
Published online 26 March 2015 Nucleic Acids Research, 2015, Vol. 43, No. 8 4179–4190
doi: 10.1093/nar/gkv260

Regulation of yeast DNA polymerase �-mediated
strand displacement synthesis by 5′-flaps
Katrina N. Koc, Joseph L. Stodola, Peter M. Burgers and Roberto Galletto*

Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, Saint Louis, MO
63110, USA

Received December 22, 2014; Revised March 13, 2015; Accepted March 16, 2015

ABSTRACT

The strand displacement activity of DNA polymerase
� is strongly stimulated by its interaction with pro-
liferating cell nuclear antigen (PCNA). However, in-
activation of the 3′–5′ exonuclease activity is suffi-
cient to allow the polymerase to carry out strand dis-
placement even in the absence of PCNA. We have
examined in vitro the basic biochemical properties
that allow Pol �-exo− to carry out strand displace-
ment synthesis and discovered that it is regulated by
the 5′-flaps in the DNA strand to be displaced. Under
conditions where Pol � carries out strand displace-
ment synthesis, the presence of long 5′-flaps or ad-
dition in trans of ssDNA suppress this activity. This
suggests the presence of a secondary DNA binding
site on the enzyme that is responsible for modula-
tion of strand displacement activity. The inhibitory
effect of a long 5′-flap can be suppressed by its in-
teraction with single-stranded DNA binding proteins.
However, this relief of flap-inhibition does not sim-
ply originate from binding of Replication Protein A to
the flap and sequestering it. Interaction of Pol � with
PCNA eliminates flap-mediated inhibition of strand
displacement synthesis by masking the secondary
DNA site on the polymerase. These data suggest that
in addition to enhancing the processivity of the poly-
merase PCNA is an allosteric modulator of other Pol
� activities.

INTRODUCTION

During lagging strand DNA replication DNA polymerase
� (Pol �) performs three essential and basic functions in
the process. Via DNA-directed DNA synthesis Pol � cat-
alyzes extension of the short Okazaki fragments generated
by DNA Pol �, thereby filling the gap between two succes-
sive Okazaki fragments (1–3). During this process Pol � also
proofreads for mis-incorporated bases via its 3′–5′ exonu-
clease activity, allowing for a relative high fidelity in copy-

ing the template strand (4,5). Finally, during Okazaki frag-
ment maturation Pol � catalyzes strand displacement DNA
synthesis through the downstream Okazaki fragment to al-
low for the generation of 5′-flaps that are substrates for the
FEN1 endonuclease (1–3,6,7). Strand displacement by Pol
� and FEN1 cleavage activity must be a highly coordinated
process to generate ligatable nicks that are then the sub-
strate of DNA ligase I (nick translation) (8). In this process
the amount of strand displacement activity needs to be reg-
ulated to avoid generating 5′-flaps that are long enough to
bind Replication Protein A (RPA), as RPA binding is in-
hibitory to FEN1 cleavage (9). In turn, this leads to activa-
tion of a secondary pathway for flap processing that involves
Dna2 and Pif1 (10,11).

Mutational studies of Pol � suggest that in vivo all of the
known functions of the polymerase require its interaction
with proliferating cell nuclear antigen (PCNA) (12,13), the
homotrimer DNA clamp that encircles dsDNA. It has long
been proposed that PCNA functions as a processivity fac-
tor for Pol � (14) as binding of Pol � to PCNA increases its
processivity in DNA synthesis and it stimulates strand dis-
placement activity (2,14). Indeed, in the absence of PCNA
in vitro DNA Pol � can extend a primed DNA template but
it can only incorporate a very limited number of nucleotides
via strand displacement and it cannot complete synthesis
through even a short oligonucleotide annealed downstream
(2). However, as for other DNA polymerases (15–17) inac-
tivation of the 3′–5′ exonuclease stimulates the strand dis-
placement activity of Pol � (2), showing that the ability to
catalyze strand displacement is an intrinsic property of the
polymerase that is otherwise masked in the wild-type en-
zyme. In other words, the ability of Pol � to strand displace
is counterbalanced by the 3′–5′ exonuclease activity, which
degrades the nascent DNA and thereby restores the nick
structure (18).

Previous studies have established that PCNA stimulates
strand displacement synthesis by Pol � (2,14). However, in
order to determine the intrinsic stand displacement activ-
ity of Pol � at various nick and flap structures, it was nec-
essary to carry out these studies in the absence of PCNA.
We have studied the intrinsic strand displacement activity
of Pol � using short model oligonucleotide substrates where
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different region of the substrate can be easily controlled. We
used 3′–5′ exonuclease deficient versions of Pol � in order
to determine the strand displacement synthesis activity of
the polymerase without the possibility of subsequent rever-
sal of strand displacement by its exonuclease activity (18).
This allowed us to focus on the basic biochemical properties
of this enzymatic activity and ask how it is affected by the
presence of 5′-flaps of different lengths in the DNA strand
to be displaced, and how the presence of the single-stranded
DNA binding protein RPA affects the activity, and, finally,
how binding to PCNA stimulates strand displacement. This
approach allowed us to discover a novel property of Pol �,
which we propose is regulated by PCNA.

MATERIALS AND METHODS

Reagents and Buffers

All chemicals used were reagent grade. All solutions were
prepared with distilled and deionized Milli-Q water (18
M� at 25◦C). Oligonucleotides were purchased from Inte-
grated DNA Technology (IDT, Coralville, IA, USA). The
sequences of the oligonucleotides used to build the differ-
ent substrates (Figure 1a) are as follows:

P: 5′-CCGCCGCGGAACTTATTAGTG-3′
with and without Cy3 at 5′-end.
T1: 5′-GTGACGGTGTGTGGGTGTGAATC-Tm-CA

CTAATAAGTTCCGCGGCGG-3′
with m = 0, 1, 7 and biotin at 3′- and 5′-end when indi-

cated.
T2: 5′-GTGACACACCCACACACCGAATC-Tm-CA

CTAATAAGTTCCGCGGCGG-3′
with m = 1 and Cy3 or Cy5 at 5′-end for fluorescence

measurements.
D1: 5′-Tn-GATTCACACCCACACACCGTCAC 3′
with n = 0, 5, 10, 15, 20, 25, 30, 50 and 5′-end modifica-

tions at a given n when indicated.
D2: 5′-Tn-GATTCGGTGTGTGGGTGTGTCAC-3′
with n = 0, 25 and Cy3 or Cy5 at 3′-end for fluorescence

measurements.
Oligonucleotides with a reverse polarity switch at the last

thymidine of the flap were a kind gift from Prof. Lohman
(Washington University School of Medicine) and they were
synthesized as previously described (19–21). Annealed sub-
strates were prepared by mixing oligonucleotides P, T and
D at a ratio of 1 : 1.1 : 1.2 respectively in 10 mM Tris-HCl
(pH 8.1), 50 mM NaCl, 5 mM MgCl2 and heated at 95◦C
for 3 min, followed by slow cooling to room temperature.

Purification of proteins

Wild-type DNA polymerase �, D520V (Pol �DV), D321A-
E323A (Pol �01) were cloned and overexpressed in yeast
as previously described (22,23). The proteins were puri-
fied with a two-column strategy (22,23) with minor mod-
ifications for the wild-type (wt) and exonuclease defi-
cient (DV) proteins. After batch-binding to Glutathione
Sepharose 4 Fast Flow GST-affinity resin (GE Healthcare
Bio-Sciences, Piscataway, NJ, USA) the GST-tag was re-
moved by overnight on-column digestion with 3C protease
in Buffer HEP150 (30 mM HEPES 7.4, 150 mM NaAc,
10% glycerol, 1 mM DTT, 0.01% E10C12, 0.05 mM EDTA,

10 mM NaHSO3, 10 uM Pepstatin A, 10 uM Leupeptin,
0.5 mM PMSF). The cleaved proteins were collected in the
flow-through and further purified using a MonoS column.
RPA, PCNA and Replication Factor C (RFC) were purified
from Escherichia coli overproduction strains as described
(1,24,25).

Strand displacement assay

Primer extension and strand displacement reactions were
carried out under multiple turnover conditions in Buffer
TM (20 mM Tri-HCl pH7.8, 8 mM MgAc2, 1 mM DTT, 0.1
mg/mL BSA) with 20 mM NaCl (or otherwise indicated).
The experiments were performed by pre-forming a one-to-
one DNA and polymerase complex (25 nM final concen-
tration) followed by addition of dNTP mix at a final con-
centration of 100 �M each (otherwise indicated). For ex-
periments with unlabeled DNAs their concentration is indi-
cated either in the text or figure legend and it is expressed in
fold excess relative to the labeled DNA substrate. For exper-
iments with RPA, 50 nM of the protein were either present
from the beginning of the reaction or added at the indicated
time. For experiments with PCNA a standard loading pro-
tocol was followed (2,26). For simplicity the concentrations
reported are the final ones after starting the reaction. RFC
(25 nM) and PCNA (30 nM) were incubated with a double-
biotinylated DNA substrate (25 nM) in the presence of neu-
travidin (600 nM) and ATP (0.2 mM) for 5 min at 30◦C, fol-
lowed by the addition of Pol � (25nM) and dNTP mix (100
�M). At the indicate times the reactions were stopped by
the addition of 80 mM EDTA, 0.08% SDS. After addition
of formamide (50% final), the samples were heated at 95◦C
for 2 min and analyzed on a 12% denaturing polyacrylamide
gel, pre-run for 2 h in 0.5X TBE. The gels were scanned
using a Typhoon 9400 Variable Mode Imager (Amersham
BioSciences, GE Healthcare Bio Sciences, Piscataway, NJ,
USA) and Image J was used for processing and analysis.

FRET measurements

All the experiments were performed with an L-format
PC1 spectrofluorimeter (ISS, Champaign, IL, USA) with
temperature controlled by a circulating bath. Cy3 fluores-
cence time courses were monitored with excitation at 520
nm and emission at 565 nm. The experiments were per-
formed in Buffer TM with 20 mM NaCl at the indicated
temperature by pre-forming a complex of 10 nM DNA sub-
strate with 10 nM Pol �DV followed by the addition of dNTP
mix at a final concentration of 100 �M each. For experi-
ments with RPA, 20 nM of the protein was either added
at the indicated time or present from the beginning of the
reaction. All the experiments were done using a sub-micro
cell (Starna, Atacadero, CA, USA) using 130 �l volume and
mixing by end. Because of the slow kinetics no loss in am-
plitude was observed and the data were normalized to the
first point after starting the reaction.
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Figure 1. Long 5′-flaps inhibit the strand displacement activity of DNA polymerase �DV. (a) Schematic of the DNA substrates used. (b–d) DNA primer
extension and strand displacement activity of Pol �DV in Buffer TM (20 mM NaCl, 30◦C) as a function of the length (n) of the 5′-flap in the strand to be
displaced, for different sizes of the gap in the substrate: (b) nick, (c) T1 gap and (d) T7 gap. In panel (d) the inhibitory role of a 20 nt 5′-flap of random
sequence composition is shown as well.
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RESULTS

5′-flaps longer than ∼10 nt inhibit initiation of strand dis-
placement activity of DNA polymerase �

Wild-type DNA polymerase � has primer extension activity
but it cannot catalyze strand displacement of a downstream
oligonucleotide (Supplementary Figure S1) (2). Therefore,
in this work we mainly focused on the Pol3–5DV (D520V)
form of Pol �, in which inactivation of the 3′–5′ exonucle-
ase activity has been shown to reveal its capacity for strand
displacement (2). For this study the overall structure of the
substrates used is shown in Figure 1a. The primer consists
of a 21 nt oligonucleotide annealed at the 3′-end of the tem-
plate and labeled at its 5′-end with Cy3 to allow detection of
extension activity by fluorescence. The substrate also con-
tains a 23 nt oligonucleotide annealed at the 5′-end of the
template which is separated from the primer region by ei-
ther a nick, a single (T1-gap) or seven thymidines (T7-gap).
In addition, the 23 nt oligonucleotide to be displaced con-
tains a variable number of nucleotides at its unpaired 5′-
end (Tn 5′-flap). Consistent with previous observations by
Jin et al. (2) Pol �DV catalyzes strand displacement synthe-
sis across a downstream duplex when the strand to be dis-
placed is fully hybridized (no flap) or contains a short 5–
10 nt 5′-flap (Figure 1b–d). Surprisingly, however, we found
that 5′-flaps longer than 15 nt strongly inhibited the strand
displacement activity of Pol �DV, a property not observed
previously. Experiments with DNA–Pol �DV complexes pre-
formed in the presence of excess T1-gap substrates with dif-
ferent 5′-flaps showed similar results (Supplementary Fig-
ure S2). For long 5′-flaps (> 15 nt) the inhibition of strand
displacement activity is largely independent of the size of
the gap (from a nick to a T7-gap, Figure 1b–d) and is also
independent of the sequence composition of the flap itself
(Figure 1d, T20-flap versus 20 nt of random composition).
However, as the gap is shortened Pol �DV becomes more sen-
sitive to the length of the 5′-flap. For example, the T10 flap
has stronger inhibitory effect on a nick substrate as com-
pared to a T7-gap.

Moreover, we note an interesting behavior of the inhi-
bition as function of flap length. During strand displace-
ment a progressively longer 5′-flap is being generated as the
primer is being extended. Since the data in Figure 1b–d
show that a pre-existing 15 nt 5′-flap is sufficient for inhi-
bition of strand displacement, one would expect that once
such a flap has been generated by ongoing strand displace-
ment synthesis, Pol �DV would stall, leading to partially ex-
tended products rather than the full extension observed.
Thus, on a DNA substrate containing a pre-existing 10 nt
flap, Pol � should stall after ∼5 nt of strand displacement,
leaving a 18 bp stable duplex region. However, this is not
observed, as full extension products are produced with this
flap containing substrate, when the starting gap is T1 or T7.
This suggests that Pol �DV senses differently a pre-existing
flap as compared to a newly generated one (see Discussion).

One possible explanation for the observed inhibition is
that long 5′-flaps induce dissociation of Pol �DV. In order
to test this possibility, we used the experimental strategy
in Figure 2a. The assay is based on the rationale that if a
long 5′-flap is present at a nick and it induces a low affin-

Figure 2. Inhibition of strand displacement is not due to dissociation of
the polymerase and is independent of the orientation of the flap. (a) Scheme
depicting the experiments testing the effect of the 5′-flap on Pol �DV disso-
ciation from the substrate. (b) Primer extension activity in Buffer TM (20
mM NaCl, 30◦C) of the reference, labeled primed template by Pol �DV af-
ter incubation in the absence or presence of a 4-folf excess of the indicated
unlabeled DNAs. (c) Strand displacement activity of Pol �DV in Buffer TM
(20 mM NaCl, 30◦C) using a T7 gap substrate containing either a 5′-flap
(1) or a 3′-flap (2) generated using oligonucleotides with a reverse polarity
switch at the end of the flap. The 5 nt flaps are used to control for the effect
of the change in polarity itself.
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ity state of the bound Pol �DV causing more rapid dissocia-
tion of the enzyme (compared to complexes formed on sub-
strates without a 5′-flap), a higher primer extension activity
should be observed on a reference DNA. Pol �DV was in-
cubated with a 4-fold excess of unlabeled DNA substrates,
followed by the addition of dNTPs together with a labeled
template-primer DNA for detection of polymerase activ-
ity (Figure 2b). It is evident that the complex of Pol �DV

with a nicked substrate containing a T30 5′-flap is most sta-
ble, as it yields the lowest primer extension of the reference
DNA. This strongly suggests that the presence of the 5′-flap
does not induce dissociation of Pol �DV, but rather stabilizes
the enzyme-substrate complex. This is further confirmed by
experiments in which the reverse competition was carried
out, i.e. Pol �DV was pre-bound to the reference template-
primer, followed by competition by unlabeled nick or flap
substrates (Supplementary Figure S3). Moreover, experi-
ments performed as in Figure 2b with a T1 gap substrate
and different lengths of the flap show that stabilization of
Pol �DV on the substrate occurs at those flap lengths that
also show inhibition of strand displacement (Supplemen-
tary Figure S4), supporting the suggestion that this inhibi-
tion originates from a direct interaction of the flap with the
polymerase.

One other simple explanation for the long 5′-flap inhibi-
tion of strand displacement activity could be that this activ-
ity is associated with an increased Km for dNTPs. However,
a 5-fold increase of the concentration of dNTPs did not alle-
viate the inhibitory effect of the longer 5′-flaps on the strand
displacement activity (Supplementary Figure S5).

Because of the length dependence of the 5′-flap inhibitory
effect we next tested whether this strictly depends on either
the chemical nature or availability of the free 5′-end. For this
we used oligonucleotides with the 5′-end of the flap modi-
fied with phosphate (P), biotin (bio), digoxigenin (DIG) or
a 5′-end bound to neutravidin, streptavidin or anti-DIG an-
tibody (Supplementary Figure S6). With the short (T5) con-
trol 5′-flap, none of the 5′-end modifications affected the
ability of Pol �DV to carry out strand displacement activ-
ity. Analogously, with the longer (T20) 5′-flap, none of these
modifications was able to relieve the inhibitory effect of the
flap, indicating that the observed flap-inhibition of strand
displacement activity is independent of the state of the 5′-
end of the flap (Supplementary Figure S6).

Next we tested whether inhibition of strand displacement
requires a specific orientation of the flap. We used oligonu-
cleotides where a reverse polarity change is introduced at
the base of the flap. This allowed us to generate substrates
that contain a 3′-end flap rather than a 5′-end one (Fig-
ure 2c). With a short (T5) control 3′-flap, Pol �DV could still
carry out strand displacement. However, the longer (T30) 3′-
flap still led to inhibition of strand displacement, showing
that regulation of this activity does not require a specific ori-
entation of the flap but rather only the presence of ssDNA.

Pol �DV has a secondary DNA binding site that modulates its
strand displacement activity

The data presented so far indicate that the observed inhi-
bition of the strand displacement activity of Pol �DV is a
direct consequence of the presence of ssDNA of an opti-

mal length in the 5′-flap. This strongly suggests that direct
interaction of the flap with a site on the enzyme leads to
inhibition. Also, the observation that for intermediate flap
lengths the primer extension activity of Pol �DV is little af-
fected suggests that the interaction site for the flap must
be separate from the primary site responsible for binding
of the polymerase to the 3′-end of the primer and the ss-
DNA template. If a secondary, independent site in Pol �DV

exists and it is accessible, then addition of ssDNA ‘in trans’
may also inhibit the strand displacement activity of Pol �DV.
Control experiments in Figure 3a show that addition of a
10-fold excess of dT25 together with dNTPs to a Pol �DV-
primed DNA complex (or pre-incubation of this complex
with excess dT25 followed by addition of dNTPs) did not
appreciably affect the primer extension activity of Pol �DV.
However, the same experiments performed with a T7-gap
substrate without a 5′-flap show that addition ‘in trans’ of
an excess of dT25 efficiently inhibited the strand displace-
ment activity of Pol �DV. At least a 4-fold molar excess of
ssDNA was needed to elicit strong inhibition, suggesting
that the ssDNA present ‘in cis’ as a 5′-flap has a stronger
effect than the ssDNA added ‘in trans’. Consistent with the
observation that 5′-flaps shorter than 10 nt did not inhibit
strand displacement synthesis (Figure 1b–d), we also ob-
served that smaller oligonucleotides added in trans failed
to inhibit (Figure 3c). At least a 14-mer was required for
partial inhibition, and a 16-mer (not shown) and higher
(18 nt) strongly inhibited. Also, the inability of the short
dT10 to inhibit strand displacement appears to be due to its
short length rather than to a weaker affinity, as a 20-fold ex-
cess still cannot turn off strand displacement activity (Fig-
ure 3b, right). Control experiments in Supplementary Fig-
ure S7 showed that the lack of strand displacement activity
when ssDNA is provided in trans is not due to dissociation
of Pol � from the substrate. Also, although Pol � has some
affinity for ssDNA, dT25 is not a good trap for the enzyme
and Pol � can escape the trap on a time scale shorter than
the one over which inhibition of strand displacement is ob-
served. These data provide the first experimental evidence
that Pol �DV has a secondary ssDNA binding site that mod-
ulates its strand displacement activity.

RPA relieves the 5′-flap inhibition of strand displacement ac-
tivity of Pol �DV

Next, we tested whether yeast RPA could relieve the inhibi-
tion caused by the long 5′-flap. Figure 4a shows experiments
with a T7-gap substrate and different lengths of the 5′-flap,
performed in the presence of a 2-fold excess of RPA relative
to the DNA substrate. RPA completely relieved the inhibi-
tion of strand displacement caused by the 5′-flap. The relief
of flap-inhibition is not specific to RPA, because E. coli SSB
can substitute for it (Supplementary Figure S8a). Moreover,
relief of flap-inhibition in the presence of RPA was also ob-
served for a flap of opposite orientation (3′-end flap, Supple-
mentary Figure S8b). This would be consistent with the sim-
ple idea that binding of RPA to the flap sequesters it, allow-
ing for Pol �DV to carry out strand displacement. However,
we note that as compared to the Pol �DV-only experiments in
Figure 1d, for substrates with shorter flaps (e.g. T5), full dis-
placement products appeared at the one-minute time point
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Figure 3. The strand displacement activity of Pol �DV is inhibited by addition ‘in trans’ of ssDNA. (a) Scheme depicting the experimental strategy. After
pre-forming a Pol �DV–DNA complex the reactions are started either by (1) adding dNTP, (2) adding dNTP and ssDNA or (3) first adding ssDNA to
the pre-formed complex followed by addition of dNTP. (b) Effect of different concentrations of dT25 on the primer extension and strand displacement
activities of Pol �DV in Buffer TM (20 mM NaCl, 30◦C) using either a labeled, primed DNA template or a labeled T7 gap substrate without a 5′-flap in
the strand to be displaced. (c) ssDNA length dependence of the ‘in trans’ inhibition using a 10-fold excess of dT18, dT14 and dT10. For dT10 experiments
using a 20-fold excess are shown as well. The boxed numbers in (b) and (c) refer to the way the experiments were performed according to (a).
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Figure 4. RPA relieves the inhibitory effect of long 5′flaps. (a) Effect of
RPA on the DNA primer extension and strand displacement activity of
Pol �DV in Buffer TM (20 mM NaCl, 30◦C) as a function of the length
(n) of the 5′-flap in the strand to be displaced using a T7 gap substrate.
(b) Effect of RPA on a T1 gap substrate that does not contain a 5′-flap.
(c) Scheme depicting the strand displacement assay using the signal from
a Cy3–Cy5 couple placed at the end of the duplex region to be displaced.
(d) Time courses of the Cy3 fluorescence intensity using a T1 gap substrate
that does not contain a 5′-flap in the strand to be displaced. In black is
the time course after addition of dNTP to a pre-formed Pol �DV–DNA
complex. In this experiment RPA was added (spiked RPA) 50 min after
the reaction had been started. In the gray time course RPA was added from
the beginning, before adding dNTP. A control experiment with only RPA
added is shown as well. (e) Same experiments as in d) but using a T1 gap
substrate containing a T25 5′-flap in the strand to be displaced. The RPA-
only experiment is shown offset for clarity.

when RPA was present (Figure 4a). This suggests that even
for flap lengths that are too short to stably bind RPA (27),
the single-strand DNA binding protein stimulates strand
displacement. This is further shown in Figure 4b with finer
time courses using a T1-gap substrate that does not have a
5′-flap (for this substrate oligonucleotides T2 and D2 were
used). Again, even though there is no initial binding site for
RPA, its presence allowed for full product to be formed at
shorter times.

In order to better understand the role RPA plays in stimu-
lating strand displacement, we employed an alternative ap-
proach. The assay (shown schematically in Figure 4c) is
based on the rationale that if a donor–acceptor couple is
placed at the end of the downstream duplex, complete sep-
aration of the downstream duplex through strand displace-
ment synthesis by Pol �DV can be monitored by a change
in Forster resonance energy transfer (FRET). For these ex-
periments we used T1-gap substrates (as in Figure 4b) with
a Cy3 at the 3′-end of the strand to be displaced and a Cy5
at the 5′-end of the template. Addition of dNTPs to a pre-
formed complex of Pol �DV and a DNA substrate without
a 5′-flap showed a large change in FRET signal (Supple-
mentary Figure S9a). The black trace in Figure 4d shows
a time course for Pol �DV strand displacement on this sub-
strate, monitoring the change in Cy3 fluorescence intensity
after addition of dNTPs. The trace is characterized by an
initial lag phase (tlag ∼5 min) followed by a ∼7-fold increase
in Cy3 intensity with a t1/2 of ∼19 min. Interestingly, The
FRET-based strand displacement assay shows slower kinet-
ics than those derived from directly measuring primer exten-
sion with the gel-based assay. The reason for this discrep-
ancy is not clear, but one likely explanation is that while the
fluorescence assay is only sensitive to release of full product,
the gel-based assay, where the reactions are quenched and
de-proteinized, monitors formation of full extension prod-
uct both on and off the enzyme. Nevertheless, both assays
show that addition of RPA stimulates the rate of displace-
ment synthesis. In the FRET-based assay with a 2-fold ex-
cess of RPA (Figure 4d, gray trace) the time course is char-
acterized by an initial shorter lag of ∼3 min followed by a
larger ∼10-fold increase in Cy3 intensity with a shorter t1/2
of ∼10 min. The difference in Cy3 signal can be understood
when we consider that it has been shown that binding of
RPA to ssDNA is accompanied by a fluorescence increase
of Cy3 intensity (28). Indeed, addition of RPA at the end of
the Pol �DV-only reaction in Figure 4d (black trace) shows
an additional increase of the signal, to a similar level to the
one observed when RPA is present from the beginning of
the reaction. Control experiments monitoring the change in
Cy3 fluorescence upon RPA binding to ssDNA further cor-
roborate this point (Supplementary Figure S9b). Moreover,
experiments in Supplementary Figure S9c show that the ki-
netic parameters are little affected when the donor–acceptor
couple at the end of duplex was switched around. Also, in
this case the maximum signal is independent of the presence
in solution of RPA. These data indicate that RPA stimulates
strand displacement synthesis even when an initial ssDNA
binding site is lacking. This is further supported by experi-
ments performed at lower temperature (Supplementary Fig-
ure S10) where the effect of RPA is more pronounced.
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Finally, we used the FRET-based assay to examine the ef-
fect of RPA on the strand displacement activity of Pol �DV

on a substrate with a T25 5′-flap, which is long enough to
provide a strong binding site for the single-stranded DNA
binding protein (27). The black trace in Figure 4e shows
the time course of Cy3 fluorescence change after addition
of dNTPs. In the absence of RPA no signal change was de-
tected for ∼20 min, consistent with the inhibition of strand
displacement observed in Figure 1. Addition of RPA after
20 min led to a large signal change with tlag ∼ 1.2 min and
a t1/2 of ∼ 3.3 min. Stimulation of Pol �DV strand displace-
ment activity also occurred when RPA was incubated with
the polymerase and the substrate before addition of dNTPs
(Figure 4e, gray trace). In this case both the signal change
and the kinetics (tlag ∼ 1.5 min and t1/2 ∼ 3 min) were sim-
ilar to the ones observed when RPA is added after 20 min.
Compared to substrates without a 5′-flap (Figure 4d) it is
clear that when a site for RPA binding is available (pre-
formed) RPA stimulates the reaction. Also, control exper-
iments where only RPA was added to the DNA substrates
(Figure 4d and e) showed no change in signal, indicating
that even with substrates that contain a long flap, RPA bind-
ing itself does not lead to any detectable displacement of the
dsDNA.

Inhibition of strand displacement activity of Pol �DV at higher
NaCl concentrations cannot be relieved by RPA

The data presented so far were collected at low NaCl con-
centration (20 mM), which is optimal for Pol �DV activity in
the absence of PCNA. Next we examined the effect of in-
creasing NaCl concentration to test the hypothesis that, if
the interaction of the ssDNA flap with the secondary site
on Pol �DV were weakened, this could lead to a relief of the
inhibitory effect of the flap. Figure 5a shows the strand dis-
placement activity of Pol �DV at different NaCl concentra-
tions using T7-gap substrates either without a 5′-flap or with
a T30 5′-flap. Independent of the presence of the flap, the
strand displacement activity of Pol �DV was essentially abol-
ished at NaCl concentrations higher than 70 mM. The lack
of strand displacement was not due to an effect of the higher
NaCl concentration (70–100 mM) on the primer extension
activity of Pol �DV. At these higher NaCl concentrations the
polymerase readily filled in the T7 gap of the substrate or ex-
tended a primed DNA substrate (Figure 5a, right panel). In
addition to the regulatory role of the 5′-flap discussed in the
previous section, these data show that strand displacement
activity is also modulated by salt concentration, as previ-
ously observed (2).

Because of the stimulatory effect of RPA on Pol �DV

strand displacement synthesis when a 5′-flap is present (see
above), next we tested whether the inhibition observed at the
higher NaCl concentrations could be bypassed by binding
of RPA to the flap. Figure 5b shows experiments performed
at two different NaCl concentrations in the presence of a
2-fold excess of RPA relative to the DNA substrate. At 100
mM NaCl the addition of RPA did not lead to any signif-
icant strand displacement DNA synthesis on the substrate
with the 5′-flap. The same is true for higher concentrations
of RPA (not shown). Binding of RPA to the 5′-flap is not

Figure 5. Independent of the presence of a 5′-flap, higher NaCl concentra-
tions inhibit the strand displacement activity of Pol �DV, which cannot be
relieved by RPA. (a) Strand displacement activity of Pol �DV in Buffer TM
(30◦C) in the presence of the indicated NaCl concentration, using a T7 gap
substrate without or with a T30 5′-flap. The effect of 100 mM NaCl on the
extension activity of Pol �DV using a primed DNA template is shown as
well. (b) Effect of RPA on the strand displacement activity of Pol �DV at
40 mM and 100 mM NaCl using the same substrates as in (a).
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sufficient to relive the inhibition of the activity at the higher
salt concentration.

Binding of Pol �DV to PCNA relieves all inhibitory effects on
strand displacement activity by changing the properties of the
polymerase

In the previous sections we examined the intrinsic ability
of Pol �DV to catalyze strand displacement synthesis. How-
ever, it has been shown that interaction of Pol � with PCNA
stimulates both its processivity and strand displacement ac-
tivity (2,3). If the role of PCNA were limited to a function
as processivity factor, then the inhibitory effect of the 5′-
flap on Pol �-mediated strand displacement should be inde-
pendent of its interaction with PCNA. Figure 6a shows as-
says with T7-gap substrates with different lengths of the 5′-
flap. For these substrates the 5′- and 3′-ends of the template
were modified with biotin and the experiments performed in
excess streptavidin to generate ‘bumpers’ that prevent dis-
sociation of PCNA from the substrate (1,29). PCNA was
loaded onto the substrate in the presence of RFC and ATP
and the reaction started by the addition of polymerase and
dNTPs. The data in Figure 6a show that independent of
the presence of the flap and its length, PCNA-bound Pol
�DV catalyzed strand displacement synthesis. Thus, bind-
ing of the polymerase to PCNA relieves the 5′-flap inhibi-
tion observed for the Pol �DV reactions (Figure 1). More-
over, these experiments were performed at 100 mM NaCl,
where Pol �DV alone cannot catalyze strand displacement
on substrates with or without a 5′-flap. Binding of Pol �DV

to PCNA also relieves the higher salt inhibition observed in
Figure 5.

It is possible that when bound to PCNA, Pol �DV is in a
conformation that does not allow the 5′-flap to interact with
the secondary site on the enzyme and modulate the strand
displacement activity. If this were the case the secondary
site should still be available and therefore it should be pos-
sible to suppress strand displacement activity by adding ss-
DNA ‘in trans’ as for the experiments in Figure 3. We tested
this possibility in Figure 6b using a DNA substrate that
does not contain a 5′-flap. The scheme in Figure 6b shows
two different ways the experiments were performed. In one
case, after PCNA loading Pol �DV was allowed to bind for 1
min, at which point the reaction was started by addition of
dNTPs in the presence or absence of a 10-fold excess of dT25
(Figure 6b, right). At difference with what was observed in
Figure 3, the addition of dT25 did not suppress strand dis-
placement. However, it is possible that binding of Pol �DV

to PCNA occluded the secondary site preventing ssDNA
binding. Therefore, the experiments were also performed by
starting the reaction with dNTP and Pol �DV pre-incubated
with the dT25 (Figure 6b, left). However, the presence of
dT25 again had no effect on the strand displacement activity
of Pol �DV. These data suggest that upon binding to PCNA
the secondary ssDNA site of Pol � can no longer modulate
strand displacement activity.

DISCUSSION

The strand displacement activity coupled to DNA synthesis
in the absence or presence of processivity factors, interact-
ing proteins and single-stranded DNA binding proteins, has

Figure 6. Binding of Pol �DV to PCNA relieves all inhibitory effects on
strand displacement and masks the activity of the secondary site on the
polymerase. (a) PCNA was loaded on DNA substrates containing strepta-
vidin bumpers using RFC and ATP. The reactions were started by adding
Pol �DV with dNTP. For these experiments T7 gap substrates with the in-
dicated length of a 5′-flap were used. (b) After loading of PCNA onto a T7
gap substrate that does not contain a 5′-flap, the reactions where started
either by addition of a solution of Pol �DV and dNTP with or without a
10-fold excess of dT25 or by first adding Pol �DV for 1 min followed by the
addition of dNTP with or without a 10-fold excess of dT25.
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been studied for several DNA polymerases both on model
oligonucleotide and plasmid-sized substrates, and the range
of this activity is rather broad. For example, the DNA poly-
merase from phage �29 is highly active for strand displace-
ment in the absence of any accessory protein (16). The high
processivity and strand displacement activity of this enzyme
have been shown to depend on the TRP2 domain in the ex-
onuclease that encircles the DNA template, with wedging
of this domain into the downstream duplex proposed to al-
low for strand separation (30,31). Other examples of DNA
polymerases that can catalyze strand displacement activity
in the absence of accessory factors are the E. coli DNA poly-
merase I and its Klenow fragment (KF) derivative (32), Bst
polymerase from Bacillus Stearothermophilus (33,34), HIV-
1 reverse transcriptase (35–37) and Mip1 polymerase (38).
Interestingly for E. coli Pol I it has been shown that short 5′-
flaps stimulate strand displacement activity (32). The high
processivity and strand displacement activity of some of
these polymerases (�29, KF, Bst) forms the basis for isother-
mal strand displacement amplification techniques (39). At
the other end of the spectrum of this activity, the DNA poly-
merases for bacteriophages T4 and T7 have been shown to
have low strand displacement activity even when bound to
their accessory factors (15–17). For T7 DNA polymerase
the enzyme is only able to extend few nucleotides into the
downstream duplex (40). For these polymerases it has re-
cently been shown by single molecule magnetic tweezer
techniques that their strand displacement activity can be
activated by an assisting force that destabilizes the duplex
DNA (41). This has led to the proposal that the fork in front
of the enzyme exerts a ‘regression pressure’ that inhibits
strand displacement. T4 DNA polymerase and DNA poly-
merase � both are replicative B-family DNA polymerases,
and the ability to carry out strand displacement synthesis
is essential for proper Okazaki fragment maturation. Both
enzymes carry out increased strand displacement synthesis
when their exonuclease is inactivated (2,42).

In this work we showed that the strand displacement syn-
thesis activity of exonuclease-deficient DNA polymerase �
is inhibited by the presence of a long flap at the 5′-end of
the DNA strand to be displaced. The inhibitory effect of a
5′-flap, or by long ssDNA added in trans, is not only ob-
served with Pol �DV (D520V) but also with the exonuclease-
deficient Pol �01 (D321A, E323A), showing that this is an
intrinsic property of the exonuclease deficient enzyme (Sup-
plementary Figure S11). The inhibitory effect of the 5′-flap
does not originate from either a flap-induced dissociation
or a large change in the Km for dNTP when in strand dis-
placement ‘mode’. Rather, the ability of strand displace-
ment to be suppressed ‘in trans’ directly points to the pres-
ence of a secondary DNA binding site on the polymerase
that can modulate this activity. Moreover, the observation
that blocking the 5′-end of the flap with a protein does not
relieve strand displacement inhibition (Supplementary Fig-
ure S4) also suggests that the ssDNA is not threaded into
the polymerase to elicit inactivation. This argues that inhi-
bition of strand displacement occurs though interaction of
the ssDNA region of the flap with an open site on the poly-
merase. This is further confirmed by the observation that
a flap of opposite directionality (3′-flap) is still inhibitory
for strand displacement, showing that it is sufficient for ss-

DNA to be present (Figure 2c). In addition, the flap-length
dependence of the inhibition also shows that Pol � senses
a pre-existing flap differently from a flap that is newly gen-
erated during strand displacement. This suggests that the
5′-flap has a stronger effect at the initiation phase of strand
displacement; once Pol � engages (elongation phase), it be-
comes less sensitive to the flap that is being generated.

The question then is where the secondary DNA site is
located within the Pol � hetero-trimer. The Pol31 subunit
links the catalytic Pol3 subunit to the Pol32 subunit, and
it is essential for Pol � function in Saccharomyces cere-
visiae and in Schizosaccharomyces pombe (43,44). No DNA
binding sites have been detected in Pol31 or Pol32, or the
Pol31–Pol32 complex by electrophoretic mobility shift as-
says (P. M. Burgers et al., unpublished observations). In-
terestingly, the crystal structure of the human Pol31–Pol32
complex identifies structural similarities to oligonucleotide-
binding and phosphodiesterase domains in Pol31 and a
winged helix-turn-helix domain in Pol32 (45), all of which
could potentially bind ssDNA. However, the possibility also
exists that the Pol3 catalytic subunit is a candidate for the
presence of the secondary DNA site. The observation that
5′-flaps long enough to inhibit strand displacements activity
do not dramatically affect Pol � primer extension (gap fill-
ing) shows that the primary site, comprising the active site
and the region for template binding, is separate from the
secondary DNA site. Two possible regions in the Pol3 sub-
unit that could contain the secondary DNA site are the ex-
onuclease domain and the N-terminal domain (NTD). The
exonuclease domain by definition must bind DNA to per-
form its function. Intriguingly, for DNA polymerase � from
loach it has been shown that the presence of a short un-
paired ssDNA region at the 3′-end of the primer increases
the affinity of the polymerase for the substrate (46). The sta-
bilizing effect of the unpaired 3′-flap on the primer has been
proposed to originate from interaction with the exonucle-
ase domain, providing further support for the ability of this
domain to bind ssDNA. Also, the crystal structure of Pol3
shows that the NTD contains three motifs, two of which
have been proposed to bind nucleic acid (47). The most N-
terminal motif I resembles DNA binding domains found in
ssDNA binding proteins and it is located in the proximity
of the 5′-end of the template (47). Its function has been pro-
posed to bind the template ssDNA ahead of the active site
(47).

We also showed that the inhibitory effect of a 5′-flap can
be bypassed by the presence of a single-stranded DNA bind-
ing protein (RPA or SSB). Interestingly, during strand dis-
placement of a mini-circle DNA the presence of RPA ap-
pears to limit the size of displaced fragments to ∼ 30 nt
(3). The data in this work show, however, that when a pre-
formed flap is provided for RPA to bind, the strand dis-
placement activity of Pol � is stimulated. It is possible that
this discrepancy originates from a different way in which
RPA can act at the initiation stage versus the elongation
phase of strand displacement. The data suggest that it is suf-
ficient for RPA to bind to the 5′-flap to relieve inhibition and
the non-specific effect of the single-stranded DNA binding
proteins would suggest that the role of RPA is simply to se-
quester the flap. However, if the only function of RPA were
to sequester the flap then in the presence of RPA the strand
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displacement activity of Pol � should be the same on DNAs
with or without flap. But this is not the case. The FRET-
based assays clearly show that in presence of RPA and a 5′-
flap long enough to provide a binding site for RPA, Pol � has
better strand displacement activity than on a substrate with-
out a flap (Figure 4). Binding of RPA to the flap facilitates
strand displacement. This could be due to a direct interac-
tion of RPA with the polymerase, however no such interac-
tion has been demonstrated to date. Alternatively, human
RPA has been shown to diffuse along ssDNA and also tran-
siently open short duplex DNA hairpins, preferentially in
the 5′–3′ direction (same as the flap in our substrates) (28).
If we were to assume that yeast and human RPA diffuse on
ssDNA in the same way and that Pol � bound to the sub-
strate does not hamper RPA diffusion into the duplex, it is
intriguing to speculate that the ability of RPA to melt short
duplex DNA could at least in part contribute to the stimu-
lation of strand displacement. It remains to be determined
whether under the same experimental conditions the kinet-
ics of Pol � polymerization and RPA diffusion and dsDNA
opening would be compatible for such a mechanism to be
in place. At the same time, the inability of RPA to relieve
inhibition of strand displacement at higher NaCl concen-
trations suggests that the mechanism is more complex than
transient opening of the dsDNA to allow for Pol � synthe-
sis. This is further confirmed by the observation that inde-
pendent of the assay used (gel or FRET) RPA appears to
stimulate the strand displacement activity of Pol � even on
DNA substrates that do not contain a RPA binding site to
start with.

In addition to the inhibitory effect of the 5′-flap on strand
displacement we also showed that, independent of the pres-
ence of a flap, NaCl concentrations above 70 mM are suf-
ficient to completely shut down this activity while little af-
fecting primer extension. Moreover, at the higher salt con-
centration binding of RPA to the 5′-flap is not sufficient to
restore strand displacement activity. At physiological salt
concentrations Pol � must interact with an accessory factor
in order to catalyze strand displacement. Indeed, binding of
Pol � to PCNA has clearly been shown to stimulate strand
displacement activity and all known Pol � functions in vivo
appear to be PCNA dependent (12,13,48). Experiments in
Figure 6 further reinforce this point by showing that at
100 mM NaCl the polymerase alone is inactive for strand
displacement, but the interaction of Pol � with PCNA re-
stores strand displacement activity. We also showed that
once bound to PCNA Pol � is no longer inhibited by the
presence of a 5′-flap. Also, when bound to PCNA the strand
displacement activity of Pol � can no longer be inhibited ‘in
trans’, strongly suggesting that the interaction with PCNA
has altered the secondary DNA binding site on the poly-
merase, rendering it unresponsive for regulation of strand
displacement. These data show that the interaction of Pol �
with PCNA changes the intrinsic biochemical properties of
the enzyme. PCNA is not just an interacting protein scaf-
fold used to increase processivity but may also function as
a modulator of polymerase activities. The question remains
why Pol � would contain a secondary site that modulates
in vitro its strand displacement activity only when the poly-
merase is not bound to PCNA. The current view of Pol �
function in vivo is that it requires its interaction with PCNA;

indeed, mutational studies of Pol � showed that this inter-
action is essential for cell viability (12,13,48). However, it is
intriguing to speculate that some non-essential activities of
the polymerase might not be strictly PCNA dependent and
in this case the inhibitory role of long ssDNA flaps might
be a means to limit strand displacement activity. Alterna-
tively, it could be argued that the ability of PCNA inter-
action to mask the presence of a secondary, inhibitory site
on the polymerase might be a means to channel all Pol �
functions trough PCNA. Finally, while our data show that
the secondary site on the polymerase does not significantly
affect in vitro the strand displacement activity of PCNA-
bound Pol �, this does not exclude the possibility that the
site is still accessible and used for some other function.
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