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Abstract

The classification of neurons into types has been much debated since the inception of modern 

neuroscience. Recent experimental advances are accelerating the pace of data collection. The 

resulting information growth of morphological, physiological, and molecular properties 

encourages efforts to automate neuronal classification by powerful machine learning techniques. 

We review state-of-the-art analysis approaches and availability of suitable data and resources, 

highlighting prominent challenges and opportunities. The effective solution of the neuronal 

classification problem will require continuous development of computational methods, high-

throughput data production, and systematic metadata organization to enable cross-lab integration.
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1. Data descriptors to classify neuron types

Neuron type classification is an increasingly hot topic, yet its history began with 

neuroscience itself [1]. Researchers routinely refer to pyramidal, stellate, granule, bipolar, or 

basket cells, but these names are often insufficient to describe neuronal diversity even within 

limited brain areas. Realizing this issue, both the European Human Brain Project and the 

American BRAIN initiatives identified cell-type classification among their first priorities 

[2,3]: “to complete a comprehensive cell census of the human brain”. The ultimate endeavor 

is to link neuronal types with behavior, computation, and eventually cognition. Prominent 

international efforts proposed initial guidelines to help organize the growing body of 

knowledge [4]. However, manual classification attempts are ill-equipped to deal with big 

data. The magnitude and complexity of neuron classification demands high-throughput 

technologies.

Neuroscience and computer science are mature to tackle neuronal classification by powerful 

mathematical approaches. Several recent studies leveraged modern computational 

methodologies to considerably advance the state-of-the-art [5-26]. Increasing integration of 
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machine learning techniques with microscopic, chemical, and functional methods has 

already pushed bioinformatics to new heights [27]. While neuroscience is rapidly 

transitioning to digital data [28,29], the principles behind automatic classification algorithms 

remain often inaccessible to neuroscientists, limiting the potential for breakthroughs.

Neurons are typically characterized by their morphology, physiology, and biochemistry 

(Figure 1). These principal experimental approaches reflect the most prominent available 

techniques, namely microscopic imaging, electrical recording, and molecular analysis. These 

investigation domains also constitute proxies for key attributes of neuronal identity: axonal 

and dendritic structures establish the means for network connectivity; neuronal expression 

profiles provide a window onto developmental origins; and electrophysiological properties 

underlie signal processing. Furthermore, these features are intimately intertwined. The 

macromolecular machinery sculpts both neuronal excitability and circuitry, and these 

together define computational functions. The difficulty of the problem increases even further 

when considering systematic differences between species, across brain areas, and throughout 

development. Yet even for the most common animal models, well-defined regions of the 

nervous systems, and confined age ranges or developmental stages, available information on 

neuronal identity has so far failed to yield a broadly agreed-upon approach to neuronal 

classification.

Much like “parts lists” preceding “exploded diagrams” in assembly kit manuals, the 

objective identification of neuron types is essential to understand their functional 

interactions [30,31,32]. After formally introducing automatic neuronal classification, we 

review exemplary progress, from foundational breakthroughs to recent trends, providing 

useful pointers to available informatics tools. We then highlight current opportunities and 

challenges in neuronal classification before discussing the transformative prospects of 

forthcoming big data.

2. Automatic neuronal classification

The term classification is often used with two related yet distinct meanings when referring 

to neuron types. In the narrower sense, neuronal classification is the process of dividing a 

group of neurons into known classes, as exemplified by the task to distinguish excitatory 

from inhibitory cells. The second usage of the term encompasses the above classification 

proper as well as the identification of the classes themselves, a step sometime referred to as 

categorization. This broader connotation implies the definition of distinct neuron types and 

the simultaneous assignment of neurons to each type.

This work reviews the automatic classification of neurons by quantitative measurements. 

The emphasis on minimized human intervention complements qualitative descriptions of 

neuron types based on expert knowledge (e.g. [33]) as well as computational models of the 

biophysical mechanisms differentiating neuron types (e.g. [34]). Automatic classification is 

primarily data-driven and hence largely blind to the researcher.

Formally, a neuronal classification dataset D (see Box 1 for a glossary of machine learning 

terms) consists of a set of k observed neurons, each described by (n+1) variables. The first n, 

known as predictive variables, are measurements on the neurons. The last variable, referred 

Armañanzas and Ascoli Page 2

Trends Neurosci. Author manuscript; available in PMC 2016 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



to as the class variable, specifies the neuron type. A classifier is a function γ assigning labels 

to observations,

where the n-dimensional vector x = x1, …, xn contains the values for all measurements of a 

particular neuron, and {1, 2, …, m} are the possible neuronal classes. The real class of the 

given neuron, usually denoted c, is a value in that range.

The assumed (but unknown) joint probability distribution p(x1, …,xn, c) underlying the 

observations can be estimated from the sample {x1, c1, … , (xk, ck)}, where superscripts 

refer to neurons, and subscripts to measurements of those neurons.

Extensive mathematical groundwork defined a wide variety of classifiers with distinct 

theoretical assumptions, whose effectiveness cannot be ranked a priori [35]. Automatic 

classification can be broadly conceptualized on the basis of available knowledge and 

scientific goal (Figure 2). In supervised classification, both the n measurement and the class 

assignment c are known for all k neurons in the dataset. The goal of supervised classification 

is to formulate a predictive or explanatory mapping between the measurements and the 

classes. For example, the values for spike amplitude, frequency, and duration from a known 

sample of glutamatergic and GABAergic neurons can be used to associate the spiking 

characteristics with their post-synaptic effects. This knowledge can be leveraged to infer 

network function or to deduce the neurotransmitter released by neurons in a different dataset 

from their spiking records. In supervised classification the number of neuron types is 

predetermined.

Conversely, in unsupervised classification or clustering only the set of n measurements is 

available, but the particular values of the class variable are unknown for all k neurons. In 

this case, the aim is to find the classes that best explain the measurements by grouping the 

neurons into identifiable clusters. Unsupervised classification also determines the number of 

cells types. For example, the observed variety of protein expression profiles in a set of 

neurons might be reducible to a restricted number of distinct, but internally consistent, 

expression patterns, each controlled by specific transcription factors.

In the intermediate case of semi-supervised classification, only some, but not all, neurons are 

labeled with known classes (Figure 2). For example, a researcher might record spiking 

latency, input resistance, and adaptation ratio for a set of neurons, but could only establish 

the morphological identity from biocytin injection in a minority of the cells. The 

Supplementary Material includes an expanded version of Figure 2 with extensive examples 

of algorithms corresponding to supervised, semi-supervised, and unsupervised classification 

along with references and pointers to available implementations.

3. Advances in automatic neuronal classification

This section surveys a representative selection of recent publications on automatic neuronal 

classification, briefly assessing biological data, computational techniques, and software 
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implementation with particular attention on resource availability for further applications 

(Table 1).

3.1. Neuronal morphology and circuit connectivity

The prominence of morphological features for identifying neuron types began with the 

transformative pairing of Golgi staining and optical microscopy [1]. Compared to the 

sensitive condition-dependence of electrophysiological and biochemical states, the shape of 

neurons ensures considerable robustness. To this day, axonal and dendritic structures remain 

pivotal in the analysis of neuronal development, pathology, computation, and circuitry [36]. 

Early pattern recognition applications of multi-scale wavelet energy showed shape 

classification promise for specific neuron types such as retinal ganglion cells [37]. Initial 

attempts to produce general neuron hierarchies based on morphological properties [38], 

however, gained limited traction. Despite recent progress, knowledge of morphological 

diversity and connectivity patterns is still in its infancy. The limited information about 

neuron types, let alone their hierarchical relations, curtails the potential of taxonomical 

approaches.

The applications of machine learning in automatic neuronal classification was pioneered 

through purely data-driven analysis of GABAergic cortical interneurons 

[9,12,17,18,21,22,39]. Although these studies shared the common goal to identify distinct 

subtypes of local-circuit inhibitory neurons, they relied on different experimental 

measurements and computational algorithms (Table 1). Automatic classification results were 

validated by expert inspection [22], previous knowledge over the classes [21], biological 

interpretability [12], or community consensus [17]. Classic Sholl-like analysis [40] provided 

surprisingly effective measurements for automatic classification (with 300 µm intervals for 

axons [12,17,22] and 50-100 µm intervals for dendrites [12,21]. Other relevant 

morphological features were dendritic convex hull area [39], volume, surface area [21], and 

ratio of dendritic length to surface area [12].

A recent study included several transgenic lines in an analysis of 363 mouse retinal ganglion 

cells [24]. Dendritic arbors three-dimensionally skeletonized from voxel coordinates were 

differentiated by hierarchical clustering with Euclidean distance. The clustering cut-off was 

chosen as the lowest level that correctly grouped the strongly defined genetic types, 

assessing reliability by leave-one-out validation. Fifteen classes were identified, six of which 

await finer genetic identification.

Incorporation of over 100 morphometric parameters from L-Measure [41] in the Farsight 

toolkit [42] fueled an automatic classification attempt with 1230 rodent neurons from 

multiple sources [23]. The widely non-uniform sample yielded neuronal groups of limited 

consistency, but useful morphological features were nonetheless identified that allowed 

successfully classification in selected cases. In a similar vein, the dendritic arbors of over 

5000 neurons from NeuroMorpho.Org were classified by model-based unsupervised 

clustering with expectation maximization after morphometric dimensionality reduction by 

principal component analysis [43]. Specific combinations of measures related to branching 

density, overall size, tortuosity, bifurcation angles, arbor flatness, and topological 

asymmetry captured anatomically and functionally relevant dendritic features across a broad 
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diversity of species and brain regions. Similar approaches enabled the automatic 

identification of “extreme” structural phenotypes across species and brain regions [44].

At finer microcircuit scale, automatic classification has been adopted to characterize type, 

densities, and geometry of cerebellar axonal boutons [45] and hippocampal dendritic spines 

[46]. Neuronal classification could in principle be achieved directly from network 

connectivity [47], but the necessary mathematical framework is still under development and 

will require large-scale neuron-level connectomes for empirical testing. As a proxy for 

connectivity, branching similarity distributions were used to classify 379 optic lobe neurons 

labeled from a single drosophila brain [48]. The results matched an expert curated subset of 

56 categories within 91% estimated accuracy.

A new paradigm for morphological classification adapted the bioinformatics idea of 

sequence alignment [49]. Each of 16,129 drosophila neurons (from [50]), represented as 

lightweight binary arrays [16], were first embedded in a common whole-brain atlas. Then 

massive pairwise similarity comparisons in spatial location and local geometry yielded 

1,052 differentiated phenotypic groups by affinity propagation clustering [51]. This large set 

of clusters was then rearranged into super-classes by hierarchical clustering with Euclidean 

distance. Many of these super-classes matched known drosophila neuron types and circuits, 

whereas others constituted as-of-yet unexplored novel families [26]. Drosophila larva is also 

a powerful model organism to investigate dendritic growth [52], stereotypy [53], and 

synaptic connectivity [54] in motor circuits.

3.2. Firing patterns and plasticity

Characterizing neurons electrophysiologically can potentially reveal their functional 

identity. Recent automatic identification of neuron types by spiking patterns builds on earlier 

descriptive analyses [55-57]. Spike width alone segregated three main types of neurons in 

the macaque monkey frontal eye field, namely visual, movement, and visuomovement cells 

[8]. The analysis simply relied on the coefficient of variation and Wilcoxon rank sum test 

with Bonferroni corrections for multiple comparisons.

Stepping up in complexity, twelve types of retinal ganglion cells were automatically 

detected using five response characteristics: on and off amplitude, latency and transience, 

direction selectivity, and receptive field indexes [13]. A simple firing frequency threshold 

with in vivo spike duration allowed separation of putative GABAergic and dopaminergic 

neurons in the ventral tegmentum, but clustering by response to D2-type receptor agonists 

and antagonists further identified several distinct subtypes [15].

Visual and somatosensory neocortices are amongst the most explored regions of the 

mammalian brain. With 46 quantitative electrophysiological features from 466 cortical 

interneurons previously identified as eight distinct types based on Petilla nomenclature [4], 

hierarchical classification revealed six fast-spiking and adapting subtypes [19]. Spike shape 

and timing were identified as key physiological features, notably firing rate, fast after-

hyperpolarization depth of the first spike, as well as half-height width and latency from 

stimulus of the second spike. Other similar studies reported analogous distinctive 
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electrophysiological parameters, namely rise, duration, and decay of the first two spikes, 

plus firing rate and spike duration at 10 Hz [21,58].

Passive and active intrinsic membrane properties proved to be key physiological properties 

in classifying layer 2/3 pyramidal cells in the dorsolateral prefrontal cortex of macaques [59] 

as well as layer 2/3 interneurons in the visual cortex of mice [60]. Both works used 

hierarchical clustering over 16-17 electrophysiological measurements, reporting four 

neuronal subtypes each. Among mouse interneurons, the firing patterns in response to 

moderate stimuli above rheobase and the excitatory synaptic input constitute the most 

informative parameter. In the case of macaque pyramidal cells, the most indicative 

membrane properties were spiking regularity, input resistance, minimum firing current, and 

the current-to-frequency relationship.

Automatic classification of somatostatin-expressing interneurons, using 19 physiological 

features from 36 cells and in parallel 67 morphological features from 39 cells, 

independently identified three neuron types: Martinotti cells and two other groups with short 

asymmetric axons targeting layers 2/3 and bending medially [11]. Although morphological 

reconstructions and electrophysiological recordings were jointly available for only 16 cells, 

classification results were consistent across domains.

Three glutamatergic and four GABAergic archetypes were identified from 200 

somatosensory cells [9]. Reanalysis of the same data with unsupervised fuzzy sets assuming 

a diversity continuum quantitatively confirmed the quasi-optimality of the previous 

separation, with the single addition of a previously unidentified subtype [18]. Key 

continuous features included voltage sag at hyperpolarized potentials, bursting phenotypes, 

input resistance, electrical excitability, and expression of GADs, calbindin, and NPY. The 

123 of the same original 200 neurons that expressed reelin were reanalyzed again, 

corroborating the different intensity of reelin immunoreactivity among specific interneuron 

subtypes [20].

The above triad of studies illustrates the potential of data reuse in this field. Classification 

endeavors can thus benefit from the recent public release of a noteworthy dataset of 7,736 

cells recorded in vivo from hippocampal regions CA1, CA3, and DG, as well as from 

entorhinal layers 2, 3, and 5 in rats performing multiple behavioral tasks [25]. As a 

preprocess stage, spiking patterns were automatically sorted by refined expectation 

maximization clustering. Human curation of the resulting groups with the NeuroSuite 

software labeled 6,732 cells. Following and extending already published criteria [61], 

principal cells and interneurons were distinguished based on waveforms, short-term 

monosynaptic interactions, and (for hippocampal neurons) bursting propensity.

3.3. Molecular markers and developmental origin

The third pillar of neuronal characterization is biochemical analysis at single-cell or whole-

tissue level. Most biophysical properties of neurons are dictated by their transcriptional 

state, hence the emphasis on gene profiling [62-64]. For example, absolute mRNA levels of 

six different ion channels were measured by real-time PCR within and across six identifiable 

types of crab stomatogastric ganglion neurons [6]. Pearson coefficient correlation, ANOVA, 
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and t-tests empirically demonstrated that correlated expressions of particular channel subsets 

determine the specific electrophysiological output.

Another seminal study used multiple DNA microarray replicas from murine forebrain [5]. 

Hierarchical clustering (with Euclidean distance) of the most significantly expressed genes 

(ANOVA, p<10−5) yielded a quantitative taxonomy of twelve major recognized populations 

of excitatory projection neurons and inhibitory interneurons. Despite expression 

heterogeneity within single regions, homologous cell types were recognized across 

neocortex and hippocampus, e.g. between somatosensory layers 5/6 and CA1 or between 

cingulate layers 2/4 and CA3. The same dataset was later reused to investigate the 

relationships between microRNA and mRNA patterns in each neuronal population [65] by 

means of weighted gene co-expression network analysis [66].

Developmental studies increasingly adopt automatic molecular classifiers to identify 

spatially or temporally segregated neuronal groups and precursors [67]. Among many 

reports of neuronal phenotyping by DNA microarray technology [7,14,68], several linked 

regulation of class-specific morphological development to individual proteins [69,70]. 

Comparative microarray mining of subplate and layer 6 of mouse cerebral cortex, confirmed 

by in situ hybridization and known mutant lines, revealed specific cell sub-populations 

identifiable by differential expression of several newly reported subplate markers [10]. 

Combining statistical testing, fold-change differences, and gene ontology sorting from 

39,000 mRNA transcripts, feature selection yielded 383 significantly expressed genes.

Massive efforts, such as the Allen Institute’s BrainSpan, focus on brain-wide whole-genome 

developmental profiles [71]. Despite promising progress in drosophila models [16], large-

scale fingerprinting of specific neuron types by expression patterns remains an outstanding 

goal in mammalian brains.

4. Challenges and opportunities

The published literature offers many more attempts and several success stories in neuronal 

classification. The above selection, however, is sufficient to appreciate both the scientific 

potential and technical struggles of this field. This section offers a critical perspective on 

open research issues that constitute at the same time low-hanging fruits and paradigm-

shifting opportunities.

4.1. Software: seeking user-friendly general-purpose neuron classifier

Until recently, neuroscience labs typically paid little attention to their custom-developed 

analysis software. Countless fast-coded, scantly-commented scripts were hastily forgotten 

and practically lost buried in hard drives shortly after paper acceptance. Today’s growing 

emphasis on reproducibility, however, is strengthening the original neuroinformatics sharing 

plea for data and algorithms alike [72-74]. Early successes in life science software programs 

included ImageJ (http://imagej.nih.gov) and its expanded distribution Fiji (http://fiji.sc, 

originally conceived as neuroscience-specific). These popular tools’ intuitive graphic 

interfaces, clear documentation, platform-independence, and open-source distribution enable 

continuous development of new user-designed functionality. Funding agencies, 
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philanthropic foundations, and international consortia have since fostered blooming 

resources such as the Allen Brain Atlas (http://brain-map.org), the Neuroimaging 

Informatics Tools and Resources Clearinghouse (http://nitrc.org), the International 

Neuroinformatics Coordinating Facility (http://incf.org), and the Neuroscience Information 

Framework (http://neuinfo.org).

Automatic neuron classification, however, has yet to capitalize on such momentum. While 

revealing an encouraging trend in code and data sharing, the brief overview of the previous 

section highlights an almost complete disconnect between papers (Table 1). With few 

notable exceptions (Farsight [23], NeuroSuite [25], and NBlast [26]), scripts are seldom re-

purposed even when based on flexible analysis environments like R or Matlab. At the same 

time, available general-purpose machine learning software, such as Weka [75], Knime [76], 

or Shogun [77] are too technically demanding for widespread adoption in neuroscience (see 

also Supplementary Material). A promising academic market niche awaits an open-source, 

plugin-extensible, cross-platform package integrating multiple supervised and unsupervised 

machine learning techniques for automatic neuron classification by morphological, 

physiological, and molecular measurements alike.

4.2. The more the merrier? Data set size vs. joining realms

A common question in neuronal classification regards the minimum sample size to reliably 

reveal distinct types. For two neuronal populations, the estimated total number of (evenly 

split) neurons required to ensure a 1-α confidence in the comparison of the mean of a given 

measurement is

where  are a priori estimates of measurement variance in the two populations, 

Zα is the number of standard deviations around the mean encompassing 1-α of the data, and 

d is the maximum allowed error (similar formulations apply to proportion calculations [78] 

and statistical hypothesis testing [79]). For instance, the total neuritic length per neuron for 

drosophila glutamatergic and GABAergic cells in NeuroMorpho.Org 6.0 is 2735±2546 and 

2032±1579 µm (mean ± standard deviation), respectively. Assuming the difference between 

the averages (703 µm) as the limit for the error and a value of 1.96 for (corresponding to 

α=0.05 for normal distributions), the necessary sample size would be 70 (35 neurons from 

each group). The outcome of this computation is often prohibitively incompatible with 

experimental constraints [80]. In machine learning practice, a sample size of 30 is often the 

lower limit for estimating each classification parameter. This lower bound assures a 

minimum robustness in the estimation given a Gaussian assumption through the central limit 

theorem [81]. It is essential, however, to verify the assumed normal distribution of the data, 

e.g. with the Saphiro-Wilk test [82].

Yet determining the optimal sample for neuronal classification is not just a matter of size. 

Given the strong (if still largely unknown) inter-dependence of neuronal morphology, 
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physiology, and biochemistry (e.g. [83,84]), characterizing a smaller sample of neurons 

across different domains may be more conducive to discovery than separately collecting the 

same measurements from each of three larger neuron samples. Nevertheless, 21 of 27 

classification studies summarized in Table 1 used single experimental domains, and only 

one dataset combined all three major dimensions [9,18]. The few successes in automatically 

inducing neuron prototypes in one domain [12,19] have yet to be extended to global 

classification algorithms combining structural, electrical, and molecular information [85].

Techniques such as feature creation [86] and feature subset selection [87,88] could alleviate 

the technical obstacles of cross-modal data acquisition or the substantial labor of massive 

human curation to integrate experimental evidence (e.g. Hippocampome.Org [89]). 

Although multimodal classification can in principle be organized in hierarchical stages, 

probabilistic clustering and biclustering are better-suited alternatives to overcome the 

limitation of classic k-means clustering. Advanced probabilistic graphical models [90] such 

as Bayesian or Markov networks and factor or chain graphs are designed to combine 

different domains allowing uncertainty, partial knowledge, and expert intervention. These 

approaches can account for cross-interactions of distinct neuronal features, such as 

molecular expression, dendritic morphology, and neuronal excitability [91], while enabling 

exploration of new inter-relationships from experimental data [92] and digital atlases [93].

4.3. perimental design: diversity, annotation, and integration

Neuronal characterization involves a range of animal models, research designs, experimental 

conditions, and data formats (Box 2). Such variety allows addressing a correspondingly 

broad set of open questions, but it also introduces additional issues, exemplified by the non-

trivial comparison of findings from drosophila to humans or even from cat and monkey [94]. 

In practice, successful integration of data from multiple labs for neuronal classification, 

although possible [14], remains extremely rare even within single research domains. One of 

the main difficulties consists of explicitly accounting for all potential experimental 

differences.

Certain details, such as those specifying the animal subject, transcend experimental 

domains; others are specific to morphological, physiological or molecular approaches (e.g. 

those related to labeling, recording, and sequencing, respectively). Some conditions are 

mutually exclusive (e.g. in vivo versus in vitro), whereas others provide complementary 

information (slice thickness and orientation). Thorough knowledge of all these metadata is 

as essential as the data themselves, not only to integrate datasets in subsequent research, but 

also to maximize reproducibility [95].

The diversity of neuroscience research makes it unfeasible to standardize the experimental 

conditions for neuronal classification. Standardizing the reporting of experimental 

conditions is far more viable and just as effective. Despite ongoing metadata standardization 

efforts, community consensus is still lacking [96]. Open information exchange formats such 

as the MIAME protocol [97] have gained traction in genomics [98]. Adoption of common 

data standards enables validation approaches to attenuate the impact of data variability 

across labs [99].
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More generally, all known metadata may be encoded as confounding variables in statistical 

models. These variables typically correlate with both the dependent and independent 

variables (the neuron type and measurements, respectively), but those interactions are often 

difficult to recognize. Undetected conditional dependences may lead to spurious 

classification results. In contrast, confounding variables with identified bivariate dependence 

are (independently predictive) covariates, and their inclusion improves the classification 

outcome.

Neuronal classification could benefit tremendously from the growing machine learning 

toolset for metadata integration, including generalized linear models [100] such as logistic 

regression. Matrix eQTL [101] provides a user-friendly R package to test some of these 

linear models. Multitask lasso models [102] and sparse regularized graphical models [103] 

also allow analysis of dependencies between metadata variables as well as of their 

interactions with the predictive variables. Other relevant techniques, including support 

vector machines with covariate support [104] and random forests [105], are well-established 

in machine learning but largely unknown in neuroscience. Pervasive cross-pollination 

between these disciplines could benefit neuronal classification tremendously. A more 

extensive list of classification approaches, algorithms, and references is provided as 

Supplementary Material.

5. Future prospects: expected impact of big data

The number of publications on automatic neuron classification from the past two years 

exceeded those in the previous decade. This progression might accelerate even further 

through integration of domains, development of neuroscientist-friendly software, collection 

of exhaustive metadata, inclusion of corrective covariates, and overall standardization of 

analyses, formats, and reporting [106]. Such exciting new endeavors require cross-

disciplinary collaboration within and between research teams and institutions. Equally 

noteworthy is the increasing dataset size from dozen neurons [5,7,8] to hundreds [13,19], to 

thousands [25,26] in just eight years. This “big data” trend, also just beginning and likely to 

continue, is paralleled by paradigmatic changes in the required infrastructure to process data 

and in the complexity of models to describe data.

Neuronal classification evolved from its descriptive origin to modern quantitative analysis, 

but the field remains fraught with the classic dilemma between lumpers and splitters [107]. 

On the one hand, all neurons share common properties that distinguish them from non-

neural cells, and can thus be aptly considered a single class. On the other, no two neurons 

are ever identical; therefore each neuron could be viewed as its own class. Although these 

extremes shed no light on neuronal identity, they illustrate the complementary advantages 

and disadvantages of simpler but generic vs. specific but complex classifications [108]. For 

example, somatic location can be defined at coarser anatomical level (cortical, retinal, 

spinal, cerebellar, etc.) or with finer-grained distinction of sub-regions and layers. Similar 

choices apply to morphological, physiological, and biochemical characterization (Figure 3). 

Even approaches that assume structured continuous distributions of neuronal characteristics 

need to set the granularity which eventually defines neuronal archetypes [18]. Are there a 

“right number” of neuron types?
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This and several other outstanding questions that emerged in this review are summarized in 

Box 3. Coevolving high-throughput data production and large-scale analysis tools may soon 

begin to offer objective answers. Specifically, once the available data are sufficiently large 

to be statistically representative, theory can define the most powerful explanatory model. 

For instance, the Minimum Description Length (MDL) criterion [109] selects models with 

least data requirements. A practical example is variable binning from numerical to 

categorical by entropy discretization [110]. Similarly, the Bayesian Information Criterion 

(BIC) [111] optimizes the tradeoff between model complexity and accuracy by penalizing 

the inclusion of excessive explanatory variables. We find the purely data-driven 

determination of the number of neuron classes by BIC particularly appealing, because it 

jointly minimizes the costs of lumping (regressing different neurons to fewer prototypes) 

and splitting (accounting for different prototypes), both measured in information units.

Existing neuroscience knowledge is still far from adequate to satisfactorily attempt closure 

on neuronal classification. Ideally the morphological, physiological, and molecular 

observable would be explained in terms of both developmental origins [112] and behavioral 

relevance [113], ultimately connecting the two [114], but more data are undoubtedly 

required. Continuous technological advances and the prospects of industrial-scale societal 

efforts in data collection may soon close this gap. This expected progress will initially 

increase the complexity of neuronal classification by revealing a much larger number of 

types than currently known. Upon accumulating a critical amount of evidence, however, 

automatic classification will begin to simplify the explanatory model by defining 

increasingly more effective descriptors. The resulting clearer view of neuronal organization 

should reveal major findings on computation and cognition.

Box 1

Glossary of common machine learning terms

Accuracy Probability of classifying a new instance correctly. Conversely, 

the error is the complementary probability of classifying a new 

instance incorrectly. Accuracy and/or error quantify classifier 

performance.

Attribute Function (random variable) associating a value to every 

outcome of a (random) experiment. A discrete variable takes a 

numerable number of values; discrete variables are ordinal if a 

possible ordering exists among the values or nominal 

otherwise. In contrast, the domain of a continuous (or real) 

variable is not numerable.

Classifier Mathematical function that labels dataset instances from a set 

of possible classes.

Clustering see Unsupervised learning
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Data mining Identification of previously undetected relationships and 

patterns in large datasets. Common data mining approaches 

include stages of selection, processing, transformation, 

learning, interpretation, and evaluation (for the last two stages, 

see also Knowledge discovery).

Dataset Collection of instances and the schema describing their 

structure. The most common machine learning dataset format is 

a matrix with columns as attributes and rows as instances. 

Training and test sets can be subsets of the initial dataset.

Error see Accuracy

Feature see Attribute

Induction Specification of a model from a training dataset. An induction 

algorithm is a computer program that takes a training dataset as 

input and outputs a model.

Instance Set of values (measurements) for a single observation (neuron) 

described by a number of variables. The terms instance, case, 

record or sample are indistinctly used in machine learning as 

referring to one and the same concept.

Knowledge 

discovery

Human inspection, interpretation, validation, and refinement of 

patterns extracted from a data mining process.

Model Mathematical function that assigns labels to instances. In 

regression models the labels are continuous, whereas in 

classification models (or classifiers) the labels are discrete.

Performance 

estimation

Statistical approach for predicting model correctness over 

future unseen samples. The most widely known methods 

include hold-out, cross-validation, and bootstrapping.

Supervised 

classification

(also commonly referred to as Supervised learning): 

Techniques for model induction from a given training dataset. 

The task is to use instances with known classes or group 

structure in order to correctly predict the class (or group label) 

of unseen data samples.
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Semi-supervised 

classification/

learning

Similar goal as Supervised classification, but the data contains 

only a (typically small) fraction of labeled instances together 

with a large number of unlabeled cases.

Unsupervised 

classification/

learning

Classes (labels) for the data are not available (or not used): the 

goal is to find the inherent categories, or optimal partition, of 

the dataset in order to maximize the proximity of instances 

within (relative to between) each category.

Box 2

Research heterogeneity in neuronal classification: general metadata, research design, 

experimental condition, and data format across morphological, physiological, and 

molecular dimensions.

Box 3

Outstanding questions in automatic neuronal classification

How many types of neurons are there? Quantitative criteria, such as the Bayesian 

Information Criterion, may provide an objective answer by identifying the granularity 

with the best explanatory power for the available data.

What is the nature of the neuronal morphology-physiology-biochemistry relationship? 

Interactions reported to date range from quasi-independence to tight correlations and 
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include both direct influences and homeostatic compensation, often resulting in complex 

phenotypic combinations.

Do neuron types constitute sharply segregated categories or a continuum? Although 

evidence abounds for clearly identifiable neuronal classes, more data are needed to 

ascertain the overlap extent of quantitative measurements between categories. The 

answer is likely to vary by species and brain region.

Can neuron types be described by a consistent taxonomical hierarchy? A hierarchical 

organization implies ranking the classification relevance of available measurements 

based on underlying functions and mechanisms (connectivity, signal transmission, 

information processing, plasticity etc.).

How do developmental programs and functional adaptation interact to produce observed 

phenotypes? Neuron types are the combined result of ontogeny and experience. What are 

the key genetic and computational variables guiding the emergence of distinct neuronal 

classes?

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• The automation of neuron type classification is advancing ever more rapidly.

• Accelerating data collection makes machine learning necessary for neuronal 

classification.

• We review analysis approaches, algorithm classes, and available resources.

• Opportunities include software development, data standardization and 

integration.
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Figure 1. 
Basic dimensions of neuronal characterization: morphology (yellow), physiology (green), 

and biochemistry (blue). These feature domains are tightly interrelated with other 

fundamental aspects of neural identity, such as connectivity, development, and plasticity.
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Figure 2. 
Major classification approaches with representative families of algorithms. Examples of 

implementations with references and links to available resources are provided as 

Supplementary Material.
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Figure 3. 
Optimal classification balance of neuronal lumping and splitting. Neuron types can be 

defined at higher or lower resolution in each data domain. The best explanatory power 

maximizes the trade-off between description complexity and captured generalization.
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Table 1

Current machine learning techniques, software platforms, and data resources used for automatic neuronal 

classification.

Refs ML-technique Software platform Sample size Data domains Availability

[5] ANOVA, hierarchical clustering, t-
test, Gene
Ontology

MAS, dChip, R,
Python, IgorPro

36 microarrays of 
mouse
forebrain cells (12 
types)

13,232 mRNA transcripts 1-C*

[6] Pearson correlation, ANOVA, t-test SPSS, Prism 520 crab 
stomatogastric
ganglion cells (6 
types)

6 genes qPCR expression 2-C

[7] Intensity levels, SAM method, 
hierarchical
clustering (complete linkage)

MAS, dChip, SAM,
Bioconductor, IPA,
David

29 mice forebrain 
astrocytes,
neurons and 
oligodendrocytes
(9 subtypes)

45,037 mRNA probe sets 1-C

[8] Memory-guided saccade task, 
visuomovement
index for each neuron, coefficient 
of variation,
Wilcoxon ranksum test, Bonferroni 
correction

R 94 frontal eye field 
cells (3
subtypes of cells, 4 
male
macaques)

1 electrophysiological (width
of spikes)

2-B

[9] Hierarchical clustering (Ward’s 
linkage), k-
means, Mann–Whitney U test, 
silhouette analysis

Statistica, Matlab 68 out of 200 cortical
interneurons layers I 
to IV
Wistar rat (6 
subtypes)

1 positional, 12
morphological, 32
electrophysiological, 10
molecular features

2-B-C

[10] Hierarchical clustering (Spearman 
correlation
distance), t-test, fold-change, Gene 
Ontology

MAS, GenMAPP,
IPA

16 microarrays of P8 
mice
tissues (8 subplate, 8 
Layer VI
cells)

39,000 mRNA transcripts 3-C

[11] PCA, hierarchical clustering 
(Ward’s linkage),
k-means, Mann Whitney U test, 
silhouette
analysis

Statistica, Clustan 59 SOM and cortical 
mouse
interneurons

19 electrophysiological, 67
morphological features

1-C

[12] Hierarchical clustering, naïve 
Bayes, C4.5,
kNN, MLP, Logistic regression, 
PCA, FSS

R, WEKA 327 mouse neocortex 
cells
(128 pyramidal and 
199
interneurons)

65 morphological features 1-C

[13] Seven clustering algorithms: 
reported results
from four of them (Fuzzy 
Gustafson-Kessel,
k-means, PAM, affinity)

Matlab 471 mouse retinal 
ganglion
cells (12 subtypes)

5 electrophysiological 3-D

[14] Hierarchical clustering, fold-
change,
ANOVA, Gene Ontology

Affymetrix Power
Tools

195 mouse 
microarrays (64
cell types)

22,690 mRNA probe sets 1-B

[15] Coefficient of variation of 
interspike interval,
hierarchical clustering, correlation,
cross-covariance, t-tests

Matlab, MClust 207 ventral tegmental 
cells,
male Long-Evans rats

Action potential firing,
dopamine receptor
pharmacology

2-B

[16] Mutual information, kNN, area 
under the
receiver operating characteristic 
curve (AUC)

Matlab 60 Drosophila 
melanogaster
neuroblast clones

350 whole brain images
neuroblast clones

1-A*
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Refs ML-technique Software platform Sample size Data domains Availability

[17] Expert crowdsourcing, k-means, 
Bayesian
networks

Matlab, WEKA 320 cortical 
interneurons,
mouse, rat, rabbit, cat, 
monkey
and human

6 polled axonal-derived
morphological features

1-D*

[18] Unsupervised fuzzy sets clustering Matlab 200 cortical 
interneurons
Wistar rat (6 
subtypes)

1 positional, 32
electrophysiological, 10
molecular features

2-B

[19] PCA, LDA, FSS, Gaussian 
distributions, k-
means, Rand index

Matlab 466 P12-16 Wistar rat 
cortical
interneurons (8 
subtypes based
on PING criteria [4])

38 electrophysiological 3-D

[20] Idem as in [9] Statistica, Matlab 123 interneurons of 
Wistar rat
barrel cortex (see [9])

1 positional, 32
electrophysiological, 11
molecular features

3-B-C

[21] Affinity propagation clustering Neurolucida, Matlab 337 P13-25 mouse
interneurons (4 
subtypes: PV+
basket, PV+ 
chandelier, SOM+
Martinotti, SOM+ 
non-
Martinotti)

67 morphological, 20
electrophysiological features

1-B

[22] Bayesian networks, k-means, 
Bayesian
multinets

GeNIe, R 320 cortical 
interneurons,
mouse, rat, rabbit, cat, 
monkey
and human

Idem as in [17] 1-C*

[23] Harmonic co-clustering, wavelet 
smoothing

FARSIGHT Trace
Editor

728 mouse necortex 
pyramidal
(6 subtypes), 502 
axonal rat
hippocampus (4 
subtypes)

130 morphological features 1-A*

[24] Hierarchical clustering Matlab 363 mouse retinal 
ganglion (15
subtypes)

48,000 morphological voxels 1-A

[25] EM clustering, manual 
classification

KlustaKwik,
SpikeDetekt,
NeuroSuite

6,732 Long-Evans rat
hippocampus and EC 
cells (12
subtypes)

31-127 electrophysiological
channels

1-A*

[26] Hierarchical clustering, kNN R, NBLAST 16,129 Drosophila
melanogaster neurons 
(1,052
subtypes)

~ 1,070 spatial points 1-A*

[39] Bayesian network classifiers, FSS R, WEKA 237 cortical 
interneurons,
mouse, rat, rabbit, cat, 
monkey
and human

214 morphological features 1-A

[48] Affinity propagation clustering, 
kNN

Matlab, NeuTu 379 Drosophila 
melanogaster
optic medulla (89 
subtypes)

10xN (user fixed) branch
density similarities from
morphological skeletons

1-A

[59] Hierarchical clustering (Ward’s 
linkage),
ANOVA, Fisher test

Statistica 77 dorsolateral 
prefrontal
cortex pyramidal 
cells, male
long-tailed macaque 
(4
subtypes)

16 electrophysiological
parameters (membrane
properties)

3-C
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Refs ML-technique Software platform Sample size Data domains Availability

[60] Hierarchical clustering (Ward’s 
linkage), k-
means, PCA, t-test, silhouette 
analysis,
bootstrap test

IGOR Pro, R 82 mouse interneurons 
(4
subtypes)

17 electrophysiological
parameters (membrane
properties)

3-A-C

[84] Hierarchical clustering (Ward’s 
linkage),
Principal Factor Analysis, 
Spearman
correlation, Kruskal-Wallis test, 
Mann-
Whitney U test

Stimfit,
Mathematica,
Matlab, SPSS

114 P18-25 mouse 
dentate
gyrus GABAergic 
interneurons
(5 subtypes)

31 morphological, 34
electrophysiological features

1-C

1 – Data available online

2 – Data available upon request

3 – Data not available

A – Software code available online

B – Software code available upon request

C – Commercial software without coding

D – Software or specific code not available

*
– Data and/or software dedicated website
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