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Pancreatic cancer is one of the most fatal malignancies with increasing incidence and high mortality. Possibilities for early diagnosis
are limited and there is currently no efficient therapy. Molecular markers that have been introduced into diagnosis and treatment
of other solid tumors remain unreciprocated in this disease. Recent discoveries have shown that certain microRNAs (miRNAs)
take part in fundamental molecular processes associated with pancreatic cancer initiation and progression including cell cycle,
DNA repair, apoptosis, invasivity, and metastasis. The mechanism involves both positive and negative regulation of expression of
protooncogenes and tumor suppressor genes. Various miRNAs are expressed at different levels among normal pancreatic tissue,
chronic pancreatitis, and pancreatic cancer and may therefore serve as a tool to differentiate chronic pancreatitis from early stages
of cancer. Other miRNAs can indicate the probable course of the disease or determine the survival prognosis. In addition, there is
a growing interest directed at the understanding of miRNA-induced molecular mechanisms. The possibility of intervention in the
molecular mechanisms of miRNAs regulation could begin a new generation of pancreatic cancer therapies. This review summarizes
the recent reports describing functions of miRNAs in cellular processes underlying pancreatic cancerogenesis and their utility in

diagnosis, survival prognosis, and therapy.

1. Introduction

Despite the recent medical advances and new diagnostic
possibilities, pancreatic cancer (PC) represents a frequent
malignancy with disturbingly high mortality rates. Several
histology subtypes of pancreatic tumors can be distinguished.
The vast majority of them are represented by pancreatic
ductal adenocarcinoma (PDAC) occurring at 96.3% of cases
followed by less common cystic tumors, lymphomas, and
metastases from other primary tumors [1].

The development of pancreatic cancer is associated
with increasing cytological atypia forming precursor lesions,
which can be divided into four stages of pancreatic intraep-
ithelial neoplasia (PanIN I-PanIN IV) [2]. On a molecular
level PanIN stages are characterized by gradual accumula-
tion of DNA aberrations such as somatic point mutations
within regulatory and coding sequences, gene amplifications,

abnormal gene expressions, and allelic deletions (typically at
9p, 18q, 17p, and 6q) [3, 4]. However unlike other cancers,
the detailed knowledge of molecular processes accompanying
the pathogenesis of PC has not so far led to identification
of a reliable biomarker for early detection of the disease.
Patients occasionally exhibit elevated sedimentation of direct
or indirect bilirubin, erythrocytes, and alkaline phosphatase
and about a third of patients exhibit pathological glucose
curve and/or anemia in case of protruding tumor [5].
Diagnostic utility of standard tumor markers is also very
limited. The main markers are mucin antigens CA 19-9,
CA 242, CA 50, and CA 72-4, but due to their relatively
low specificity and sensitivity they are used in monitoring
of disease progression rather than diagnosis [6]. Thus the
standard diagnosis of PC is based on imaging techniques
including an initial ultrasound followed by computed tomog-
raphy (CT) or magnetic resonance imaging (MRI) and finally
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endoscopic ultrasound (EUS) which can definitively confirm
the diagnosis, especially if the examination is supplemented
by a fine needle biopsy (FNB). Unfortunately, due to the
absence of specific manifestation, PC is usually diagnosed
at the time of nonspecific symptoms such as fatigue, weight
loss, dysorexia, abdominal pain, or jaundice (caused by
compression of the duodenum) when the disease has already
advanced and the prognosis of patients is very poor [5]. Only
about 15% of all PC patients are diagnosed at an early stage
of the disease when the tumor is operable. In these cases the
tumor is surgically resected, which at present provides the
only chance for cure. The chemotherapy (most often by gem-
citabine) is administered after the pancreatic resection as well
as in advanced inoperable stages; alternatively it is also
administered in combination with radiotherapy or targeted
biological therapy by erlotinib. Suppression of symptoms
associated with the disease, such as biliary drainage in the
duodenum or use of analgesics, is key in palliative therapy of
advanced stages [7, 8]. Despite development in the manage-
ment of the disease, the five-year survival is only about 5%
[9].

Efforts towards finding a highly sensitive and specific
tool for early diagnosis of pancreatic cancer are currently
leading the clinical study of this fatal disease. The role
of microRNAs in malignant transformation is gradually
becoming more evident [10-12] and increased emphasis is
placed on finding and testing microRNAs participating in the
development of pancreatic cancer in order to improve diag-
nosis, assess prognosis, and design new treatment options [13,
14]. MicroRNAs (miRNAs) are endogenous noncoding short
RNAs (length of 21-23 nucleotides) encoded by nuclear DNA
and their main function is posttranscriptional regulation
of gene expression. They bind complementarily to spe-
cific sequences of messenger RNA (mRNA), which usually
leads to gene silencing via translational repression or target
degradation [15, 16]. miRNAs play a crucial role in various
developmental, metabolic, and cellular processes including
apoptosis, cell proliferation, and differentiation. Some miR-
NAs regulate levels of protooncogenes or tumor-suppressor
genes; therefore their expression is often altered in various
tumor tissues including PC (see Figure 1). These miRNAs
could serve as useful tumor biomarkers [17].

2. Role of miRNAs in Processes of Malignant
Transformation of Pancreatic Tissue

The development of malignant transformation consists of
many steps that are characterized by the disruption of
various cellular processes through the damage of their control
mechanisms. These are mainly faulty DNA repair system,
dysfunctional cell cycle checkpoints leading to excessive cell
proliferation, the failure of apoptosis, loss of contact inhibi-
tion, and cellular migration into other tissues to form distant
metastases. Current reports on involvement of miRNA in
pathogenesis of pancreatic cancer are mostly based on in vitro
studies of cell lines derived from malignant cells and therefore
some of the results still have to be confirmed using in vivo
models.
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2.1. Cell Cycle and Proliferation. Cell cycle checkpoints and
kinetics are important regulators of cell proliferation. Various
studies conducted in connection with PC have shown sev-
eral oncogenic miRNA negatively affecting tumor-suppressor
genes that act as regulators of the cell cycle progression.
One of the most frequently studied miRNAs, the miR-21,
affects a tumor-suppressor PTEN (phosphatase and tensin
homologue) whose protein product prevents the proliferation
of tumor cells and controls the frequency of cell division [18].
The overexpressed miR-21 attaches to the mRNA of PTEN,
thereby reducing its tumor-suppressive function. Another
potential cell cycle regulator overexpressed in PC, miR-221,
affects translation of p27 (CDKNIB gene), a major cyclin-
dependent kinase inhibitor [18]. The p27 protein binds
and prevents activation of cyclin E complex with cyclin-
dependent kinase 2 (CDK 2) or cyclin D complex with cyclin-
dependent kinase 4 (CDK 4), therefore having a control
function in progression of cell cycle in Gl phase. Also
showing increased expression, miR-192 facilitates progression
from GO/G1 to S phase by regulating the expression of
genes involved in cell cycle control [19]. Another oncogenic
miRNA, which is often overexpressed in pancreatic cancer,
is miR-424-5p. It enhances the ability of cells to proliferate
and migrate through downregulation of SOCS6 protein (sup-
pressor of cytokine signaling 6) which leads to elevated ERK
pathway activity [20, 21].

In an analogy to the above, in PC a lowered expression
of tumor-suppressive miRNAs that regulate the efficiency of
important protooncogenes can also be detected. A significant
downregulation can be observed for miR-124 (miR-124-1,
miR-124-2, and miR-124-3) muted as a result of promoter
hypermethylation. miR-124 inhibits proliferation, invasion,
and metastasis by direct interaction with the Racl transcript
[22]. Racl (Ras-related C3 botulinum toxin substrate 1) is
GTPase protein which is involved not only in cell cycle
control, but also in cytoskeletal reorganization, activation of
protein kinases, cell adhesion, epithelial differentiation, and
motility [23]. Another known miRNA that contributes to
tumour cell proliferation through cell cycle deregulation in
PC is miR-203, whose lowered expression leads to advance-
ment from the G1 phase [24]. Several other miRNAs, includ-
ing tumor-suppressive miR-143 [25], miR-126 [26], and let-7-
d [26], regulate expression of a KRAS oncogene, which plays
a crucial role by inducing abnormal cellular proliferation
through mitogen-activated protein kinase (MAPK) pathways
[27].

2.2. DNA Repair and Apoptosis. In a normal tissue, DNA
damage triggers a wide range of cellular processes resulting
in either repair of the damaged sections or a programmed
cell death, apoptosis. In case of abnormal function of tumor-
suppressor genes or protooncogenes, however, the DNA
repair pathway as well as apoptotic cascade may be completely
disrupted and the cells acquire a malignant potential.

A tumor-suppressor gene TP53 is often studied due to its
major role in apoptosis and DNA repair, but it is also heavily
involved in regulation of angiogenesis and cellular senes-
cence [28]. Expression analyses have identified a number of
miRNAs that contribute to TP53 regulation. One of them,
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FIGURE 1: Effect of miRNAs expression on the regulation of protooncogenes and tumor-suppressor genes. Some miRNAs act as negative
regulators of protooncogenes expression and therefore their role is tumor-suppression (a). In cancerous tissue, reduced levels of these tumor-
suppressive miRNAs lead to increased target oncogenes promoting further tumor development (b). Other miRNAs negatively regulate
expression of tumor-suppressor genes; hence, their function is (proto) oncogenic (c). In tumor tissue their increased expression results in
blockage of translation of tumor-suppressors further assisting the malignant process (d).

miR-34a, positively regulates apoptosis and DNA repair,
while negatively altering cell cycle and angiogenesis. Levels
of miR-34a are reduced to less than half or are missing
completely in the tissue of pancreatic cancer compared to
normal ductal epithelial tissue due to a deletion of its coding
region [29-31]. It was also revealed that oncogenic miR-155
represses proapoptotic gene TP53INPI (tumor protein p53-
inducible nuclear protein 1) which gets activated by p53.
When present at high levels in PC, miR-155 increasingly
prevents expression of TP53INPI, hence inhibiting apoptosis
and allowing cell survival [32].

Another miRNA which negatively affects apoptosis
appears to be miR-203, whose main function is inhibition
of the apoptotic regulator survivin (baculoviral inhibitor of
apoptosis repeat-containing 5 (BIRC5)). Downregulation of
miR-203 results in increased expression of survivin, which
inhibits apoptosis [24].

A recent study indicates that several miRNAs may also
induce apoptosis. It can be triggered by elevated levels of miR-
150" and miR-630, both causing the decreased expression of
transmembrane tyrosine kinase receptor IGF-1R (insulin-like
growth factor 1 receptor), which has antiapoptotic properties
[33].

2.3. Invasivity and Metastasis. The tumor cell invasivity and
ability to form metastasis are an important factor that affects
cancer progression. An essential step in invasivity represents
the differentiation of cells through epithelial-mesenchymal
transition (EMT). This means that epithelial tumor cells
undergo transition to mesenchymal type, which, among
others, is capable of crossing the basement membrane and
entering the bloodstream. The main feature of EMT is aloss of
intercellular contacts which correlates with decreased expres-
sion of the transmembrane protein E-cadherin (epithelial
cadherin), an epithelial cell marker playing a key role in cell
adhesion. E-cadherin (CDHI gene) is suppressed in several
cancer types including pancreatic cancer by its repressors
ZEB1 (zinc finger E-box-binding homeobox 1) and SIP1
(Smad-interacting protein 1, ZEB2, and SMADIPI) which
thus act as EMT-activators [34-37]. It has been shown that
members of miR-200 family (miR-200a, b, ¢, miR-141, and
miR-429) and proteins ZEB1 and SIPI reciprocally negatively
regulate each other in a feedback loop mechanism which
controls the EMT [38, 39]. Generally, the decrease in expres-
sion of miR-200 family members can trigger the epitelial to
mesenchymal transition [38-43] and similar findings were
published also for miR-203 [44, 45]. Most recently another
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TaBLE 1: miRNAs involved in processes of malignant transformation of pancreatic tissue (| = reduced, T = increased).
miRNA Role of miRNA  LXPressionin Impact of the aberrant expression on PC cells Target gene Respective
PC cells references
miR-21 Oncogenic T T proliferation and frequency of cell division PTEN [18]
miR-221 Oncogenic T cell cycle progression CDKNIB [18]
. . . SIPI and cell cycle

miR-192 Oncogenic T T cell cycle progression regulatory genes [19]

miR-424-5p Oncogenic T T cell proliferation and migration SOCS6 [20, 21]

miR-124 Tumor- . l T proliferation, invasion, and metastasis RACI [22]
suppressive

miR-203 Tumor- ! T cell cycle progression, | apoptosis BIRC5 [24]
suppressive T epithelial to mesenchymal transition (EMT) CAVI [45]

miR-143 Tumor- ‘ ! T §ell Prohferatlon, cellular invasivity, and GETI, GET2, and [25]
suppressive migration KRAS

miR-126, Tumor- . .

let-7d suppressive 1 T cell proliferation KRAS [26]

miR-34a Tumor- ‘ ! ! apoptqsm and DN{\ repair, T cell cycle P53 [29-31]
suppressive progression and angiogenesis

miR-155 Oncogenic T | apoptosis TP53INPI [32]

miR-200  Tumor- 1 1 EMT ZEBI, SIPI [43]

family suppressive

miR-208 Oncogenic T TEMT CDHI [46]

miR-l46a  LUmor- ! 1 invasivity IRAK-1, EGER [47]
suppressive

miR-10a Oncogenic T T invasivity and metastatic behavior HOXAL HOXBI, and [47]

HOXB3

miRNA, miR-208, was found to be directly involved in EMT.
After overexpressing miR-208, expression of E-cadherin was
decreased suggesting that miR-208 can promote the EMT
[46].

Previously the involvement of miR-143 in pancreatic can-
cer cell invasivity was tested and its key role in regulation of
Rho GTPases signaling was demonstrated [25]. Rho GTPases
are G-proteins that control many processes associated with
cancer metastasis formation such as cell-cell contact or cell
movement. Increased activity of Rho GTPases enhances
cellular invasivity and migration. miR-143 has been shown to
lower Rho GTPases activity and therefore decrease levels of
miR-143, which are observed frequently in pancreatic cancer
cells, leading to metastatic phenotype [25].

Another miRNA involved in the formation of metastasis
is miR-146a. Lower levels of mir-146a in pancreatic cancer
cells were found to increase invasive behaviour [47]. More-
over it was determined that the reexpression of miR-146a
can inhibit the invasivity. The molecular mechanism of this
process remains unclear, but it seems to be associated with
regulation of EGFR (epidermal growth factor receptor) and
NF-xB transcription factor signaling [47].

The opposite effect was observed for miR-10a. The expres-
sion of miR-10a promotes metastatic formation, whereas its
repression leads to inhibition of invasive behavior. miR-10a
supports the ability of cell to metastasize through the suppres-
sion of homeobox transcription factors HOX A1, HOXBI, and

HOXB3, which, as demonstrated, may function as metastatic
suppressors [48, 49].

For a summary of miRNAs involved in pancreatic
carcinogenesis, which are listed in the previous text, see
Table 1.

3. Impact of Polymorphisms and Mutations in
miRNA Genes

Although changes in the coding sequences of some miR-
NAs such as single nucleotide polymorphisms (SNPs) and
mutations may play an important role in susceptibility and
development of pancreatic cancer, there are only a few studies
directed at this topic. In very recent study it was shown that
specific SNPs in the genes coding for precursors of miR196a2
and miR-146a may play a role in pancreatic tumorigenesis.
Although significant difference between genotypes of healthy
individuals and PC patients was not found, certain genetic
variants of these miRNAs have been expressed more fre-
quently in T1 and T2 stages of PC compared to T3 and
T4 stages. Molecular mechanism of the different expression
based on the subtle differences in sequences is currently
under further study [50]. In another work a connection
between mutations in miR-21 gene and pancreatic cancer was
suggested [51].
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TaBLE 2: miRNAs whose expression increase (T) or decrease (|) with increasing PanIN stages.

let-7a [79] T miR-155 [32, 76, 77] T miR-200a/b/c [77] T

miR-10b [78] 7 miR-182 [77] 1 miR-217 [78, 79] 1

miR-21 [76-79] 7 miR-183" [77] 7 miR-221 [79] 7

miR-146a [77, 78] 7 miR-196a-2 [78] 7 miR-222 [77, 79] 1

miR-148a [80] 1 miR-196b [77, 78] T miR-296-5p [77] !

"Passenger strand of pre-miRNA.

4. miRNAs Differently Expressed in
Pancreatic Tissue

4.1. Normal Pancreas versus Chronic Pancreatitis versus Can-
cer. Many research groups are engaged in analysis of aberrant
expression of miRNAs in normal pancreatic tissue and pan-
creatic cancer. The differences are also studied and compared
to data from chronic pancreatitis, which represents a major
precancerous condition and an endogenous factor causing up
to 16-fold increase in risk of pancreatic cancer [52]. Over the
years hundreds of publications with varying levels of scientific
impact have disclosed a number of miRNAs differentially
expressed in all the above types of pancreatic tissues [53-
75]. The most frequently reported miRNAs to be expressed
at elevated levels in PDAC include miR-21 [53-57, 59, 61, 62],
miR-155 [55, 58, 59, 61, 70, 72], miR-196a [58-60, 68, 72-74],
miR-221 [53, 59, 75], and miR-222 [53, 59, 61, 70, 72].

4.2. Correlation of miRNAs Levels to PanINs. More recent
papers have reported a number of miRNAs whose levels
sharply change among different PanIN stages. This is typical
for more advanced PanIN-2 and PanIN-3. There are currently
no reports comprehensively describing specific miRNAs that
correlate with each of the PanINs.

Significantly increased levels of miR-155 correlate directly
with the advanced PanIN-2 and PanIN-3 [76, 77]. As men-
tioned earlier, the target of miR-155 is proapoptotic TP53INPI
gene. TP53INPI is expressed in normal as well as in the
early PanIN tissues but it is lost in PanIN-3. This could be
explained by the rapid growth of miR-155 in the 2nd and
3rd PanIN stages [32]. The PanIN-2 and PanIN-3 stages
are supplemented by a significant increase of miR-10b [78],
miR-221 [79], miR-222 [77, 79], let-7a [79], and miR-196b
[77, 78] and a significant decrease of miR-217 [77, 78].
Overexpression was also observed for miR-21 [76-79] with
the most notable change in PanIN-3 [76]. Also increased
expression levels of miR-146a [77, 78] and miR-196a-2 [78]
were found to correlate with advanced PanINs. In contrast
miR-148a, whose gene is epigenetically silenced resulting in
its low expression levels, correlates with early PanIN stages
[80]. All miRNAs which are significantly associated with
PanIN progression are listed in Table 2. In addition, a recent
extensive study has revealed more than 100 miRNAs which
are aberrantly expressed in different PanIN stages [77]. From
them, miRNAs whose expression increases or decreases with
advanced panINs are included in Table 2.

5. Diagnostic miRNAs

The study of miRNAs as cancer biomarkers is not restricted
to tumor tissues only. More recently it was shown that almost

all body fluids contain miRNA [81] as a result of either
passive release from necrotic or apoptotic cells or due to
an active secretion by microvesicles [82]. In comparison to
mRNA, whose detection in body fluids is somewhat chal-
lenging, miRNAs are stable as they are resistant to cleavage
by ribonucleases and survive extreme pH and temperature
conditions [83]. With the lack of reliable approaches based
on imagining techniques and/or routine tumor markers,
the option of detecting miRNA in peripheral body fluids,
especially blood serum, has currently a considerable potential
for use in clinical practice.

Among others, miR-192 is very promising showing
increased levels in serum of PDAC patients compared to
healthy controls with sensitivity towards cancer at 76% and
specificity at 55% [19]. Another potential biomarker is miR-
18a, which occurs at high levels in tumor tissue as well as in
plasma of cancer patients. In addition, miR-18a levels were
found to be significantly reduced after tumor resection [84].
Other studies are focused on using combination of several
circulating miRNAs to discern various stages of PC from
cancer-free controls and CP [57, 85]. Recently another study
introducing a promising panel of circulating miRNAs for
early blood-based diagnosis of pancreatic cancer has been
presented [86].

In order to increase diagnostic accuracy of early stage
pancreatic cancer a combination of serum CA19-9 and
quantification of miR-16 [87] or combination of CA19-9, miR-
16, and miR-196a [60] may be of clinical use. The resulting
sensitivity and specificity of the combined markers detected
in peripheral blood for discrimination of chronic pancreatitis
and pancreatic cancer are reportedly higher compared to
the values for individual markers [60, 87]. Another study
indicates that a combination of serum CAI9-9 with the
detection of the expression of miR-27a-3p from peripheral
blood mononuclear cells (PBMC) can be used to diagnose
pancreatic cancer with a sensitivity of 85.3% and specificity of
81.6% [69]. These tests could supposedly be applied also for
screening of peripheral blood of high-risk groups. Indeed, a
potential use for diagnostic purposes can be attributed to all
miRNAs that are differentially expressed in PDAC compared
to healthy tissue and/or chronic pancreatitis [88].

6. Prognostic miRNAs

Estimation of prognosis in terms of survival probability has
a great significance in clinical management of pancreatic
cancer. Patients often show a poor performance status and
the effect of treatment is only minor. Systemic therapy
or chemotherapy should therefore carefully be considered
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TABLE 3: Prognostic miRNAs expression (| reduced, T increased, and | comparable expression).

miRNA miRNA level correlated with poor prognosis Tumor versus normal tissue Tumor versus CP tissue CP versus normal tissue

let-7¢g" 1 [96]

miR-7 1197]

miR-10b 1162, 98] 1 159, 62, 98] 1 [59] 1 [59]

miR-21 1 [61, 91, 92, 99] 1 [53-56, 59-62] 1159, 60]

miR-30d 1 [e1]

miR-31 1 [96]

miR-34a 1 [61]

miR-122 1 [96]

miR-124 1 [55]

miR-142-5p 1 [90]

miR-145 1199] 1 [61]

miR-146 1199] 1 [95] 1 [59]

miR-148a" 1 [96]

miR-155 1 [70, 99] T [55, 58-61, 70, 72] T (59, 60] T [61]

miR-187 1 [96]

miR-196a 1158, 59] 1 [55, 58-60, 72-74] 1[59] T [58, 60] 1 [59]

miR-200¢ 1 [100]

miR-203 1170, 71] 1170, 71] 1159, 71] 171

miR-205 1197] 1 [59]

miR-210 170, 99] 1 [59, 60, 70] 1 [60]

miR-212 1 [96]

miR-218 1 [101] 1 [101]

miR-219 T159]

miR-221 1 [99] 1 [59] 1 [59]

miR-222 1 [70, 99] 153,59, 61, 70, 72]

miR-675 1 [96]

*Passenger strand of pre-miRNA.

with regard to the quality of life, especially for unresectable
tumors. Finding prognostic markers to assess probable course
of the disease prior to treatment is therefore highly desirable.
A number of literature reports are devoted to the use of
miRNAs as prognostic markers. Many have demonstrated
prognostic utility for miRNAs exhibiting aberrant expression
in serum or in tumor tissue of PC patients. The sometimes
contradicting findings are summarized in Table 3 showing
the expression levels in normal tissue, in chronic pancreatitis
(CP), and in cancer.

7. Methods for Detection of miRNA in
Pancreatic Cancer

The key to a successful analysis of miRNA in pancreatic
cancer is in the type, quality, and quantity of the studied
sample material. As mentioned already, serum samples are
best suited for clinical diagnosis and determination of prog-
nosis. The main problem in this case, however, is in limiting
amounts of miRNA as well as somewhat lower specificity.
The main focus of molecular analyses, however, remains on
samples acquired directly from pancreatic tissue.

Samples from surgical resections processed into frozen or
paraffin sections usually provide a great amount of material
for both histology as well as molecular evaluations. By

the initial histology inspection presence of malignant cells
is ensured prior to their subsequent molecular analysis.
High content of malignant cells in the examined material
is necessary for representative quantification of expression
of cancer-associated genes. Many patients, however, do not
undergo surgery. In such a case pancreatic tissue is only
available in a form of biopsy acquired by fine needle (FNB)
during an endoscopic ultrasound (EUS) examination. If the
patient status permits, EUS-FNB may be performed also
over the course of the disease development, to monitor
the effects of therapy. The disadvantage of utilizing EUS-
ENB samples for molecular examination is relatively limited
amount of material, often only in a form of a cytology smear.
More importantly, for EUS-ENB samples there is always
an uncertainty about the actual malignant content with
respect to possible contamination by blood or surrounding
nonmalignant cells. Only a few of the studies directed at
miRNAs rely on EUS-FNB samples [62, 67, 74, 89], while the
majority use resections. An overview of the samples types
used in recent literature reports on miRNAs in pancreatic
cancer is summarized in Table 4.

Once the tissue sample is received, total RNA (including
short RNA or miRNA) is extracted and reverse-transcribed
into cDNA. Then, two alternative approaches are used
(see Table5). The first approach is based on microarray
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TABLE 4: Types of samples used for miRNA analysis in pancreatic cancer.

Serum Fine needle biopsy Resected tissue
Invasiveness Low Medium High
Possible sampling frequency Days Days-weeks Mostly no or only one sampling
The amount of sample/target Sufficient/very small Small/small Sufficient/sufficient

miRNA

The possibility of obtaining pure

. N
tumor tissue (cells) °

Respective references [54, 58, 68, 84-86]

Yes (macrodissection,

Yes (microdissection) microdissection)
Fixation [62, 67, 89]
RNA stabilization solution

(67, 74]

Frozen tissue
[53, 56, 61, 63, 70, 72, 76, 97]
Fixation [59, 67, 78, 84, 90, 96]

TABLE 5: Comparison of principal approaches for study of miRNA
[102].

qRT-PCR miRNA microarray
Principle PCR amplification Hybridization
The recommended
e RNA 10-700 ng 100-10 000 ng
Limit of detection 10-22 mol 10-18 mol
Data processing 1 day More than 2 days

technology using hundreds to thousands of oligonucleotide
hybridization probes. This approach allows screening a vast
number of miRNAs in a single experiment. On the other hand
miRNA array experiments require considerable amount of
RNA as well as a rather sophisticated data evaluation. It is
mostly used to screen for new potential miRNA biomarkers.
A second approach is examination of a panel (usually up
to 100) of preselected miRNAs using quantitative RT-PCR
(qQRT-PCR). This method is suitable, for example, to monitor
aberrant levels of selected miRNAs in order to verify the
context of prognosis. The qRT-PCR data are then processed
by standard normalization using a set of housekeeping genes,
typically including U6 [61, 62, 76, 78, 84], U44 [90], and 18S
[53, 63, 70]. Normalization to other miRNAs has also been
applied with miR-16 [55] and miR-54 [68].

8. Role of miRNA in Treatment Response and
Potential for miRNA Therapy

Some of prognostic miRNAs also play a role in the efficacy
of anticancer therapy and thus present themselves with new
therapeutic possibilities. For example, it was found that
nanomolar concentrations of antisense miR-21 and miR-221
oligonucleotides effectively inhibit their targets (oncogenic
miR-21 and miR-221) and thus reduce proliferation of pan-
creatic cancer cell lines and, along with gemcitabine, prevent
their growth [18, 91].

PDAC cells expressing elevated levels of miR-21 are
chemoresistant to gemcitabine and reduce the efficiency of
apoptosis induction [91, 92]. Addition of phosphoinositide
3-kinase inhibitors (PI3K inhibitors) and mTOR (mam-
malian target of rapamycin) serine/threonine protein kinase

prevented the miR-21 (namely, the pre-miR-21) resistance,
thus opening a way to gemcitabine-induced apoptosis [92].
miRNAs can be targeted, for example, by lentiviral vectors
(a type of retroviruses) as recently demonstrated for miR-21,
wherein PDA-derived cell lines were transduced by lentiviral
vector for expression of miR-21 antagonist. Inhibition of mir-
21 by its antagonist led to the cessation of tumor growth and
the induction of apoptosis in vitro and in vivo (animal model)
[93].

Potential drug triptolide acts on pancreatic tumor tissue
as an inhibitor of cell proliferation and reduces the levels
of the molecular chaperone HSP70. Rather than directly
affecting HSP70 it causes increase of the levels of miR-142-
3p. Ectopic expression of miR-142-3p in pancreatic tumors
caused by the effect of water-soluble precursor triptolide
(minnelide) in vivo reduces the expression of HSP70 by direct
binding to the 3'UTR region of its transcript. Therefore the
miR-142-3p reduces proliferation, induces cell death, and is
useable as a proper target for pancreatic cancer therapies
[94]. Another study has revealed a relation of miR-142-
5p to the therapeutic response to gemcitabine and further
states that this miRNA is an important predictive marker
in patients treated with gemcitabine after tumor resection,
when its higher levels indicate a longer survival [90]. Yet
another therapy option comes from a possibility of recovery
of function of miR-34a, a potent pro-apoptotic component
involved in p53 mediated apoptosis, whose expression is
reduced or lost in PDAC cells [29-31]. As shown by Ji et
al. [95], restoration of miR-34a may substitute function of
inactivated TP53 gene.

miR-10a and miR-146a play important roles in pancreatic
cancer invasivity and metastasis and represent potential
targets for antimetastatic therapies [47, 48]. It has been
shown that miR-10a promotes the metastatic behavior of
PC and that its expression is regulated by retinoids [48].
The use of retinoic acid receptor antagonists inhibits miR-
10a expression and stops metastasis of PDAC cells [48].
In contrast, miR-146a suppresses invasion of pancreatic
cancer cells but its expression is lowered in PC compared
with normal pancreatic tissue. Finally, use of isoflavones or
DIM (3,3'-diinodolylmethane), both nontoxic natural com-
pounds increasing the expression of miR-146a, also presents
a promising approach to block the invasivity and metastases
[47].



9. Conclusion

Small noncoding RNA (microRNA and miRNA) is a new
hope for improvement of poor prognosis of pancreatic cancer
patients. The broad involvement in cellular mechanisms of
cell cycle regulation, proper functioning of DNA repair,
and apoptotic control as well as mechanisms of invasivity
and metastasis positions miRNAs as potential biomarkers
for clinical management of pancreatic cancer. Many of the
above described miRNAs are now being tested as diagnostic
or prognostic markers for use in routine clinical practice.
The new instrumental development in the genomic analysis
facilitates their further discovery and validation. Continuing
research and better understanding of the principles and
complex mechanisms of miRNA-associated gene expression
control may bring new possibilities for anticancer therapy of
this fatal disease.
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