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Abstract

We have developed a method for the simultaneous estimation of local diffusion and the global 

fiber tracts based upon the information entropy flow that computes the maximum entropy 

trajectories between locations and depends upon the global structure of the multi-dimensional and 

multi-modal diffusion field. Computation of the entropy spectrum pathways requires only solving 

a simple eigenvector problem for the probability distribution for which efficient numerical 

routines exist, and a straight forward integration of the probability conservation through ray 

tracing of the convective modes guided by a global structure of the entropy spectrum coupled with 

a small scale local diffusion. The intervoxel diffusion is sampled by multi b-shell multi q-angle 

DWI data expanded in spherical waves. This novel approach to fiber tracking incorporates global 

information about multiple fiber crossings in every individual voxel and ranks it in the most 

scientifically rigorous way. This method has potential significance for a wide range of 

applications, including studies of brain connectivity.
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I. INTRODUCTION

A problem of significant interest in basic neuroscience research and in a wide range of 

clinical applications is the reconstruction of tissue fiber pathways from volumetric diffusion 

weighted magnetic resonance imaging (DW-MRI) data. This is an inherently ill-posed 

problem because the local (voxel) diffusion measurements are noisy and made on a scale 

significantly greater than the underlying fibers and thus there are a multitude of possible 

neural pathways between any two given points in the imaging volume that might be 
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consistent with the experimental data. The question then is to find the paths that are most 

probable. Current fiber tractography methods generally fall into two categories: 1) 

deterministic methods, typically based on some form of streamline construction (e.g., [1]–

[3]) or 2) probabilistic methods, also generally based on streamline construction, but with 

the most likely principal diffusion direction determined from a posterior distribution of 

principal diffusion directions (e.g., [4]–[7]). These algorithms are ”local” in the sense that 

the computations are done at each voxel and some small neighborhood around it and thus 

are not informed by the final path that is created, and thus are not capable of assessing the 

probability of the final path amongst all possible paths. In most cases, these algorithms are 

inherently based upon some underlying relation to a random walk which guides the 

evolution of the trajectories.

Recently, interest has grown in more ”global” methods that aim to take into account the 

probabilities of the final paths by incorporating the path probabilities into the estimation 

process. These methods typically are based upon parameterizations of the diffusion field, or 

the anatomical connections they imply, that extend spatially beyond the voxel dimensions 

and subsequently take the form of either improving the local computations by the 

incorporation of more spatially extended path lengths (e.g., [8], [9]) or on the extremization 

of a cost function over a multitude of possible paths [10]–[13]). These global methods 

usually (with some exceptions [11]) do not take the random walk viewpoint but rather view 

the entire system as possessing some underlying structure, characterized by local 

interactions or potentials, that can be elucidated by optimizing some cost function (e.g., 

energy) over multiple configurations of that system.

The original diffusion tensor imaging (DTI) model assumes that the measurements in each 

voxel provide an estimate of a single real, 3 × 3 symmetric diffusion tensor D from whose 

eigenstructure can be derived both a meaningful measure of the anisotropy (here 

characterized by the fractional anisotropy FA [14]) and a principal eigenvector that can be 

used as a proxy for the fiber orientation [14]. Then DTI is the simplest underlying model for 

diffusion data, is predicated on a single fiber model for the voxel content, and is equivalent 

to a Gaussian model for diffusion (e.g., [14]). (To be more accurate, DTI can be viewed as 

the next simplest mathematical framework, while a scalar framework is the simplest that can 

be used for modeling diffusion data. Also, there may be significant deviations from 

Gaussian diffusion both on microscopic and on meso-scales. Thus, effectively even DTI 

may have a deviations from Gaussian due to i.e. cellular boundaries with less than 100% 

permeability). However, the DTI model is not sufficient to capture more realistic 

possibilities of complex fiber crossings needed for clinical applications [15]. To estimate 

local diffusion directions in each voxel (streamline directions) several high angular 

resolution diffusion imaging (HARDI) [16] methods are typically used. These methods 

represent an extension of the original DTI acquisition framework [17] to higher angular 

resolutions appropriate not only for detection of main fiber orientation, but also for 

attempting to resolve more complex intravoxel fiber architecture such as multiple crossing 

fibers [18]–[22].

In recent years, there has been significant interest in developing DW-MRI methods capable 

not only of estimating angular fiber distributions from multidirectional diffusion imaging 
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(multiple q-angles) [16], [19]–[23]), but also find spatial scales with multiple diffusion 

weightings (multiple b-shells) [24]– [28]. While it has long been recognized that the most 

general nonparametric (model-free) approach is to measure the dis-placement probability 

density function or diffusion propagator directly [29], [30], the natural extension of this to 

imaging wherein 3D Cartesian sampling of q-space is used to obtain the 3D displacement 

probability density function (dPDF) at each voxel [24], is prohibitively expensive from the 

standpoint of data acquisition. This recognition has recently spawned more practical 

methods for obtaining an estimate of the dPDF, often called the ensemble average 

propagator (EAP), from more practical multi-shell, multi-directional acquisitions [25]–[28].

Nevertheless, despite these advances, a critical simplification that is made in all current 

methods used to estimate either the intravoxel diffusion characteristics (via the EAP, for 

example) or to estimate the underlying global structure (tractography) is the assumption that 

these two estimation procedures are independent. Thus one first estimates the intravoxel 

diffusion, then applies a tractography algorithms. For example multiple b-shell effects, used 

in obtaining the EAP, are used only to infer directional multiple fiber information for input 

into streamline tractography algorithms (see e.g. [31]). However, this distinction between 

local and global estimation is artificial and limiting, since both the local (voxel EAP) 

information and the global structure (tracts) are from the same tissue, just seen at different 

scales. In practical applications of human DW-MRI data this artificial division of 

information on local and global gives rise to problems at the data interpretation stage: e.g. 

spurious white matter loss due to local underestimation of fiber anisotropy, incorrect 

tracking of fiber orientation due to apparent overlapping of angular distributions, etc.

In this paper we revisit the problem of local diffusion estimation and fiber tractography with 

the specific goal to include multiple spatial and temporal scales that can be deduced from 

multiple b-shell DW-MRI measurements in addition to just angular (multi-)fiber orientation 

[32], [33]. In many practical applications, either one or two spatial locations (or regions) are 

known a priori. In neuroscience applications, for example, two regions may be functionally 

connected (as measured, perhaps, by FMRI) and the diffusion weighted MRI data is being 

used to assess the degree (if any) of the structural connectivity between two functionally 

connected regions. We therefore reconsider two common formulations of fiber tractography: 

(1) – initial value, i.e. finding fibers that start at some chosen area of the brain, (2) – 

boundary value, i.e. finding fibers that connect two preselected brain regions. Thus we recast 

the fiber tractography algorithm as the determination of the most probable path either 

starting at a selected location or connecting two spatial locations, and seek a general 

probabilistic framework that can accommodate various local diffusion models and yet can 

incorporate the structure of extended pathways into the inference process. In this case, the 

problem of tractography from DWI data can be reformulated as the determination of the 

probability of paths on a 3D lattice between two given points where the probability of a path 

passing through any particular point is not equiprobable, but is weighted according to the 

locally measured diffusion characteristics.

The essential problem at the core of the tractography problem is the estimation of 

macroscopic structure from microscopic measurements. In this paper we present a 

formulation of the tractography problem based upon a recently formulated general theory for 
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understanding information flow in a disordered lattice. This theory, called entropy spectrum 

pathways, or ESP [34], is used to infer the spectra of the most probable global pathways (in 

this case, fiber tracts) in a non-uniform lattice (the sampled DWI data) based upon prior 

information about the local coupling structure of lattice (in this case estimated from the local 

measurements of the diffusion). The method is generalized to utilize multi–scale diffusion 

information that is available in multi–shell DWI datasets by extending the mechanism of 

streamlines generation using a Hamiltonian formalism and a diffusion-convection 

(FokkerPlank) description of signal propagation though multiple scales [34]–[36].

II. REFORMULATION OF THE EAP PROBLEM

As shown below, the ESP framework allows for the incorporation of both measured data and 

prior information into the estimation procedure. It is thus essential that the description of the 

data be as general and complete as possible. A general description of the measured DW-

MRI data is provided by the EAP formalism [25]–[28]. In this section we reformulate the 

problem in order to provide a very general characterization amenable to numerical 

implementation, and to bring out some of the essential spatial scales that inform our 

application of ESP.

The DW-MRI signal W (r, q) measured in both r and q space can be expressed in terms of 

both the spin density ρ(r) and the average propagator pΔ(r, R) using the narrow pulse 

approximation [30] as

(1)

where r is the voxel coordinate, q = γGδ/2π, with G and δ being the strength and duration of 

the diffusion-encoding gradient and γ the gyromagnetic ratio of protons and the function W 

(r, q) is the Fourier transform (in the diffusion displacement coordinate R, defined as a 

change in particle position over time t, R = r(t0 + t) − r(t0)) of the weighted spin density 

function [23]

(2)

that scales (or weights) the spin density with the average propagator pΔ(r, R) at each 

observed voxel.

To find an expression for the spin density function Q(r, R) we will use the plane wave 

expansion in spherical coordinates with 

,

(3)

where jl(qR) is the spherical Bessel function of order l and 

is the spherical harmonic with θq and φq being the polar and azimuthal angles of the vector 

q, and similarly for the vector R.
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The product jl(qx) (x̂) represents the basis function for the spherical wave expansion [37]. 

These basis functions can be obtained as solutions of Helmholtz’s wave equation [38]:

(4)

This representation suggests an interesting possibility of treating the problem of fiber 

tractography for diffusion weighted MRI data using the techniques of geometrical optics in 

in-homogeneous media [39]. We will discuss this point in more details in section III-C.

The above basis functions are composed of radial (spherical Bessel jl) and angular (spherical 

harmonic ) parts, where the spherical harmonics  are the eigensolution of the 

angular part of the Laplacian with the eigenvalues λl = −l(l+1):

(5)

The spherical harmonic  of degree l and order m allows separation of the θ and φ 

variables when expressed using associated Legendre polynomials  of order m as

(6)

where cl,m is the normalization constant

chosen to guarantee the orthonormality condition

The radial component jl(qx) of Eqn 3 is obtained as the eigenfunction of the radial Laplacian

(7)

with the orthonormality conditions

This allows us to reconstruct the spin density function Q(r,R) using the spherical wave 

decomposition as

(8)

where
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(9)

This representation offers a concise and intuitively clear quantitative description of the local 

diffusion in terms of a clearly defined expansion order on which can be based decisions of 

optimal fitting. We would like to mention, that although there are several different bases 

proposed to describe MR signal in q-space [25], [40], [41], finding the best representation of 

q-signal on partially acquired grid was not an intent of our paper. We reused existing fast 

and robust algorithms that we have developed for this computation [37]. Our 

implementation is flexible and does have a choice of several filters able to significantly 

reduce ringing artifacts.

It should be kept in mind that the typical scales for the voxel coordinate rand for the 

dynamic displacement Rin current diffusion weighted MR experiments are vastly different. 

For the time scale over which the individual measurements in DWI are typically made (≈ 50 

ms) the free diffusion root mean squared distance is  x2  1/2 ≈ 20µ and thus much smaller 

than typical voxel dimensions (≈ 1 mm3, at best). Hence, with high degree of accuracy it 

can be assumed that the average propagator in the spin density function Q(r, R) only 

influences the nearest neighbor voxels through the dynamic displacement R dependence. 

The entropy spectrum pathway (ESP) formalism presented in [34] is well suited for taking 

nearest neighbors into account. We would like to emphasize that although the spin density 

function Q(r, R) only influences the nearest neighbors through the dynamic displacement 

Rdependence in the current sample acquisition framework, it also contains the global scale 

variations through the rdependence. Hence, even in the limit when the diffusions times are 

vanishingly small (such as in high gradient strength systems) our approach does not break 

down, but simply operates as a global method.

III. TRACTOGRAPHY GUIDED BY ENTROPY SPECTRUM PATHWAYS

A. Summary of ESP theory

The entropy spectrum pathways (ESP) theory [34] is an extension of the maximum entropy 

random walk [42], [43] and concerns the very general problem of random walks on a 

defective or disordered lattice. There are several key findings provided by the ESP theory. 

First, the pathways of the random walk are determined by prior information concerning the 

structure and relationships of the lattice points, and therefore the ESP represents a flow of 

information, rather than representing an actual physical process. This view facilitates the use 

of ESP within a wide range of practical problems related to connectivity. Second, it is 

possible to characterize multiple pathways, ranked according to their entropy, all of which 

contribute to the flow of information on the lattice. Thirdly, the interesting localization 

phenomenon previously noted [42], [43] can be understood in terms of the eigenstructure of 

the lattice. Fourthly, the local interactions that inform the generation of global structure can 

be based upon whatever coupling information the user has available. This coupling can take 

on a general form, and it was shown that this property can be understood in terms of 

potential theory [34]. In the case of nearest neighbor coupling with a ”binary” potential (on 

or off), the problem reduces to the computation of the eigenstructure of the adjacency matrix 

of accessible (non-defective) lattice locations. But the more general formulation of ESP 
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facilitates the use in practical applications such as we present here. In this section we will 

briefly summarize and reformulate the ESP formalism within the context of the tractography 

problem.

The objective is to calculate the probability that a spin, or ”particle”, starting from an initial 

spatial location x(t0) at initial time t0 = 0 diffuses to a second location x(t) at a later time t. 

While the underlying structure we wish to estimate is assumed continuous (being comprised 

of tissue fibers), the spatial locations x at which the measurements are acquired are assumed 

to be from DWI images and thus discretized to a 3D Cartesian spatial grid. However, the 

temporal discretization to be employed is a fictitious construct used to implement a random 

walk model, due to the above mentioned difference in scales of the voxel coordinates and 

the dynamic displacement. Our space-time points are defined on the true voxel spatial grid 

but on a di-ffusion pseudo-time grid whose increments are much larger than the experimen-

tal time scale. Simulating diffusion in this way lends itself to two differe-nt interpretations. 

One view of this process is to see it as diffusion that is allowed to take place for much longer 

than the measurement time, or, equivalently, that the process is in equilibrium and thus long 

time behavior is well-represented by the snapshots in time provided by the experimental 

data. However, another viewpoint, that of ESP, and the one we adopt, is that the simulation 

is of the flow of information constrained by the physical measurements. The entire process 

is one of estimating a macroscopic phenomena from local measurements, using by prior 

information.

The ESP theory ( [34]) ranks the optimal paths within a disordered lattice according to their 

path entropy. Associated with the k’th path is a transition probability

(10)

(11)

where λk and  are eigenvalues and eigenvectors of the coupling matrix Q defined as

(12)

Hence each transition probability is associated with a standard eigenvalue equation

(13)

This matrix defines the interactions between locations on the lattice and is called the 

coupling matrix. The λij are Lagrange multipliers that define the interactions that can be seen 

as local xij on the lattice. For each transition matrix Eqn 11 there is a unique stationary 

distribution associated with each path k:
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(14)

that satisfies

(15)

the first of which, µ(1), corresponds to the maximum entropy stationary distribution. 

Considering only µ(1), note that if the Lagrange multipliers take the form

(16)

then Q becomes simply an adjacency matrix, the single maximum entropy distribution 

constructed from this adjacency matrix is maximum entropy random walk [42]. However, 

one major significance of the ESP theory to the present problem is that is ranks multiple 

paths, and these paths can be constructed from arbitrary coupling schemes through Qij . For 

each of the stationary distributions is associated a path related to the localization of 

information related to the eigenstructure of the disordered lattice. The key feature is that the 

local transition probabilities between nodes depend on the global structure of the graph 

through the eigenvectors ψ(k). In practical applications, the lattice can be described in terms 

of n pathways constructed from the first n eigenvectors of the potential matrix (in decreasing 

order of the eigenvalues).

We emphasize that we do not presume to be explicitly modeling the diffusion over the paths, 

since we know that the diffusion length over the typical time-scale of a DWI experiment is 

typically far smaller than a voxel dimensions. Rather, this procedure is viewed as one of 

estimation and thus the construction of the ranked maximum entropy paths - those that are 

most unbiased with respect to the measured data and the prior information (the lattice 

couplings) while satisfying the initial and/or final conditions. In this view the problem is one 

of estimating the global connectivity from the local diffusion characteristics.

B. Multiple scale coupling

The estimation of the local and global tissue structure over multiple scales using DW-MRI 

data can be investigated within the ESP framework by viewing the data as measurements on 

a 3D lattice in which each voxel is ascribed a ”potential” that is related to its coupling with 

neighboring voxels. An important feature of the ESP theory is that this potential is very 

general in form. This is critical to its application in the current problem. While it was shown 

for a binary coupling (i.e. wherein the coupling matrix reduced to the adjacency matrix with 

0/1 elements) [34], in the current problem we will incorporate a strength of coupling that 

reflects the local interaction of voxel data. In order to do this we first symmetrize the spin 

density function
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(17)

where l represents the dimensionless ratio of scales of dynamic displacement Rto the spatial 

(voxel) scales r, and, then sum all relevant scales included in the spin density function 

Q(r;R) by the dependence on the dynamic displacement R:

(18)

Here, we used a symmetric input from voxels i and j by taking the line integral of the spin 

density function Q(r, RR) along account only a subset of spatial scales that can contr-ibute to 

this interaction (from lmin to lmax). Since the typical scales for the voxel coordinate r in 

current diffusion weighted MR experiments are much larger then the scales for the dynamic 

displacement R(20µ vs 1mm), the coupling can be limited to nearest neighbor effects taking 

lmin = 0 and lmax = ∞ to calculate a coupling potential .

We would like to emphasize, that in nearest neighbor coupling evaluation (Eqn 18) we do 

not use solid angle integration. The appropriate choice of filters and order of angular 

resolution in the SWD allows us to replace the costly integration of geometrically complex 

coupling between noisy multiple peaked dODF from neighboring voxels with the fast and 

simple line integration across all radial scales.

This form of the coupling potential is then used in Eqn 13 to obtain the relevant eigenvalues 

and eigenvectors

(19)

The k-th eigenvalue and eigenvector can be used to generate the transition probabilities (Eqn 

11) but in addition we also generate the scale dependent transition probabilities

(20)

that will be equal to the total transition probability Pij when integrated over all scales l. As 

those probabilities only describe transitions between nearest neighbors they can be 

expressed as a scale dependent function Pl(r, R). We will also generate the equilibrium 

probabilities µ(k) = [ψ(k)]2.

As a concluding remark to this section, we would like to reiterate that the general problem of 

tractography is necessarily one of multiple scales because the local diffusion occurs on the 

microscale and the tracts are on a macroscale. The entire point of our approach is that it 

enables a characterization of the problem in terms of information at these multiple scales.
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C. Generation of optimal paths

Our goal is either to construct a pathway between an initial spatial location a and a final 

spatial location b or to trace a pathway incrementally starting from an initial location a. In 

both cases we are interested in “the most probable” pathways, i.e. we would like to constrain 

our local search by the global entropy structure. Therefore, our interest is not in the final 

equilibrium distribution µ∗ but in the pathway to it. We are therefore interested in the 

dynamics of the probability and want to compute the path that maximizes the entropy at 

each step, and thus results in the final (equilibrium) distribution µ∗at time τ.

The scale dependent transition and equilibrium probabilities obtained in the previous section 

can naturally define the global entropy field that shapes the flow of information and allow 

finding optimal paths. In the limit of long pathway lengths (or large time τ ) and under the 

Markovian assumption, the rate of entropy change SR(ri) can be expressed at each location ri 

as [44], [45]

(21)

The most straight forward way to include this multi scale structure of the global entropy 

field is by taking into account that the conservation of probability in general includes not 

only the diffusive component (as for example used by [30] for obtaining the expression of 

EAP in single mode homogeneous self-diffusion), but also has the convective part [34]–[36]

(22)

here P is the probability, S is the entropy, and L and D are coefficients (in general either 

tensors or functions of the coordinates) that characterize local convective and diffusive 

scales (L = κD). This Fokker-Planck equation, with the potential equal to the entropy, 

connects the global structure of the probability with the local structure of the lattice through 

the local structure of the entropy.

The current state-of-the-art approaches used for fiber tractography in DTI/DWI data require 

splitting this problem in two parts: first, obtain the EAP from the diffusion only subsystem,

(23)

and second, solve the convective part (averaged over all the dynamic displacement scales R)

(24)

by simple local tracing of one (DTI) or several (DWI) principal fiber directions. 

Unfortunately, this decoupling results in only the local diffusion information derived from 

EAP being used at the fiber tracking stage To illustrate this point, we will first assume the 

entropy gradient fixed and will show how it leads to the current tractography. In this case the 

convective part of Eqn 22 in the eikonal approximation provides a simple expression for the 

Hamiltonian H(ω, k, r) – the function of canonical co-ordinates that defines the dynamics. 

(For mechanical systems this function is simply the total energy, which is conserved in 
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motion. For more complex systems it does not necessarily corresponds to energy, but still 

describes conservation laws of the system).

(25)

where an input from all dynamic displacement scales is included, as formally both L and S 

may depend on both R and r Finding the characteristics (or rays) of Eqn 22 will describe 

how the signals propagate and can be accomplished by integrating a set of ordinary 

differential equations of the Hamilton-Jacobi type:

(26)

The current fiber tractography methods in general do not emphasize or discuss the notion of 

global entropy, but implicitly assume the local behavior of the entropy gradient, directing it 

along some of the major axes of the local diffusion/convection tensor L = κD, i.e. ∇S = ψ, 

where ψis the eigenvector of L· ψ = λψ. Under the assumption of scale independent 

diffusion (i.e. D(r, R) ≡ D(r)) the Hamiltonian Eqn 25 then becomes

(27)

and the ray tracing equation simplifies to the following form

(28)

Ignoring the spatial dependence of the diffusion propagator (i.e. C = const) this equation is 

exactly in the form of Frenet equation commonly used for fiber tracking [3]. Thus, the 

current fiber tractography can be regarded as a fixed scale and spatially homogeneous limit 

of the more general Fokker-Plank formalism – Eqn 22.

To develop a more general entropy based tractography several assumptions will be made. 

First, only solutions with the high enough probability will be considered, i.e. it will be 

assumed that in the region of interest the probabilities are sufficiently close to 1, so that it is 

possible to linearize both the probability and the entropy as

(29)

where S0 = −P0 ln P0 and the scale dependent transition probability Pl(r, R) (Eqn 20) can be 

substituted for P0. Second, it is assumed that P1 is a small correction to the equilibrium 

probability (i.e. P1 ******* P0). The linearized convective part of Eqn 22 can then be 

written

(30)

Third, use of the scale dependent transition probability Pl(r, R) for P0 allows us to omit L in 

these expressions, as the diffusion anisotropy is already included in ESP calculations of 
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PR(r, R) from the spin density function Q(r, R) obtained with the spherical wave 

decomposition using Eqns 8 and 9. Fourth, no time dependence is assumed to be present in 

P0 as it is time stationary, hence ∂tP0 ≡ 0. Fifth, we also have omitted the last term ∇ · 

D∇P1 from the Eqn 22 as it won’t appear in eikonal approximation used for obtaining the 

ray tracing equations.

Eqn 30 is a linear inhomogeneous hyperbolic equation, hence it has traveling wave solutions 

propagating along the characteristics. In order to formally find those characteristics we will 

assume a plane wave solution for P1 [39], [46] in the form

(31)

and then obtain a more general expression for the Hamiltonian

(32)

where 

, and, again we averaged over all dynamic displacement scales.

Hence, taking into account the global entropy gradient as well as the scale dependence of the 

diffusion coefficient, the fiber tracking in the geometrical optics limit can be represented in 

more general form, using Eqns 26 and 32, as

(33)

(34)

The first equation (Eqn 33) traces the characteristics (rays) of the convective part of the 

original Fokker-Plank equation (Eqn 22) under the influence of a local diffusion coupled 

with a global entropy gradient. This coupling is locally described by a vector X. A second 

term (with 2kY ) provides some smoothing by adding “a push” in the direction of the wave 

vector k. It also ensures that in voxels with isotropic diffusion (or with many fibers of 

different directions crossing) and without a global entropy gradient the ray will continue 

following this kdirection. In the second equation (Eqn 34) the spatial gradients are 

responsible for a change of the wave vector kdirection and magnitude.

A schematic illustration of differences between traditional fiber tracking and geometrical 

optics–like tracking is shown in Figure 1. The traditional approach defines tracts by 

integration of position–only function ψ, that assigns the tangential direction of tracts to each 

location r. For the geometrical optics approach, the integration takes into account both the 

orientation and multiple scales, through the dependence of ψ on directional angle k/|k| and 

magnitude |k|.
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IV. RESULTS

To evaluate practical aspects and performance of ESP guided fiber tractography we used our 

method to process several multiple shell multiple angle diffusion weighted MRI datasets 

acquired using either realistic MR phantom or real brain samples.

A practical realization of the method used in all of the experiments includes several stages 

that were implemented in C++ with multithreading (using pthread libraries) and runs both 

on Linux and Mac OS X. The ESP framework uses our spherical wave decomposition 

approach (SWD) [37] based on the fast Fourier and on the fast spherical Bessel transforms. 

The tracking algorithm uses the standard fourth order Runge– Kutta integration applied to 

six dimensional (r,k) space.

The high resolution full brain tractography processing of typical 140x140x96 diffusion 

weighted MRI volume with 4 shells of 552 q-vectors using Intel® CoreTM i7-4930K six 

cores (twelve threads) 3.40GHz CPU produces around 190K fiber tracts in 15 minutes. The 

spherical wave decomposion part of processing takes six minutes for obtaining 600 spherical 

wave modes at each voxel using Lmax (or spherical harmonics order) of 10, and Nmax (or 

spherical Bessels order) of 6. The tractography part uses full 140x140x96 spatial grid and 

7x7x7 resampled k-grid and outputs ~190K of fiber tracts in under 9 minutes. The medium 

resolution full brain processing produces ~90K tracts in 5 minutes, with the ESP stage 

taking around 3 minutes.

The first dataset is of the well-known ”fiber cup” MR phantom extensively used for testing 

and performance evaluation of various fiber tractography approaches [47]. The phantom 

consists of seven fiber bundles confined in a single plane by squeezing them in between two 

solid disks. Diffusion-weighted image data of the phantom was acquired on the 3T Tim Trio 

MRI system with 3 mm isotropic resolution on 64 × 64 × 3 spatial grid. Three diffusion 

sensitizations (at b-values b = 650/1500/2000 s/mm2) were collected two times for 64 

different diffusion gradients uniformly distributed over a unit sphere. Several baseline (b = 

0) images were also recorded [47].

Our initial stage of processing includes restoration of the spin density function Q(r, R) using 

Eqns 8 and 9 from section II. The spin density function is then used to generate symmetric 

scale integrated input to the coupling potential with Eqns 17 and 18. Eigenvectors and 

eigenvalues of the coupling potential then used for obtaining the transition probabilities 

using Eqn 11.

We included one of the baseline images of the fiber cup phantom in Figure 2a to emphasize 

an interesting and important feature of the ESP approach. The baseline image (as well as 

other diffusion weighted images not shown here) clearly shows bright artifacts at the 

interface boundaries of the disks used for phantom manufacturing. The overall effects of 

these artifacts are significant with the brightest spots located either at the very ends of the 

fiber bundles where they are cut by the disks or even at the circular boundary of the disks 

themselves. The expanded version of one of these areas is shown in Figure 2d.
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The currently standard analyses that are based on the maps of the apparent diffusion 

coefficient (ADC) and the fractional anisotropy (FA) (available in Figure 2 of [47]) also 

favor those regions by assigning higher anisotropy and diffusion values. As a result many of 

the current streamline tracing tractography approaches do not see the actual ends of the fiber 

bundles and continue tracts through the circular disks interfaces.

But the transition probability map shown in Figure 2b that was generated by the ESP clearly 

emphasizes the separation between the fiber bundles and the circular disk interface (with the 

same area enlarged in Figure 2e). Using simple thresholding (Figure 2c and Figure 2f) 

allows identification of the ends for all of the fiber bundles. What is equally important is that 

ESP correctly restores the contrast that has been lost at the crossing fiber areas that can 

clearly be seen in b0 as well as in the diffusion weighted images for different gradient 

directions. As previously mentioned, this helps the geometrical optics algorithm to find the 

correct continuation of rays in voxels with isotropic diffusion (or with many fibers of 

different directions crossing).

The local samples of multiple scales of the transition probabilities calculated by the ESP 

method are presented in Figure 3. One of the crossing fiber areas, enlarged in the right panel, 

clearly shows existence of different fiber directions in different scales of the transition 

probabilities.

We would like to stress two important aspects of our method. First, Figure 3 shows the 

multi-scale transition probabilities (as expressed by Eqn 20) rather than the EAP (or dPDF). 

The transition probabilities were derived not just from the local diffusion (used in EAP/

dPDF). It also takes into account the nonlocal coupling between voxels by calculating the 

global eigenmodes and updating the probabilities according to the structure of the 

corresponding global eigenvectors. In this respect, the transition probabilities are more 

fundamental quantities than the locally derived EAPs or dPDFs.

Second, the use of multiple scales enables the geometrical optics–like approach presented 

here to find the correct path even when the angular resolution is relatively low. To illustrate 

this fact we included in Figure 4 two possible tracking scenarios, (a) using just single scale 

transition probabilities, and (b) with transition probabilities that include multiple scales. The 

single scale tracking finds only one bundle of fibers, and either breaks the second set of 

fibers or wrongly connects it to the first bundle. But with multiple scale transitional 

probabilities, the second set of fibers is found correctly with the geometrical optics–like 

tracking even at this relatively low angular resolution.

Utilization of high angular resolution locally (in an isolated voxel) and without the 

incorporation of multiple scales and global connectivity does not necessarily guarantee 

detection of crossing fibers. For example, it is not possible to detect the second direction of 

fibers in an EAP–like function (Figure 4c) of a single voxel from the crossing area of Figure 

3b. This EAP–like map was obtained from single voxel diffusion data using the original 

shell of 60 direction q-values with high angular resolution 72 mode spherical harmonics 

expansion. Importantly, our approach using multi scale transition probabilities and global 
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connectivity information can identify crossings from significantly lower angular and radial 

resolution.

A direct comparison with the fiber cup results is shown in Figure 5a. Several possible fiber 

tracts obtained by integrating the equations of geometrical optics rays for Fokker-Plank 

formalism (Eqns 33 and 34) are displayed. The phantom includes several different types of 

fiber crossings (at different angles), as well as kissings and splits/joints. To illustrate one 

peculiar feature of the approach based on geometrical optics we included the blow up of one 

of the fiber tracts. In the boundary area where the underlying fibers end abruptly the ray 

tracing algorithm may produce a reflection of the ray from the interface and proceed 

following the same (or neighboring) fiber backwards. In Figure 5b the reflection happens at 

two ends of the fiber and results in a closed horseshoe-like loop that is being transversed 

back and forth many times. Of course, we included this close-loop tract only as an example 

as identifying the reflection regions and cutting the fibers at these points instead of reflecting 

would be a fairly easy task.

To generated fiber tracts we selected seed points (Figure 5d) by thresholding the map of the 

ESP equilibrium probabilities. Using all 512 selected seed points the algorithm produced 

372 total fiber tracts. All but two fiber tracts are topologically equivalent to one of the seven 

tracts shown in Figure 5a. Two fiber tracts (one red and one green) show the end points 

switched. These two incorrect tracts give 0.5% false positive error rate. In general simple 

post processing can remove even those two outliers using, for example, the total fiber tract 

length or the distinct change in the fiber curvature as a source of discrimination. Also all 

those fibers can be evaluated using for example Tracktometer [48]. We will surely be using 

it when/if we are directly involved in developing, tuning, optimizing a full-fledged 

tractography processing pipeline. However, the main intention or this paper is to show the 

feasibility of a new tracking paradigm. Our motivation for using the FiberCup data was 

precisely because it facilitates comparison of our results with previously published results, 

which we have successfully demonstrated. Further detailed analysis on a phantom that has a 

rather limited connection to human brain data is ultimately of little importance.

For human brain ESP tractography we collected multi b-shell multi q-angle DWI dataset on 

the GE MR750 3T scanner at the UCSD Center for FMRI using a multi-band blipped-CAIPI 

EPI method [49] with a GRAPPA reconstruction [50]. Each data set was collected with both 

forward and reversed phase encoding polarity in order to perform a ”topup” distortion and 

eddy current correction [51] using FSL [52]. The dataset contains three shells at b = 1000, 

2000 and 3000 s/mm2. Each b-shell uses different number of q-values, with 30 angles for b = 

1000 s/mm2, 45 angles for b = 2000 s/mm2, and the largest at 60 angles for b = 3000 s/mm2.

Several slices of three dimensional eigenvector map obtained by the ESP solution are shown 

in Figure 6. The local samples of transition probabilities are shown by directionally colored 

ellipsoids. The multi-scale structure of the ESP approach can be used for identifying fiber 

crossings – it can be seen clearly in many of these samples that different scales show 

different main fiber direction.
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To illustrate the practical ability of geometrical optics–like tracking of fibers though those 

“difficult” areas of multiple fibers with different orientations we generated fiber tracts for 

several sets of seed points (Figure 7) located in the areas of corpus callosum and 

longitudinal fasciculus that are known to have multiple overlaps in both inferior and fronto-

occipital regions [53]. The 135 corpus callosum seed points were grouped in blocks of three 

consecutive voxels coronally and two or three voxels vertically. In the fasciculus region two 

sets of seed were selected in left and right hemispheres with 30 seeds each again grouped in 

blocks by three consecutive voxels vertically and five consecutive voxels coronally. The 

total number of seeds were 195 voxels resulting in 195 distinct fiber tracts.

All the seeds were selected in mostly in the regions with predominantly single fiber 

orientation. In the multi–scale ESP guided geometrical optics–like approach, the tracking 

algorithm is able to follow tracts across voxels that contain a mixture of fibers of different 

orientations and select the correct path based on the combination of local and global 

parameters (Figure 7).

For a more “difficult” starting point we first have chosen several seed voxels in the area 

around the splenium of the corpus callosum and up to the internal capsule. The five fiber 

tracts, shown in Figure 8, clearly demonstrate the ability of the algorithm to detect separate 

fibers crossing through rather small regions at different directions. In this figure, the fibers 

passing though the chosen location include those from latero– lateral (left to right and right 

to left), anterior–posterior, and dorsal–ventral. That example shows that the multiple scales 

used by ESP guided geometrical optics–like approach can help resolve crossing of multiple 

fibers in a small area of only several voxels extent.

To study behavior of our approach in even more difficult conditions, we selected a single 

seed voxel that is located into a region where the corticospinal tract crosses the corpus 

callosum. This is a region that is well known for crossing fiber problems, and appears often 

in the DTI literature. Even starting with just a single voxel seed in the “difficult” area, the 

multi-scale multi-modal approach is able to find and distinguish several fibers that go into 

different regions of brain (Figure 9). For comparison we included in Figure 9 a fiber tract 

that should be produced by a standard tractography approach with a single scale integration 

of the principal direction of the diffusion tensor (shown by white/gray tract).

Using several seeds in the small vicinity of the single seed voxel used in Figure 9 gives more 

complicated behavior with a bundle of fibers going in and out of the corpus callosum, a 

bundle coming to/from the corticospinal tract, a bundle connecting anterior posterior 

regions, and some bundles going to outer regions of the brain (Figure 10).

Finally, we applied our method to one of the diffusion imaging datasets (MGH 1010) 

available from the Human Connectome Project [54]. This dataset was collected on the 

customized Siemens 3T Connectom scanner, which is a modified 3T Skyra system 

(MAGNETOM Skyra Siemens Healthcare), housed at the MGH/HST Athinoula A. 

Martinos Center for Biomedical Imaging (see [55] for details of the scanner design and 

implementation). A 64-channel, tight-fitting brain array coil [56] was used for data 
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acquisition. The dataset contains 96 slices of 140x140 matrix at four levels of diffusion 

sensitizations (b-values b = 1k, 3k, 5k and 10k s/mm2) distributed over 552 total q-vectors.

Figure 11 shows both anisotropy maps for the primary directions of the transition 

probabilities and full brain tractography for the whole volume as well as for a selected set of 

slices. Fibers cut out through set of slices in panel (d) in general show good agreement with 

the primary direction of the transition probability (panel (c)), at the same time clearly 

indicating that many areas with seemingly single fiber direction may contain a mixture of 

different orientations.

V. DISCUSSION AND CONCLUSION

We have developed a novel diffusion estimation and fiber tractography method that is based 

on simultaneous estimation of global and local parameters of neural tracts from maximum 

entropy principles and sorting them into a series of entropy spectral pathways (ESP). The 

method uses local coupling between sub–scale diffusion parameters to compute the structure 

of the equilibrium probabilities that define the global information entropy field and uses this 

global entropy to update the local properties of neural fiber tracts.

We have also developed an efficient way to trace individual tracts that utilizes the multi–

scale and multi–modal structure of the local diffusion-convection propagation by means of 

an approach reminiscent of the geometrical optics ray tracing in dispersive media (either 

elastic or viscoelastic). This geometrical optics–like approach naturally includes multiple 

scales that allows fiber tracing to continue fibers through voxels with complex local 

diffusion properties where multiple fiber directions are unable to be adequately resolved.

One of the most important aspects of our method is that it is ”global” in the sense that data 

from spatially extended brain structures are being used to inform both the local diffusion and 

generation of tracts. The typical workflow of majority of other global algorithms used in 

tractography, including algorithms based on the well known shortest-path algorithm on 

graphs by Dijkstra [57]–[60], represent the brain as a graph, where each voxel is a node, in 

which they have a local estimation of the diffusion process that they use as a speed function 

to guide a front evolution evolving from a seed point. Then, the geodesic or shortest-path 

between this point and any other location in the brain can be easily computed with 

backtracking. While there might appear to be similarities with our method, we point out that 

both the theoretical foundations and the numerical implementation for our approach are 

quite different from these schemes. It is important to realize that our method does not 

represent the brain as a graph. Rather, only nearest neighbor coupling has been used. 

However, as we have shown in [34], this is sufficient to produce long-range correlations. 

The local estimation of the diffusion process is not used as a speed function. Rather, the 

prior coupling is used to find the global eigenvalues/vectors, rank those information 

pathways based on a maximum entropy, and spread this global information about pathways 

to every voxel. This global information we use in every voxel is more than just an analog of 

a locally inferred speed function – it is more akin to a dispersion of fibers. For each voxel 

this function includes both angular and radial (scale) distributions obtained as a collective 

effect of all fibers that cross in a single voxel.
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Our tracking process, although it might appear to look like a front evolution, is not. Our 

approach does not need an explicit front evolution step at all. The eigensystem calculation of 

the connectivity matrix provides more complete and accurate path information, than is 

available from the typical front evolution methods, and does more efficiently. Our tracking 

is performed in 6 dimensional coordinate and momentum space. Not only is the position of 

each fiber updated on each step, but a momentum equation is used to update the local fiber 

orientation as well as a rate of orientation change based on a globally constructed 

distribution/dispersion of fibers. All the current tracking algorithm, including the shortest-

path algorithms [58]–[60], only update a position of fiber assuming its orientation defined 

by static (fixed at each voxel position) speed function.

Although we presented here both the theoretical foundation and a number of practical 

examples that characterize performance and accuracy of our approach, the main limitation of 

the method and of the overall study is the lack of a system wide analysis of a role of 

different parameters that can be updated both during data acquisition and during 

reconstruction stages on the optimality of diffusion estimates as well as on the overall 

tractography results.

It is important to reiterate that we have formulated the analysis problem in this paper as one 

of inference where the goal is to make the most accurate estimates of both the local diffusion 

and the extended fiber tracts based only upon the available data and any relevant prior 

information. This is just the logic of probability theory [61] and the theoretical basis for our 

method is a probabilistic analysis of information flow in a lattice [34]. The key result of that 

paper is that local coupling information provides significant information about global 

pathways, which thus forms the important connection between local phenomena (diffusion) 

and global structures (fiber tracts). Moreover, the dynamics of how local effects inform 

global structures was shown to be characterized by a Fokker-Planck equation with a 

potential equal to the entropy [34], a formulation that had previously been put forth in a 

general theoretical framework [35], [36], but here finds a very practical manifestation, as it 

facilitates a geometric–optics tractography scheme where the relationship between the local 

diffusion measurements and the global fiber tract structure is made explicit.

Perhaps the most important result of our analysis is that the connection between the local 

and the global properties of the diffusion field are mediated by the transition probability, 

which emerges as a more fundamental quantity than the traditional diffusion PDF. In effect, 

our approach makes explicit a fact that is often implicitly assumed in diffusion analysis 

papers but rarely explicitly addressed: There is a fundamental logical flaw in estimating the 

local diffusion as if it were taking place in independent, isolated voxels, but then using it to 

generate connections between voxels based on their assumed dependence. Our formulation 

naturally incorporates the continuum of spatial scales, from local to global, and avoids 

unnecessary arguments related to the fact that the actual diffusion is occurring on a scale 

much smaller than the measurement process, and thus far smaller than the scale of the fiber 

structures, since we are only requiring that our macroscopic predictions from microscopic 

phenomena are consistent with our data and prior information.
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This method has potential significance for a wide range of applications that employ 

diffusion weighted imaging, including studies of brain connectivity.
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Fig. 1. 
Schematic illustration of (a) traditional fiber tracking based on integration of a single Frenet 

equation vs (b) fiber tracking that uses the geometrical optics analogy. (a) In the first case 

the fiber orientation vector ψonly depends on spatial location r0, hence, even at location of 

fiber crossing only single the most important fiber can be followed (point r0 uniquely selects 

single family of fibers oriented along ψ(r0)). (b) The geometrical optics approach 

automatically includes dependence of ψon both orientation k/|k| and scale |k|, hence it can 

effectively proceed through difficult areas of crossings of multiple fibers (the choice of fiber 

direction at point r0 depends on the value of the parameter k, with k1 selecting the same 

fiber direction as in (a), and k2 corresponding to the alternative crossing family of fibers).
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Fig. 2. 
Central 5horizontal 64 × 64 slice of 64 × 64 × 3 MR fiber cup phantom [47]; (a) one of the 

baseline b=0 images and (d) the expanded version of the white square area clearly showing 

strong signal at the fiber end and at the circular disc interface; (b) the map of the largest ESP 

transition probability values with (e) the enlargement of the same area showing the 

resolution of the fiber end; (c) and (f) the map of equilibrium probability distribution (µ∗ = 

[φ(1)]2) thresholded at 0.45 with perfect identification of all fiber ends and overall area 

occupied by fiber bundles.
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Fig. 3. 
(a) Local samples of different scales of transition probabilities obtained by the ESP, with (b) 

blow up of the center crossing fibers area.
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Fig. 4. 
(a) One possible tracking through fiber crossing area shown in Figure 3b using only single 

scale transition probabilities. With low angular resolution only a single set of crossing fibers 

can be identified, and the second bundle will either be broken (or connected to the first one). 

(b) Tracking with multiple scales and coupling information are used in obtaining transition 

probabilities. Even with this relatively low angular and radial resolution the presence of 

multiple scales enables geometrical optics–like tracking through the difficult area. (c) A map 

of EAP–like function for a single voxel from the crossing area. The map was obtained using 

only local diffusion data from the original shell of 60 direction q-values with high angular 

resolution 72 mode spherical harmonics expansion. The map shows that even with high 

angular resolution only one fiber direction can be reliably identified. Our multi-scale 

approach incorporating global connectivity information can reliably identify crossing in the 

calculated transition probabilities.
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Fig. 5. 
(a) Several fiber tracts produced by geometrical optics ray tracing of the Fokker-Plank 

equation using the ESP equilibrium probability distribution shown in Figure 2. (b) Blow up 

of one of the tracts showing an interesting property of the ray tracing: the tracts reaching the 

fiber ends can get reflected at the boundary and form a closed cycle repeating itself again 

and again. (c) All fiber tracts obtained using seeds (d) selected with single threshold from 

the ESP equilibrium probability distribution. The processing of 512 total seed produced 372 

fiber tracts with only two (one red and one green) incorrectly finished at the neighboring 

ending point. These results correspond to slightly more than 0.5% false positive rate.
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Fig. 6. 
Different slices of three dimensional equilibrium probabilities µ(1), or square of the first ESP 

eigenvector Eqn 14 (shown by grayscale background), obtained using diffusion weighted 

images of human brain with local samples of different scales of transition probabilities 

shown by directionally colored ellipsoids.
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Fig. 7. 
Selected fiber tracts obtained by geometrical optics–like processing of ESP guided 

tractography, with ESP equilibrium probability distribution shown by grayish transparent 

background. A subset of seed points has been used to initialize fiber tracts, with 135 seeds 

located in corpus callosum (arranged in blocks of three consecutive voxels coronally and 

two or three voxels vertically), and two sets of 30 seeds localized in left and right 

hemispheres around the inferior fronto-occipital fasciculus areas (also blocked in by three 

consecutive voxels vertically and five consecutive voxels coronally), giving 195 seeds total. 

Panels (a)-(d) corresponds to different projections and panes (e) and (f) shows tracts with 

seeds in corpus callosum and fasciculus respectively. The corpus callosum originating fibers 

and fibers going through longitudinal fasciculus are crossing in areas occupying multiple 

voxels and the ESP tractography with geometrical optics–like tracking is able to correctly 

proceed through those voxels.

Galinsky and Frank Page 29

IEEE Trans Med Imaging. Author manuscript; available in PMC 2015 May 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 8. 
Five fiber tracts going through a small region where a mixture of different fiber orientations 

emphasizes different directions at different scales. The five chosen tracts show coexistence 

of orientations ranging from a latero–lateral (left to right and right to left), an anterior–

posterior, a dorsal–ventral direction, and a combinations of them.
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Fig. 9. 
Seven fiber tracts with the same single voxel seed located in the area where the corticospinal 

tract crosses the corpus callosum. The geometrical optics–like approach with different scales 

parameterized by the vector  produces a latero–lateral, an anterior–posterior, a dorsal–

ventral (and mixed) tracts that originate in the same voxel. For comparison we included a 

fiber tact that would be traced by the standard method (shown by white/gray color) with the 

same voxel as a seed.
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Fig. 10. 
Several bundles of fiber tracts obtained when seeded by several voxels in the vicinity of a 

single seed voxel used in the previous Figure 9. Panels (a)-(c) show coronal, sagittal and 

axial planes, panel (d) shows 3D view and panels (e)-(f) show different projections of 

zoomed area with fibers grouped in going from/to corpus callosum (blue), coming to/from 

the corticospinal tract (red), and longitudinal fibers (green).
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Fig. 11. 
Results of full brain ESP tractography obtained using the Human Connectome Project 

diffusion imaging dataset (MGH 1010). Panel (a) shows anisotropy maps for primary 

direction of the transition probabilities for the whole volume and panel (b) shows full brain 

tractography also for the whole volume. Panel (c) and (d) provide detailed views of for a set 

of slices (46 ≤ z ≤ 51).
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