus
more complete coverage across STRs (Tur-
ner et al. 2009).

We also analyzed our data for the
duplication events detected in Col-0. Of
the two known duplicated STR loci, one
(STR ID 64) did not show evidence for a
duplication event in the 58 A. thaliana
strains with sufficient coverage (at least
two tag-defined read groups) based on
the presence of different STR unit num-
bers. However, taking SNV variation be-
tween the duplicate loci in the capture
region into account (11 SNVs, present
in the gap-fill region surrounding STR)
(Fig. 1), we found evidence for this dupli-
cation in 38 of 58 strains. Although this
duplication is presumably not recent in
origin, there is no SNV variation in a giv-
en duplicate among these strains, and
STR unit number variation exists only
in Col-0, making it one of the least vari-
able STRs in our data set. The second
known duplication (STR ID 73) was de-
tected in two of 14 strains with sufficient
coverage. The newly identified duplica-
tion STR ID 89 was detected in 13 of 49
accessions with several STR unit number
alleles across these strains. Taking SNV
variation into account, we confirmed
this duplication event in seven of 13
strains. Of the remaining 36 strains (i.e.,
strains with no difference in STR unit
number but with sufficient coverage),
we detected this duplication in 10 strains
with SNV variation. Our results suggest
that this previously unknown duplica-
tion exists in at least 23 of 49 strains.

The unit number, unit length, and
purity of a given STR locus in a high-
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Figure 3. MIPSTR distinguished technical error from somatic variation. (A) Three histograms from
Figure 2 with total read counts. (Left) The known ELF3 STR unit number is clearly supported by the modal
unit number. (Middle) This intergenic STR showed great variation in STR unit number; the mode did not
support the known STR unit number. (Right) This STR resides in two copies in two different genomic loca-
tions (transposons). Both known alleles were identified, yet total read counts alone cannot distinguish ge-
nomic duplicates from technical or somatic error. (B) Reads are separated into tag-defined read groups
with dot sizes and shading representing read count (different scales for each locus, see inset). Colored box-
es are shown in detail in C. (Left) All tag-defined read groups with one exception supported the known STR
unit number seven. Most tag-defined read groups showed low levels of technical error, primarily reads
with unit number six (-1), but also five and eight. (Middle) Separating reads into tag-defined read groups
illustrates the extremely high technical error for this STR. The mode of a tag-defined read group was often
supported by <50% of total reads. Some tag-defined read groups contained as many as six different STR
genotypes. We exclude such loci from the analysis of somatic STR variation. (Right) As expected for a dupli-
cate STR or a heterozygote, approximately half of the tag-defined read groups support each of the known
STR genotypes with very little technical error. We also observed evidence of a somatic STR allele with unit
number six, which was supported by two tag-defined read groups (boxed, black outline). Note the ab-
sence of either of the known STR alleles for these tag-defined read groups. This STR genotype is also visible
in the total read count histogram (4, right), where it would be interpreted as a technical error by other
methods. (C) Detailed views of plots in B; outline color corresponds to respective plot.
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Figure 4. MIPSTR accurately determined germline ELF3 STR unit number across genetically diverse A. thaliana strains. Histograms of raw read counts
across 30 accessions. STR unit number as determined by Sanger sequencing is indicated in green. Using tag-defined read groups, the Kin-0 ELF3 STR ge-
notype can be resolved to the known STR genotype even with comparatively few total reads. MIPSTR clearly calls STR unit number 19 for Pro-0. Note that
different individuals of the same strain were analyzed with MIPSTR and Sanger sequencing, which may explain the discrepancy. Bold red outline indicates

example discussed further in the text.

quality reference genome predict its variation across individuals
(Legendre et al. 2007). STRs with high unit number, short unit
length, and high purity are typically highly variable. With popula-
tion-scale STR genotypes in hand, we addressed how well predicted
variation of STRs (VARscore) (Supplemental Table 1; Legendre et al.
2007) correlated to observed variation across A. thaliana strains.

In general, VARscore correlated well with observed variation
across STRs (r=0.68) (Fig. 5), a substantially better agreement
than previously observed (Duitama et al. 2014). However, this cor-
relation was substantially weaker among coding STRs (r=0.46)
than among noncoding STRs (r=0.75). This discrepancy suggests
that sequence characteristics alone do not suffice to predict wheth-
er coding STRs vary on a population scale. Coding STRs are more
likely to be functionally important, and thus are less subject to
the “neutral model” of the VARscore prediction.

Deviation of predicted STR variation (i.e., VARscore) from ob-
served variation may thus hold information about STR function

and selective pressures acting upon it. Specifically, STRs that are
observed to be more variable than predicted may be under diversi-
fying selection, whereas those STRs that are observed to be less var-
iable than predicted may be functionally constrained and under
purifying selection (Press et al. 2014). For example, the STR in
the gene ELF3 is highly variable across strains, ranging from seven
units to as many as 29 units in a set of strains previously analyzed
by Sanger sequencing (Undurraga et al. 2012). The phenotypes
associated with variation in the ELF3 STR change dramatically
in different genetic backgrounds, suggesting coevolution of the
ELF3 STR with epistatically interacting loci (Undurraga et al.
2012). Given this STR’s strong background-dependent pheno-
types, itis likely under diversifying selection, and correspondingly,
it is much more variable than predicted (Fig. 5).

A complementary approach for identifying STRs with impor-
tant function in modulating phenotype is genome-wide associa-
tion of STR genotypes with phenotypes. The standard statistical
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Figure 5. Observed and predicted STR variation showed greater correla-
tion for noncoding STRs than coding STRs. The correlation between the ob-
served logq of the standard deviation of STR unit number across strains (y-
axis) and the VARscore (x-axis), which predicts STR variation from sequence

characteristics. Black points are noncoding STRs, red points are coding
STRs. Outliers may indicate functional importance (ELF3 STR is indicated).

methods for associating genotype with phenotype were developed
for common, biallelic SNVs (Hayes 2013). STRs are typically multi-
allelic and often involved in epistatic interactions, both of which
make it difficult to associate STR genotype with phenotype using
standard methods (Press et al. 2014). Nevertheless, we performed
a naive association analysis to determine whether STR variation
across strains was associated with well-characterized phenotypes
(Atwell et al. 2010). These phenotypes included morphology,
developmental timing (flowering), ionomics, and gene expres-
sion, among others. We used the one-way analysis of variance
(ANOVA) to detect associations between STR loci and phenotypes
following previous studies (Mackay et al. 2012), modeling STR
alleles as factors to avoid assumptions of linearity (Press et al.
2014). To minimize spurious associations, we excluded STRs that
were typed in fewer than 10 strains from this analysis; and for
each STR we excluded all strains carrying alleles present in fewer
than three strains (rare alleles). We identified 124 significant asso-
ciations involving 27 STRs and 41 phenotypes at a 1% false discov-
ery rate (Supplemental Table 4). However, an important caveat is
that this analysis did not consider population structure, which is
another challenge given the different evolutionary trajectories of
SNVs and STRs (Willems et al. 2014). Consequently, we also per-
formed a mixed-model analysis treating population structure
(Nordborg et al. 2005) as a random effect and STR unit numbers
as fixed factorial effects. Although more conservative, of the 70 as-
sociations found by this method, 56 were shared with naive
ANOVA, indicating that most variants thus identified are robust
to association method (Supplemental Table 4). Furthermore, as
previously observed with SNV variation, the complex trait of flow-
ering time has many associations with variable STRs across its var-
ious potential measurements (Atwell et al. 2010).

We further investigated whether these STR-phenotype associ-
ations could be identified with common, linked SNVs (Atwell et al.
2010). For each STR-phenotype association, we identified the SNV

associated with the same phenotype that is closest to the STR in
question (Supplemental Table 4). No phenotype-associated STRs
were linked to any SNVs associated with the same phenotype; of-
ten, associated SNVs were only found on different chromosomes.
In fact, the closest SNV resided >21 kb away from the STR associat-
ed with the same phenotype. In A. thaliana, linkage disequilibrium
decays at 10 kb and likely decays even faster between SNVs and
STRs (Nordborg et al. 2005; Kim et al. 2007; Willems et al. 2014).
Thus, at least for this small set of loci, STR-phenotype associations
are not captured with common SNV variation.

Our MIP-based approach can easily be scaled to thousands of
targets; the human exome MIP set targets ~55,000 loci (Turner
et al. 2009). More than 2000 STR loci are accessible by MIPSTR in
A. thaliana, and many more accessible STR loci exist in humans
(Molla et al. 2009; Guilmatre et al. 2013; Duitama et al. 2014;
Willems et al. 2014). Our preliminary results, considering only a
fraction of the accessible A. thaliana STR loci, highlight the prom-
ise of STRs to contribute to the variation and heritability of quan-
titative traits (Press et al. 2014).

MIPSTR has potential to sensitively detect heterozygous
and somatic STR unit number alleles

To determine the sensitivity with which MIPSTR detects heterozy-
gous and somatic alleles, we mixed DNA of two divergent A. thali-
ana strains, Col-0 and Landsberg (Ler), in known ratios before
MIPSTR capture and sequencing (Fig. 6). Of the 100 STR loci, 56
differed in STR unit number genotypes between Col-0 and Ler,
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Figure 6. MIPSTR detects low frequency STR alleles. (x-axis) Tested mix-
tures of Ler and Col-0 DNA; (y-axis) probability of detecting Col-0 STR al-
leles; (closed circles) observed frequency of observing Col-0 STR alleles
(standard error is indicated, black lines); (open circles) predicted frequency
of observing Col-0 STR alleles. To calculate the observed frequency for
each mixture, we resampled tag-defined read group modes supporting ei-
ther the Col-0 or Ler allele at each STR locus 1000 times. The proportion of
samples that carry the Col-0 allele was determined and averaged across all
STR loci that differ between Lerand Col-0. To calculate the expected prob-
ability for each mixture, we assumed the known ratios of Col-0 and Ler STR
alleles in each mixture and the probability of observing the Col-0 STR allele
with 10 observations.
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and hence their relative presence across mixtures could be detected
by MIPSTR. To assess the relative proportions of STR alleles within
each mixture, we determined the number of tag-defined read
groups for which the majority of reads supported either the Col-
0-specific STR unit number or the Ler-specific STR unit number.
This measure, however, is confounded by unequal coverage be-
tween libraries. More deeply sequenced libraries will represent a
higher number of capture events per target and hence be more like-
ly to identify rare STR alleles (i.e., somatic events). To account for
variation in number of supporting tag-defined read groups per lo-
cus, we performed bootstrap resampling of the modes of the tag-
defined read groups at each locus in each library 1000 times while
measuring the proportion of bootstrap samples in which the Col-0
allele was detected. Applying this method to our mixing experi-
ment, the agreement between predicted and observed frequencies
of observing Col-O STR alleles was striking. For example, when we
mimicked a “heterozygous” state with a 1:1 Col-O/Ler mixture, we
observed the Col-0 allele 95% of the time. This agreement of pre-
dicted and observed frequencies held across all mixtures (Fig. 6),
indicating that MIPSTR sensitively detects rare alleles. Mixing
one part Col-DNA into 999 parts Ler-DNA, we were able to detect
the Col-alleles at half of the 56 loci.

STR instability at selected loci has been previously used as a
measure of genome instability and is a hallmark of certain cancers
(Boland et al. 1998; Kim et al. 2013). Our data suggest that MIPSTR
has the potential to offer considerably greater resolution by assess-
ing somatic STR variation genome-wide. To examine the potential
of our method to detect decreased genome stability, we performed
MIPSTR on Atmsh2 mutant plants. This mutant carries an inser-
tion in the MSH2 gene, which is a crucial component of the
DNA repair machinery. Indeed, a previous study, using a reporter
system, found a ~10% increase in dinucleotide STR somatic muta-
tion events in this mutant (Golubov et al. 2010). We applied
MIPSTR to three Col-0 plants and three Atmsh2 plants. After elim-
inating STR loci with high technical error rates (Supplemental
Table 1) and loci without information for both strains, we com-
pared the average number of STR alleles per locus with bootstrap
resampling as described above. Instead of assessing two alleles,
those of Col-0 and Ler as in the mixtures, we counted all alleles sup-
ported by at least one tag-defined read group in the resampling
procedure. Compared to Col-0, the Atmsh2 plants showed a
4.7% increase in average STR alleles across loci (P<2.2x 10716,
Wilcoxon test) (Supplemental Fig. 4A). Removing the two most
overrepresented Col-0 and Atmsh2 libraries, (i.e., with many
more tag-defined read groups represented), resulted in an even
larger difference between Col-0 and Atmsh2, with a 10.6% increase
in Atmsh2 mutants’ average STR alleles across all tested loci (P <
2.2x 10716, Wilcoxon test) (Supplemental Fig. 4B). This result is
particularly remarkable considering that these loci were not opti-
mized with respect to those most likely to exhibit somatic varia-
tion. Such optimization is readily possible with MIPSTR, for
example, by applying MIPSTR to long noncoding dinucleotide
STRs, which are far more prone to unit number mutation and
hence somatic error. By combining such a specifically designed
set of smMIPs (i.e., targets) for detecting somatic STR variation
with deep sequencing, MIPSTR may be capable of identifying
much more subtle increases in genome instability.

Discussion

The potential of STR variation to contribute to phenotypic varia-
tion and heritability of complex traits is increasingly recognized

(Press et al. 2014). To realize this potential, several recent efforts,
relying on either analytical or experimental innovation, have
made progress toward the ascertainment of accurate STR geno-
types on a population scale (Gymrek et al. 2012; Guilmatre et al.
2013; Highnam et al. 2013; Cao et al. 2014; Duitama et al.
2014). However, the STR-specific challenges for accurate genotyp-
ing—mappability and high amplification stutter—were only par-
tially addressed. Here, we resolve these challenges by capturing
STRs with single-molecule Molecular Inversion Probes that allow
detection of many independent capture events of the same STR
across many DNA molecules (Hiatt et al. 2013). Specifically, we re-
solve the mappability challenge by using targeted capture and
locus-specific synthetic reference sequences. We resolve the chal-
lenge of inherently high technical error in STR amplification by ex-
amining many tag-defined read groups for each STR locus. STR
unit number variation within a tag-defined read group results
from amplification stutter. In contrast, STR unit number variation
among tag-defined read groups has the potential to detect geno-
mic duplications, heterozygosity, and somatic variation. We
show that MIPSTR is capable of distinguishing these crucial sourc-
es of STR variation within samples.

Previous studies relied on amplification of haploid or homo-
zygous genomes to estimate technical error for STR-containing se-
quencing reads (Gymrek et al. 2012; Guilmatre et al. 2013;
Highnam et al. 2013); this approach is confounded by somatic var-
iation and high STR mutation rates. MIPSTR offers an experimen-
tal avenue for empirically ascertaining technical error for many
types of STRs. Notably, we observed dramatic differences in techni-
cal error even among the 100 trinucleotide and hexanucleotide
STRs tested here. With larger numbers and more types of STRs,
one may derive more precise predictions of sequencing error based
on sequence composition, length, genomic position, and other
features.

However, even in this proof-of-principle study, some patterns
emerged that inform our understanding of the mutability of STRs.
First, as others have seen, the most common technical error we ob-
served was the loss of one STR unit (STR variation within tag-de-
fined read groups) (Guilmatre et al. 2013). The loss of one STR
unit was also the most common somatic event (STR variation ob-
served among tag-defined read groups). As STR variation within a
tag-defined read group exclusively derives from amplification stut-
ter, we speculate that the somatic loss of one STR unit similarly de-
rives from amplification errors during replication rather than
errors in DNA recombination or repair. Second, as anticipated by
previous studies (Legendre et al. 2007), longer STRs showed both
increased technical and somatic error. Third, comparing predicted
(based on neutral models) to observed variation in STR unit num-
ber, we found a stronger correlation for noncoding STRs than cod-
ing STRs, consistent with greater selective pressures on the latter
and suggesting that deviations from expected STR variation may
hold information about an STR’s functional importance.

Although the immediate application of MIPSTR is in accu-
rately assessing germline STR variation, we also emphasize our
method’s potential to sensitively detect somatic STR variation.
Somatic STR variation, better known as microsatellite instability
(MSI), has a long history as a biomarker for certain colorectal can-
cers, more recently also for endometrial cancers (Boland et al.
1998; Kim et al. 2013). In fact, a recent study used exome sequenc-
ing data (~20x coverage, 100 bp reads) (cf. Supplemental Fig. 1) to
assess MSI in colorectal and endometrial tumor and matched nor-
mal samples (Kim et al. 2013). Using only STR-spanning reads, this
study called an MSI event at a given STR locus by comparing STR
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unit number distributions between tumor and matched normal
samples, controlling for technical error with the STR variation ob-
served in normal samples. As we show, comparing read distribu-
tions is vulnerable to differences in coverage and requires
normalization by bootstrap resampling. MIPSTR eliminates the
need to compare distributions of “normal” and “tumor” samples
to correct for technical error because MIPSTR calls both germline
STR genotype and somatic STR variation in a given sample.

Although the STR loci that we targeted were not optimized for
somatic events, MIPSTR detected the Col-O STR alleles even in a
1:999 mixture of Col-0 and Ler DNA. Moreover, using MIPSTR,
we observed a substantial increase of somatic events in a plant mu-
tant deficient in DNA repair. MIPSTR can readily test and identify
panels of 100-500 STR loci that are particularly unstable and prone
to many somatic mutation events, for example, by testing longer
and less complex STRs such as di- or mononucleotides.

Beyond cancer genomics, at a population scale, somatic vari-
ation and its occurrence across tissues, developmental stages, and
in response to environmental perturbations has remained largely
inaccessible due to the prohibitive costs of ultra-deep and single-
cell sequencing (Navin et al. 2011; Baslan et al. 2012). As STRs
are highly mutable, they are arguably the best biomarkers to detect
subtle perturbations of genome stability. We suggest that MIPSTR
in combination with STR panels optimized for somatic varia-
tion has great promise to detect even subtle decreases in genome
stability. We and others have previously proposed that subtly de-
creased genome stability may precede or coincide with many dis-
ease processes and may increase the penetrance of disease risk
alleles (Heng 2010; Queitsch et al. 2012; Poduri et al. 2013).
MIPSTR offers an approach to empirically test this hypothesis.
Compared to single cell sequencing (Navin et al. 2011; Baslan
et al. 2012), MIPSTR also offers a cost- and labor-efficient alterna-
tive for assessing the genetic heterogeneity of tumors, which is
clinically relevant for disease treatment and prognosis (Schmitt
et al. 2012; Fox et al. 2013).

Finally, we emphasize that MIPSTR is readily scalable. By sim-
ply targeting all STR loci in its size range, our method can provide
genome-wide assessment of STR variation; by sequencing more
deeply for an optimized panel of STR loci, our method can provide
information about somatic variation. MIPSTR is applicable to any
organism with a high-quality reference genome, including hu-
mans. In the future, applying MIPSTR across populations of
diverse species will contribute to fulfilling the long overdue prom-
ise of STR variation for explaining trait heritability.

Methods

smMIP capture reagent design

Each smMIP is an 80-nt oligonucleotide with a 40-nt common
backbone flanked by an extension arm of 16-20 nt and a ligation
arm of 20-24 nt. These unique arms specifically hybridize to flank-
ing regions of STR loci for a gap-fill of 200 bp. These targeting arms
were designed based on empirical data maximizing capture effi-
ciency of MIPs based on GC content of extension and ligation
arms (O'Roak et al. 2012). We did not consider the presence of
SNPs in the targeting arms in our design, but current methods in-
clude this information to minimize differences in capture efficien-
cy across strains or between alleles (Boyle et al. 2014). Included in
the 40 nt of the common backbone are 12 random nucleotides, the
degenerate tag, generating ~12* = 1.67 x 10° unique sequences per
MIP. The MIPs were designed for 102 STRs across the A. thaliana ge-
nome (Supplemental Table 1).

These MIPs were procured individually by column synthesis
on a 100-nmol scale with standard desalting purification (at a
cost of ~$32 per MIP). Once purchased, one has effectively an
infinite MIP supply allowing for millions of capture reactions, jus-
tifying the considerable upfront MIP cost. Cost per MIP is signifi-
cantly lower when ordering less MIP without purification (25
nmol/$7.20 per MIP) (Hiatt et al. 2013).

MIPs were pooled at equal molarity and mixed with the target
at 200-fold molar excess. The results of the first capture reaction in
the Col-0 reference genome, specifically the distribution of read
counts from each MIP, were used to adjust MIP concentrations.
We increased the concentration of the lowest performing MIPs
(28, fewest number of reads) 50-fold; concentration of the next
lowest performing group of MIPS (43) was increased 10-fold.

Capture and library construction

DNA was extracted from rosette leaves of individual 20-d-old
A. thaliana plants using DNeasy Plant Maxi Kit (Qiagen). DNA
was cleaned up and concentrated with Amicon Ultra Centrifugal
Filter Units (Millipore).

Capture procedures were modified from previous protocols
(O’Roak et al. 2012; Hiatt et al. 2013). Seven hundred fifty nano-
grams genomic DNA was mixed with 2 pmol smMIP mixture
(starting concentration before adjustment for low performing
MIPs), 1.5 uL 10x Ampligase buffer, and molecular biology grade
water to a total volume of 15 uL. For hybridization, these mixtures
were incubated in a thermocycler with a heated lid for 10 min
at 95°C followed by 48 h at 55°C. After hybridization, we added
2.5 pmol dNTPs (TaKaRa), 1 unit Ex Taq polymerase (TaKaRa),
0.5 uL 10x Ampligase buffer, 60 units Ampligase DNA ligase
(Epicentre), and molecular grade water to an added volume of
5 uL per mixture. The extension phase was carried out for 1 h
at 60°C. After gap-fill and ligation, the mixtures were cooled to
37°C for 2 min. We then added 40 units of Exonuclease I (NEB)
and 200 units of Exonuclease III (NEB) for a total reaction volume
of 19 puL. To digest uncircularized and excess genomic DNA, we in-
cubated these mixtures for 15 min at 37°C, and then denatured the
enzymes for 2 min at 92°C.

Library construction, purification, and pooling

To create sequencing libraries, we amplified the capture reactions
using a common forward primer and an indexed reverse primer.
We mixed 5 pL capture reaction with 12.5 pmol dNTPs (TaKaRa),
5 uL 10x Ex Taq buffer, 25 ymol forward primer, 25 pmol reverse
primer, 1 unit Ex Taq polymerase (TaKaRa), and molecular biology
grade water to a total reaction volume of 50 uL. We performed an
initial denaturation for 10 sec at 98°C, followed by 28 cycles of 10
sec at 98°C, 30 sec at 58°C, and 12 sec at 72°C. The final extension
was for 3 min at 72°C. PCR products were pooled as equal volumes
per sample or according to gel image quantification to get approx-
imately equal representation. We then cleaned up the pooled PCR
products using AMPure XP beads (Agencourt) at 1.8x according to
manufacturer’s recommendations.

Sequencing and primary analysis

Samples were sequenced using the [llumina MiSeq v2 platform ac-
cording to the manufacturer’s instructions with custom sequenc-
ing primers (Hiatt et al. 2013). To improve cluster generation for
these low complexity STR libraries, we spiked in Phi-X or whole ge-
nomic DNA libraries at 10%-20%. We collected one 250-bp for-
ward read to determine sequence of the ligation arm and STR
target locus, one 50-bp reverse read to determine the sequence of
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the degenerate tag and extension arm, and one 8-bp read to deter-
mine the sample index sequence. The MiSeq software sorted by in-
dex read to separate pooled libraries.

Mapping and STR genotype calling

For each target STR locus, we created a synthetic reference of 100
“chromosomes,” which consisted of the Col-O reference target se-
quence with 1-100 pure STR units (no SNVs). We sorted reads by
the first 16 bp of the ligation targeting arm allowing three mis-
matches and then used the bwasw alignment mode of the BWA
aligner (Li and Durbin 2009) to map the reads to the locus-specif-
ic synthetic reference. For a given read, if the A-score of its align-
ment to a specific synthetic “chromosome” was >180, we called
the STR unit number of this “chromosome” for this read. Below
this A-score, the read was discarded. When the sequence read
ended within the STR (presumably due to a large expansion of
STR units) but still mapped with an acceptable A-score, we called
the genotype as>the unit number of the “chromosome” to
which the read aligned. In this way, MIPSTR can yield informa-
tion about STR unit number expansions in a given individual
even in the absence of STR-spanning reads. Here, these “>" calls
were not used in further analyses such as association or calcula-
tion of variation.

We then sorted the STR genotype calls by the degenerate tag
on the paired reverse read from which they derived. We required
an exact match of the 12-bp degenerate tag for reads to be grouped
into a tag-defined read group. We then called the mode STR unit
number of each tag-defined read group as the genotype of that
DNA molecule. If we observed that more than one tag-defined
read group supported an alternate STR allele, we considered it evi-
dence of somatic variation.

STR association with phenotypes

We used previously published data for 107 phenotypes collected
for 96 A. thaliana strains (Atwell et al. 2010). We then proceeded
to detect associations between each of these phenotypes and
each variable STR locus within genotyped strains. For each test,
we omitted strains from the analysis that were not phenotyped
for the relevant trait or genotyped at the STR in question. When
considering each STR locus, we additionally omitted from analysis
strains that carried STR alleles that were found in fewer than three
strains total, to avoid confounding from rare alleles. We then per-
formed one-way ANOVA to test the null hypothesis of no associa-
tion between each STR and each phenotype, while treating each
STR allele categorically. We chose to treat STR alleles categorically
because assumptions of linearity in STR-phenotype associations
are poorly founded in some cases (Undurraga et al. 2012; Press
et al. 2014). Associations were accepted at a 1% false discovery
rate (P=1.48 x 107%).

To take into account population structure, we used a
STRUCTURE (Pritchard et al. 2000) population clustering analysis
of the same 96 strains at k=7 from a previous study (Nordborg
et al. 2005) and assigned each strain to the population group to
which the largest proportion of its ancestry was attributed. We
used this population assignment as a random factorial effect in a
mixed-model analysis implemented in the Ime4 R package (D
Bates, M Machler, B Bolker, and S Walker, in prep.). To infer STR-
phenotype associations, we used likelihood-ratio tests to assess
whether addition of a parameter representing allele identity for a
specific STR improved fit relative to a model fitting only the pop-
ulation identity random effect. We accepted STR-phenotype asso-
ciations in the mixed model at a 1% FDR.

Calculating technical error rates

To calculate the technical error rate of amplifying STR loci, we con-
sidered all tag-defined read groups for which a single STR unit
number mode was supported by at least two reads. For these tag-
defined read groups, we took the fraction of reads supporting
unit numbers other than the mode and divided by the total num-
ber of reads. We averaged across all tag-defined read groups at a
given locus for a technical error score between 0 and 1, represent-
ing the fraction of reads at a locus known to be in error
(Supplemental Table 1).

Somatic allele counts

To compare the number of somatic events occurring in different
individuals, we only considered STR loci with low technical error
scores (below 0.2) (Supplemental Table 1) and with information
for all plants in the comparison. We used bootstrap resampling
to account for sometimes vastly different read counts. For exam-
ple, in the Col-0 and Ler mixing experiment, some mixture librar-
ies had as few as 10 tag-defined read groups at a given locus. Thus,
we resampled 10 modes from tag-defined read groups in these sam-
ples, counting the proportion of those samples in which the Col-0
unit number allele was present. In the Col-0 versus Atmsh2 exper-
iment, depth of coverage was much higher, and hence we resam-
pled 1000 modes of tag-defined read groups for each locus. For
each sample, we calculated how many different STR unit number
alleles were present and averaged across loci.

Data access

All raw sequencing data collected for this study have been submit-
ted to the NCBI Sequence Read Archive (SRA; http:/www.ncbi.
nlm.nih.gov/sra) under accession number SRP052035.
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