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Serotonin (5-HT) induces concentration-dependent metabolic effects in diverse cell types, including neurons, entherochromaffin
cells, adipocytes, pancreatic beta-cells, fibroblasts, smooth muscle cells, epithelial cells, and leukocytes. Three classes of genes
regulating 5-HT function are constitutively expressed or induced in these cells: (a) membrane proteins that regulate the response
to 5-HT, such as SERT, 5HTR-GPCR, and the 5HT

3
-ion channels; (b) downstream signaling transduction proteins; and (c)

enzymes controlling 5-HT metabolism, such as IDO and MAO, which can generate biologically active catabolites, including
melatonin, kynurenines, and kynurenamines. This review covers the clinical and experimental mechanisms involved in 5-HT-
induced immunomodulation. These mechanisms are cell-specific and depend on the expression of serotonergic components
in immune cells. Consequently, 5-HT can modulate several immunological events, such as chemotaxis, leukocyte activation,
proliferation, cytokine secretion, anergy, and apoptosis.The effects of 5-HT on immune cellsmay be relevant in the clinical outcome
of pathologies with an inflammatory component. Major depression, fibromyalgia, Alzheimer disease, psoriasis, arthritis, allergies,
and asthma are all associated with changes in the serotonergic system associated with leukocytes.Thus, pharmacological regulation
of the serotonergic system may modulate immune function and provide therapeutic alternatives for these diseases.

1. Introduction

Serotonin (5-HT), also known as 5-hydroxytryptamine or 3-
(2-aminoetil)-1H-indol-5-ol, is a monoamine containing two
nitrogen molecules: the first nitrogen is basic and embedded
within the indol-5-ol; the second, within 2-aminoethyl, is
located at the terminus of the aliphatic chain. 5-HT is
generated from tryptophan and serves as a substrate for the
synthesis of a diverse set of molecules, such as melatonin,
formyl-5-hydroxykynurenamine, and 5-hydroxyindoleacetic
acid [1]. In addition, 5-HT is a signaling molecule that affects
the immune [2], gastrointestinal [3], and nervous [4] systems

in paracrine, endocrine, and juxtacrine fashion. Finally, 5-
HT regulates development during cellular differentiation and
ontogeny (morphogenesis) in several cell linages [5–7].

The majority of 5-HT synthesis, up to 90%, takes place
in gastrointestinal enterochromaffin (EC) cells, followed by
synthesis in myenteric neurons (5%) and the brain [8, 9]. In
the 1980s, 5-HTwas identified as an immunomodulator for its
ability to stimulate or inhibit inflammation [10].This immune
regulation—which has yet to be fully elucidated—is orches-
trated by the serotonergic system. Therefore, to understand
disease pathologies related to the immune system, it is
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important to consider the function of serotonergic compo-
nents. Specifically, insight can be gained by understanding
how serotonergic components are related to mechanisms of
immune modulation that depend on 5-HT receptors (5HTR)
expression in leukocytes and other cells involved in an
inflammatory response.

2. A Brief History of 5-HT Discovery

The discovery of 5-HT was a product of collaborative
endeavors initiated in the last quarter of the 19th century
[11] that lasted into the second half of the 20th century.
Initial studies identified an extract with vasoconstriction
properties from a platelet fraction of uncoagulated blood [12].
In research conducted in Rome during the 1930s, Vittorio
Erspamer isolated a molecule from gastrointestinal EC cells
with the capacity to generate smooth muscle contractions
in a rat uterus. Chemical analysis identified the molecule as
an indoleamine and it was named enteramine [13]. During
the 1940s in the Cleveland Clinic research department,
Maurice Rapport, Arda Green, and Irving Page purified
and characterized a vasoconstrictor compound generated
shortly after coagulation and related to hypertension. In a
tour de force, the molecule was purified from 900 liters of
serum obtained from 2 tons of bull’s blood [14, 15]. The
name serotonin emerged after the substance was crystallized
in 1948 because it was obtained from serum (“ser”) and
could induce vascular tone (“tonin”) in blood vessels [16].
Subsequently, the crystalline vasoconstrictor substance was
shown to be a single complex composed of creatinine and
indol-derivates, which permitted a structural model of 5-HT
based on UV-spectrophotometry [17]. Chemical synthesis of
5-HT by Hamlin and Fischer in 1951 [18] provided significant
progress allowing for the confirmation of its pharmacological
effects [19] and a comparison with the previously isolated
enteramine [20]. Interest in understanding the physiological
role of 5-HT prompted efforts to isolate the compound from
different mammals and tissues, such as the central nervous
system [21].

Since the 1970s there has been an established association
between the serotonergic system and affective disorders as
well as mood changes [22]. Recently, serotonin has been
associated with a myriad of processes [23], including aggres-
sion [24], sleep [25], appetite [26], pain [27], bone density
[28], tissue regeneration [29], platelet aggregation [30], and
gastrointestinal function [31]. The influence of 5-HT on
the immune system has also been recognized, although the
specific mechanisms underlying these effects are not com-
pletely understood and may require confirmation in human
cells. Despite these pitfalls, it is well acknowledged that the
serotonergic system and associated molecules expressed in
immune cells can influence mood disorders, such as major
depression [32] and schizophrenia [33, 34].

3. Components of the Serotonergic System Are
Expressed in Leukocytes

The expression of serotonergic components is differentially
regulated between tissues and cell types.While the expression

and function of serotonergic proteins has primarily been
studied within the central nervous system [81], it should be
pointed out that no functional differences between cell types
have been identified.The serotonergic components expressed
in the immune system encompass a complex ensemble of
proteins that coordinate the synthesis and degradation [1],
transport and storage [58], and response to 5-HT stimu-
lation [40]. In leukocytes, the expression of serotonergic
components (Table 1) is modulated by the concentration of
extracellular and intracellular 5-HT. Furthermore, the signals
generated by 5-HT interactions with leukocytes are distinct
depending on function, developmental stage, and activation
status of the cell. This functional heterogeneity suggests that
the serotonergic system can precisely regulate a wide range of
immunomodulatory effects [81].

3.1. Catabolism and Anabolism of 5-HT. The essential amino
acid Tryptophan is utilized by many cell types and can be
converted into a wide range of chemically related prod-
ucts, among the best known are 5-HT and melatonin, but
also include kynurenines and kynurenamines (Figure 1). In
macrophages and T lymphocytes the indoleamine 2,3-dioxy-
genase (IDO1 & IDO2. EC: 1.13.11.52) [60, 82] enzymes help
degrade tryptophan to generate kynurenines and produce
kynurenamines from 5-HT or melatonin [83]. In general, all
of these compounds can modulate immune responses [1, 84–
86]. However, the mechanisms by which these molecules
exert an immunomodulating function are not completely
elucidated. Some observations suggest that kynurenines and
kynurenamines function in negative feedback loops to mod-
ulate 5-HT-mediated inflammation, other proinflammatory
molecules, and melatonin levels.

3.1.1. Anabolism. The synthesis of serotonin begins with the
essential amino acid, tryptophan, and follows two-enzy-
matic steps. First, a hydroxyl group is added by tryptophan
5-hydroxylase (TPH; EC: 1.14.16.4) to generate 5-hydroxy-
tryptophan. Mammals produce two TPH enzymes encoded
by two independent genes, TPH1 and TPH2. While TPH1 is
expressed in peripheral tissues, TPH2 is exclusively expressed
in the central nervous system [87–89]. After this hydroxy-
lation step, a carboxyl group is removed by an aromatic L-
amino acid decarboxylase (DDC; EC: 4.1.1.28) generating 5-
HT [90–92].

3.1.2. Catabolism. Within the immune system, four catabolic
pathways for the breakdown of 5-HT have been observed.
One pathway begins with the generation of melatonin from
5-HT through two enzymatic steps; first, 5-HT is acety-
lated by arylalkylamine N-Acetyltransferase (AANAT; EC:
2.3.1.87) generating N-acetyl 5-HT, which then acquires a
methyl group from N-acetylserotonin-O-methyltransferase
(ASMT; EC: 2.1.1.4; previously known as hydroxyndole-O-
methyltransferase, HIOMT) to become melatonin [93, 94].
Subsequently, the enzyme indoleamine 2,3-dioxygenase
(IDO1 & IDO2; EC: 1.13.11.52) can convert melatonin into
a cyclooxygenase (COX; EC: 1.14.99.1) inhibitor called
formyl-N-acetyl-5-methoxykynurenamine. Interestingly this
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Figure 1: Metabolic pathways associated with 5-HT. The metabolic pathways branching from the catabolism of tryptophan are shown.
Green and brown branches show kynurenine pathways from tryptophan. The dark blue branch displays the 5-HT generation pathway
while the red branch displays the melatonin generation pathway (solid line) and the melatonin catabolism pathway (dashed lines). The 5-
HT catabolism pathways are depicted in blue, purple, and cyan dotted lines. The most relevant compounds are circled with dotted lines
and underlined compounds have no demonstrated effects. An additional catabolic pathway marked in pink from 5-hydroxy-L-tryptophan
generates 5-hydroxy-kynurenine and 5-hidroxy-kynurenamine family compounds (paths C05648 andC05647), which have no demonstrated
biological effects. The compounds in these pathways are denoted by their “Kyoto Encyclopedia of Genes and Genomes” (KEGG) code
(http://www.genome.jp/kegg/). Enzymes with their classification codes (EC, http://www.chem.qmul.ac.uk/iubmb/enzyme/) and UNIPROT
gene names are shown in squares. The shading arrows show the most studied pathways.
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metabolite can function to block the synthesis of prostagl-
andins [95], yet other melatonin metabolites, including 5-
methoxyindole acetic acid and 6-hydroxymelatonin, have no
reported function [96].

A second catabolic pathway of 5-HT utilizes the enzyme
indoleamine 2,3-dioxygenase (IDO) and generates formyl-
5-hydroxykynurenamine. In a third pathway, 5-HT is trans-
formed into 5-hydroxyindoleacetic acid with monoamine
oxidase A/B (MAO-A o MAO-B; EC: 1.4.3.4) among other
enzymes. Interestingly, MAO-A expression, which is regu-
lated by the cytokines IL-4 and IL-3, has been identified
in human monocytes from peripheral blood [62]. A fourth
catabolic pathway generates N-methylserotonin from 5-HT
using the enzyme amine N-methyltransferase (INMT; EC
2.1.1.49) and may also be active in immune cells.

It is not thoroughly understood that the extent by which
the byproducts and metabolites generated during catabolism
may affect the immune system [1, 84]. The identification of
additional 5-HT metabolites in plasma, including serotonin-
O-sulfate [97] and 5-hydroxykynurenamine [98], suggests
that other catabolic pathways linked to specific biochemical
processes, such as activation and cell proliferation, may also
be associated with the modulation of the immune system.

One additional catabolic pathway related with the four
previously described utilizes the enzyme IDO to generate
kynurenines from tryptophan. This pathway is positively
regulated when immune cells become activated and begin
secreting IFN-𝛼, IFN-𝛽 e IFN-𝛾, TNF-𝛼, TGF-𝛽, IL-1𝛽, and
IL-2 [85, 99–101], which significantly consumes tryptophan
and limits its availability for 5-HT production. L-kynurenine,
3-hydroxy-L-Kynurenine, and 3-hydroxyanthranilic acid can
negatively modulate immune responses. Specifically, Vécsei
and coworkers noted the blockage of cell proliferation as well
as the potential induction of apoptosis in Th1 and NK cells
[85, 101–103].

It was recently proposed that 5-hydroxyindole thiazo-
lidine carboxylic acid, a 5-HT byproduct found in the
intestinal tissues and several brain regions of rats, is generated
from the condensation of 5-hydroxyindole acetaldehyde and
L-cysteine by a carbon-sulfur lyase (EC 4.4.1.). However,
evidence supporting this enzymatic condensation remains to
be confirmed. In addition the properties of this byproduct or
its potential influence over immunological cells remain to be
investigated [104].

3.2. 5-HT Receptors: (5HTR). 5-HT modulates many leuko-
cyte functions ranging from activation of the immune
response to memory cell generation. The effects mediated by
5-HT are dependent on the differential expression of sero-
tonergic components in leukocytes. For example, serotonin
receptors (5HTR) on immune cells influence cytokine prolif-
eration, delivery, migration, and cellular activation. Signaling
through the 5HTR affects chemoattraction in immature
mammalian dendritic cells (human and rodent) but not in
mature cells, which respond to 5-HT by secreting IL-6 [43].
In addition, 5HTR signaling influences naı̈ve T cell activation
in mice by activating 5HT

7
[40] and regulates lymphocyte B

cell proliferation through 5HT
1A [41].

3.2.1. 5HTR Are G Protein-Coupled Receptors (GPCR). The
5HTR belong to the GPCR family class A, also known as 7-
transmembrane domain (7TM) receptors. GPCR are classi-
fied into 6 classes according to a database from the Interna-
tional Union of Basic and Clinical Pharmacology (IUPHAR:
http://www.guidetopharmacology.org/) [105]. This system
includes classes A, B, and C, as well as the adhesion, Frizzled,
and other 7TM classes. Receptors for adenosine, adrenaline/
noradrenaline, 5HT

1
, 5HT

2
, 5HT

4
, 5HT

5
, 5HT

6
, and 5HT

7

all belong to GPCR class A. Furthermore, the 5HTRs are
comprised of 6 families and 13 subfamilies [106] with an
undetermined number of isoforms that may be produced by
alternative splicing. This receptor diversity suggests that a
great amount of functional variation may exist between the
5HTRs [107].

Signal transduction from 5HTR is similar to standard
GPCRs. G proteins form heterotrimeric complexes made of
the subunits G𝛼, G𝛽 andG𝛾; the complex is coupled to the C-
terminus of the transmembrane 5HTR. Different subtypes of
the G𝛼 proteins (G𝛼i/o, G𝛼s, or G𝛼q11) may generate different
transduction responses functioning either as activators or
inhibitors.When the 5-HT ligand binds its receptor to induce
signal transduction it elicits a conformational change in the
receptor to facilitate activity [81]. Signal transduction can be
carried out by the effector proteins G𝛼 or the heterodimer
G𝛽-G𝛾. While transduction mechanisms have been better
depicted for G𝛼, especially in cells of the nervous system
[108], recent work has been devoted to the role of G𝛼 andG𝛽-
G𝛾 in the immune system [109, 110].

In the last few years, a number of investigations have
demonstrated that GPCR are capable of assembling dimers
(homo and heterodimers) as well as oligomers. Receptors
5HT
1B and 5HT

1D can assembly into homodimers and
heterodimers when coexpressed in the same cell. Notably, the
receptors display roughly 77% sequence identity within the
7TM domain [111]. The 5HT

2C receptors form homodimers
within the cellular membrane [112–114] and it has been
proposed that signaling is initiatedwhen two 5-HTmolecules
bind the dimer [115]. However, activation a single subunit
within the 5HT

4
homodimer is sufficient to initiate G pro-

tein activation even though simultaneous activation of both
receptors doubles the activation efficiency of the pathway.
While it appears that 5HTR tend to form homodimers
rather than heterodimers, the latter possibility has not been
discarded [116].

Milligan and coworkers have postulated that the for-
mation of heterodimers could generate specificity between
5HTR and its substrates, which could be especially relevant
for the use and design of pharmacological agents [117].
Despite current knowledge suggesting that the 5-HT recep-
tors function as homodimers and maybe heterodimers, it
is possible that higher subunit organizations (e.g., trimers
and tetramers) could function under certain circumstances
[114, 118].

To better understand 5-HT cellular-mediated processes,
it will be necessary to characterize the quaternary structure
and stoichiometry of 5HTRduring oligomerization in regular
cellular processes. It will also be important to determine the
biochemical details of the quaternary transitional structure
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(quinary structure) of 5HTR to establish not only its func-
tional characteristics, but also the coupling and assemblywith
cytoskeleton proteins. Recently, the crystal structures of the
receptor-agonist complexes, 5HT

1B and 5HT
2B with ergo-

tamine and dihydroergotamina, respectively, were reported
and provided structural information to better understand
receptor-ligand interactions and agonist selectivity, which
could inform 5HTR-based drug design [119, 120].

3.2.2. The 5HT
3
Receptors Form a Cationic Channel. The

5HT
3
receptors are part of a cation-selective ion channel

Cys-loop superfamily and have been detected in T lym-
phocytes, monocytes [47], mature dendritic cells [43], and
mast cells [38]. The functional unit of 5HT

3
, a pentameric

ring, generates a central ion channel and can be composed
of two 5HT

3A and three 5HT
3B subunits [121, 122]. Each

subunit contains a large N-terminal domain with the 5-HT
binding site and four transmembrane domains connected
with intracellular and extracellular loops [123–125].The 5HT

3

receptors are regulated through protein modifications and
cytoskeletal rearrangements, dependent on protein kinases
(A and C) and F-actin, respectively [123, 126].

There are a number of 5HT
3
receptor variants that can

be expressed from the human genome. The genes encoding
5HT
3A and 5HT

3B are located on chromosome 11q23, and
those encoding 5HT

3C, 5HT
3D, and 5HT

3E are on chromo-
some 3q27. However, the total number of isoforms generated
from these genes by alternative splicing has yet to be deter-
mined [127–130]. Interestingly, the subunits 5HT

3C, 5HT
3D,

5HT
3E, and 5HT

3Ea are not sufficient to form functional
pentamers but can generate them with 5HT

3A and hence
modify 5-HT responses [131].

In the context of the central nervous system, 5HT3
receptors are associated with rapid activation and inhibition
responses in addition to fast cellular depolarization [49, 132].
The cellular depolarization response is unique to neurons,
as this has not been observed in immune cells. In neurons,
5HT
3
receptors modulate the delivery of neurotransmitters,

such as dopamine [133], whereas the same receptors elicit
the release of cytokines from immune cells. Human lymph
nodes preferentially express the 5HT

3A and 5HT
3E variants

[49]. In addition, 5HT
3A is expressed in naı̈ve and activated

B-lymphocytes [48], T lymphocytes, and human monocytes,
but expression has not been detected frommonocyte-derived
dendritic cells [47]. Inhibiting the 5HT

3
receptors with

antagonists, such as ondasetron and tropisentrol, disrupts
TNF-𝛼 and IL-1𝛽 production, suggesting that these receptors
may activate the p38/MAPK pathway [134, 135].

3.3. SERT: 5-HT Transporter. The serotonin transporter
SERT actively moves extracellular 5-HT across the plasma
membrane into the cell. The transporter is also known as
solute carrier family 6, member 4 (SLC6A4), and belongs
to a family of neurotransmitters with 12 transmembrane
domains. The function of SERT in platelets is critical for
maintaining adequate 5-HT concentrations in the circulatory
system [136]. To function, SERT depends on the transport of
Na+/Cl− ions, yet the coordinated mechanism of 5-HT and
ion transport remains to be elucidated.

The gene encoding SERT has 14 exons and is located on
chromosome 17q11.1-17q12. Two genetic polymorphisms in
the gene regulatory regionmodulate transcription generating
a complex mix of long and short variants [137]. The SERT
functional unit is a dimer but it has been suggested that
two SERT homodimers could assemble into a tetramer [138].
Other members of the protein family form heterodimers;
however, these may not be functional [139]. Therefore, SERT
homodimers are currently accepted as the biochemically
functional unit.

SERT dimer formation relies on several posttranslational
modifications. The SERT proteins are glycosylated, and then
sialic acid is inserted into each of two N-linked glycans.
In the absence of glycosylation, the functional activity of
SERT is reduced. Furthermore, the addition of sialic acid
molecules is important for dimer formation and the associ-
ation with myosin IIA (a kinase that anchors protein kinase
G, PKG) at the cytoskeleton. This association can regulate
SERT phosphorylation by the guanosine monophosphate-
dependent PKG [140].

A complex regulatory mechanism of SERT internaliza-
tion associated with the cytoskeleton has been described
in platelets and is referred to as serotonylation (see Box 1).
The process of serotonylation depends on the 5-HT gra-
dient between the extracelluar and intracellular space cre-
ated by SERT activity. The gradient mediates regulation
via cytoskeletal components, vimentin, 5HTR, SERT, small
GTPases, transglutaminases (TGases), and possibly p21 acti-
vated kinases (p21/PAK) [141]. Specifically, increased levels
of 5-HT activate SERT internalization through activation of
small GTPases by serotonylation (TGases covalently linking
the 5-HT to the small GTPases). Currently efforts are being
directed to the characterization of SERT internalization
mechanisms in leukocytes.

Box 1 (serotonylation: SERT, TGasas, and small GTPases).
Serotonylation is the process by which 5-HT is covalently
bound to a protein through a transamination reaction and
constitutes a mechanism for regulating signal transduction.
This process requires high intracellular levels of 5-HT and is
mediated by transglutaminases (TGases. EC: 2.3.2.13). Phys-
iological serotonylation has been demonstrated in platelets
and other cells [142, 143] but not in leukocytes. However,
serotonylation may be involved in specific leukocyte func-
tions required for chemotaxis or cytokine secretion [43,
45] because this modification regulates similar functions in
platelets and pancreatic beta cells.

Although many cytoplasmic proteins can be serotony-
lated, the effect of serotonylation on small GTPases dur-
ing platelet activation and aggregation is noteworthy [142].
Serotonylation induces constitutive RhoA activation and,
consequently, the cytoskeletal reorganization needed for
aggregation [144–147]. Increased intracellular Ca2+ and 5-HT
in platelets also activates Rab4-mediated exocytosis of alpha
granules by Ca2+-dependent TGase-mediated serotonylation
[142].

In pancreatic beta cells, Rab3a and Rab27a are serotony-
lated during insulin exocytosis [143]. In smooth muscle cells
TGase-2-mediated serotonylation of RhoA may be required
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for proliferation [148–150]. Furthermore, serotonylation of
RhoA not only constitutively activates it, but also increases
its rate of proteosomal degradation [148]. Since Rab27a
and Rab27b also participate in exocytosis from platelets
and endocrine cells [151–155], these processes may be also
susceptible to serotonylation.

Additionally, 5-HT induces vimentin filament reorienta-
tion around SERT [156]. Furthermore, serotonylation of Rab4
promotes interaction with the SERT C-terminal domain
regulating translocation [157]. Importantly, there are no
reports that specifically study serotonylation in leucocytes,
but available information suggests that it may regulate
cytoskeletal reorganization in these cells [43, 45]. Rab27a
is expressed in cytotoxic T cells and regulates the last step
of granular exocytosis [158, 159]. Rab27, RhoA, and Rab4
are also expressed in several cells of the immune system
[160–162]; therefore it is possible that serotonylation regulates
exocytosis or cytoskeletal reorganization during functions
such as MHC presentation.

3.4. 5-HT Storage and Exocytosis in Leukocytes. Three poten-
tial outcomes may take place following 5-HT internalization:
signaling may be activated by serotonylation, 5-HT may
undergo enzymatic transformation, or 5-HT may be stored
in specialized vesicles. The synthesis, storage, and transport
of 5-HT in the immune system aremore diverse and complex
than previously reported, and a seminal review of the subject
was recently published by Ahern in 2011 [163].

Storage of 5-HT in the immune system allows for its reuse
by exocytosis, which occurs in dendritic cells, peripheral
blood lymphocytes, and platelets. Within these cells, the
vesicular monoamine transporter (VMAT) is responsible for
storing 5-HT inside dense granules [164].The 5-HT transport
and storage/exocytosis pathways in platelets are coupled to
the serotonylation signaling pathway, which assesses 5-HT
concentrations and dictates its fate [165]. LAMP1 containing
vesicles in monocyte-derived dendritic cells from mice also
store 5-HT, and upon ATP stimulation (Ca2+ influx), these
cells secrete 5-HT and cytokines [58]. A major focus of cur-
rent endeavors is the investigation of several 5-HT mediated
processes in other types of leukocytes, including 5-HT vesicle
storage, small GTPases-mediated serotonylation, cytoskeletal
associations, and the metabolism of 5-HT into derivatives,
such as melatonin and kynurenins.

4. The Effects of 5-HT on Leukocytes

Innate and adaptive immune responses rely on a diverse set of
cell types from lymphoid linage (T cells, B cells, andNK cells),
myeloid linage (neutrophils, eosinophils, basophils, mono-
cytes, and mast cells), or myeloid/lymphoid linage (dendritic
cells) origins. Professional antigen presenting cells (APC),
such as dendritic cells and macrophages, link the innate
and adaptive immune responses by recognizing, processing,
and presenting antigens on MHC-II. Antigen presentation
activates näıve T cells initiating clonal proliferation and
generating the immune memory, which is essential for the
adaptive phase of an immune response.

The local concentration of 5-HT can modulate a number
of events during these immune responses [10]. One reason
immune cells respond to 5-HT is that, as mentioned previ-
ously, they constitutively express the molecular machinery
that constitutes the serotonergic system.

4.1. Neutrophils. Neutrophils, the most abundant innate
immune cells in humanblood, constitute a first line of defense
against infection by recognizing foreign antigens, produc-
ing antimicrobial compounds, and secreting cytokines and
chemokines to recruit immunocompetent cells [166]. Mouse
models have demonstrated that neutrophil recruitment to
sites of acute inflammation requires platelet-derived chemo-
tactic stimuli, such as 5-HT, PAF (platelet-activation factor),
and histamine [167, 168].

4.2. Monocytes/Macrophages. Macrophages as well as their
precursors, circulating monocytes, participate in immune
responses during pathogen infection. Monocytes can be
divided in two subsets: those that express CD14, a component
of the lipopolysaccharide (LPS) receptor complex, and those
that express CD16, the Fc𝛾RIII immunoglobulin receptor
[169, 170]. CD14+ cells, which constitute 80–90% of the
circulating monocytes, express 5HT

1E, 5HT
2A, 5HT

3
, 5HT

4
,

and 5HT
7
mRNAs [42]. LPS stimulation does not affect

5HTR expression suggesting that the receptors constitutively
regulate cell functions.

The addition of 5-HT tomonocytes induces phagocytosis
of opsonized goat erythrocytes [171]. However, 5-HT has
been noted to elicit a number of responses in CD14+ cells
isolated from peripheral blood of healthy subjects [42]: (i) 5-
HT signaling decreases TNF-𝛼 secretion in a dose-dependent
manner; (ii) 5-HT signaling enhances LPS-induced secretion
IL-12p40 from activatedmonocytes, which acts as a chemoat-
tractant for macrophages and promotes the migration of
bacterially stimulated dendritic cells; and (iii) 5-HT signaling
enhances LPS-induced secretion of IL-6, IL-1𝛽, IL-8/CXCL8.
The first two effects are mediated by the 5HT

4
and 5HT

7

receptors, whereas the third effect requires 5HT
3
, 5HT

4
, or

5HT
7
.

Macrophages also respond to 5-HT although reports
conflict as to whether the response is inhibitory or stimu-
latory and the mechanisms involved have yet to be clearly
described. For example, combined stimulation with 5-HT
and muramyl peptides induces superoxide secretion by
peritoneal macrophages [172]. Bovine alveolar macrophages
release chemotactic factors for neutrophils and monocytes
in response to 5-HT and histamine [173]. Similarly, murine
macrophages detect 5-HT with the 5HT

2C receptor to induce
the secretion of CCL2, which induces monocyte migration
[174]. In peritoneal murine macrophages 5-HT induces
phagocytosis in a dose-dependent manner through 5HT

1A
and NF𝜅-B activation [175].

On the other hand, 5-HT is also reported to function as
negative regulator. For example, 5-HT

2
signaling limited the

activation of murine macrophages stimulated in vitro with
high concentrations of IFN-𝛾 [176]. Furthermore, human
alveolarmacrophages stimulatedwith LPS and 5-HT secreted
less TNF-𝛼 and IL-12, but more IL-10, nitric oxide, and
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prostangladin-E2. However, the receptors mediating these
effects have yet to be described [177].

The differentmacrophage responses elicited by 5-HTmay
be due to phenotypic differences in tissue-specific macro-
phages (i.e., changes in the proportion of 5-HT receptors)
or the effect of cooperative signaling with other molecules
[178]. Finally, macrophages can rapidlymetabolize 5-HT to 5-
hydroxyindole acetic acid [179], a biotransformation pathway
thatmay bemediated byMAO-A/B, ALDH/AOX andASMT,
which could affect serotonergic responses in these cells.

4.3. Dendritic Cells (DCs). DCs play a crucial role in the
immune response to infectious pathogens. In humans, cir-
culating DCs characteristically expresses high levels of class
II HLA molecules and are proficient in antigen uptake and
processing. However, they express low levels of HLA class I
and costimulatory molecules, such as CD80 and CD86, and
lack common lineage markers such as CD3, CD14, CD16,
CD19, CD20, and CD56. DCs are positioned between the
adaptive and innate immune systems: detecting microbial
infection, tissue damage, and inflammatory signals to pro-
mote the activation of antigen-specific responses [180–182].

Peripheral bloodmonocytes can differentiate intomacro-
phages or DCs depending on environmental stimuli. Cul-
turing cells with IL-4 and granulocyte-macrophage colony-
stimulating factor (GM-CSF) induces humanmonocytes and
murine myeloid progenitors to differentiate into monocyte-
derived dendritic cells (MDDCs) and bonemarrow dendritic
cells (BMDCs), respectively. These cells, frequently used as
models for dendritic cell biology [50, 58, 183], are sensitive to
LPS and 5-HT (Table 2).

When 5-HT is added during IL-4/GM-CSF differenti-
ation, the resulting MDDCs display lower levels of CD1a,
CD86, and HLA-DR but had increased CD14 expression.
However, other markers such as CD40, CD80, or CD83
were unaffected. Murine BMDCs can be matured by LPS
stimulation to generate cells with characteristics of DCs
[184]. Although immature (CD11c+CD86−) and mature
(CD11c+CD86+) BMDCs constitutively express SERT, matu-
ration induced by LPS increases SERT expression and, conse-
quently, mature BMDCs have an increased capability for
intake, storage, and exocytosis of 5-HT [58]. BMDC matu-
ration also reduces the expression of enzymes involved in the
metabolism of 5-HT, such as MAO-A and -B. Furthermore,
immature and mature dendritic-like cells respond differ-
ently to 5-HT [50]. In mature MDDCs, the 5HT

3
receptor

contributes to changes in intracellular Ca2+ concentration
required for the secretion of IL-8 and IL-1𝛽 [2]. On the other
hand, 5-HT inhibits CXCL10 secretion from mature MDDC,
but CCL22 secretion is not affected [43].

Additionally, 5-HT can regulate MDDC functional
responses. Costimulation with 5-HT and LPS induces imma-
ture MDDCs migration in a 5HT

1B and 5HT
2A-dependent

manner. However, if 5-HT is added subsequent to LPS-
mediated maturation, migration is unaffected but cytokine
and chemokine secretion is induced [43]. Additional in vitro
experiments with MDDCs and BMDCs have also demon-
strated that 5-HT activates the secretion of pro-inflammatory
cytokines [2, 185].

Table 2: The effect of 5-HT on MDDC cytokine production.

Cytokine secretion 5-HT receptors involved References

↑ IL-6 5HT3, 5HT4 and 5HT7
Müller et al.,
2009 [43]

↓ IL-12p70 5HT4 and 5HT7
Müller et al.,
2009 [43]

↑ IL-10 5HT4 and 5HT7
Müller et al.,
2009 [43]

↑ IL-8, IL-1𝛽
↓ IL-12, TNF-𝛼

5HT3, 5HT4
(G𝛼s-coupled), and

5HTR7 (G𝛼s-coupled)

Idzko et al.,
2004 [2]

One key DC function is the activation of T cells and 5-HT
can also regulate this fundamental immunological process.
Since dendritic-like cells do not express TPH1, it is unlikely
that they can synthetize 5-HT. Therefore, O’Connell and
coworkers postulated that SERT-expressing DCs are able to
internalize 5-HT from the microenvironment [58]. When
interacting with T cells, MDDCs transiently release Ca2+,
which promotes cytokine and 5-HT secretion from LAMP1+
vesicles [186]. Thus, DCs may internalize and store 5-HT
to release into the immunological synapse during T cell
activation [58]. Activated T cells express TPH1 [58] and
therefore, can synthetize 5-HT. The synthesis of 5-HT in
activated T cells is related to tryptophanmetabolism [40] and
may also be important when T cells interact with target cells
[43].

Taken together, 5-HT affects DC differentiation and
maturation as well as the profile and function of soluble
mediators these cells express. Thus, 5-HT may participate
in the generation of a specific subset of DCs with unique
immunomodulatory properties [50].

4.4. T Cells. Differentiation, proliferation, and the functional
responses of T cells can each be modulated by the sero-
tonergic system. Based on experiments using the cell line
K562, 5-HT participates in T cell maturation in lymphoid
organs in a Na+-coupled, 5-HT active transport-dependent
manner (presumably SERT), which requires intracellular
Ca2+ changes [187].

Based on the effects of 5-HT receptor-specific agonists or
antagonists, T cell proliferation and secretion of proinflam-
matory cytokines, such as IL-2 and IFN-𝛾, requires activation
of 5HT

1A but not 5HT
1C [37]. Näıve T cells primarily express

5HT
7
and low levels of TPH1, but they do not express

5HT
1B or SERT. After 5-HT stimulation, the ERK-1,-2/NF-

𝜅B pathway is activated in proliferating T cells, and they
express 5HT

1B, 5HT
7
, 5HT

2A, and TPH1 [40]. In activated
human CD4+ T cells, 5-HT or 5HT

3
specific agonists impair

migration towards CXCL12 gradients, but not to those of
CCL2 or CCL5, which control T cell migration into tissues.
However, immature murine CD4+ T cells do not express
5HT
3
, and 5-HTdoes not affect cellmigration. But, activation

of these cells induces the expression of 5HT
3A [46] suggesting

they may respond to 5-HT once activated.
Therefore, the T cell activation state and environment

may influence the effects of 5-HT. For example, 5-HT inhibits
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phytohemagglutinin- (PHA-) mediated lymphocyte prolifer-
ation, possibly through reduced expression and distribution
of the IL-2 receptor [188, 189]. In addition, concanavalin A
(ConA) and low concentrations of 5-HT increased murine
T cell proliferation although the activation of CD4+ and
CD8+ subsets was reduced [190, 191]. This demonstrates
that 5-HT elicited effects are concentration dependent and
suggests: (i) 5-HT induces dose-dependent phenotypes, (ii)
differentiation may be achieved by receptors with different
5-HT affinity, and (iii) local 5-HT concentrations are tightly
regulated to induce specific effects.

T cells express SERT and, therefore, can acquire 5-HT
[51, 52, 192, 193]. However, näıve T cells have reduced SERT
functional activity [164] and may result to 5-HT synthesis.
In agreement with this hypothesis, a report from Aune and
coworkers demonstrates that the inhibition of the 5-HT syn-
thesis in IL-2-stimulated T cells blocks cell proliferation. The
addition of 5-hydroxtriptophan, a 5-HT precursor, restores
proliferation, further suggesting that these cells synthesize
the molecule rather than acquire it [37]. However, further
research is required to understand how 5-HT synthesis is
regulated in T cells.

4.5. B Cells. B cells recognize circulating antigen; as a con-
sequence, they activate processes that end in the generation
of memory B cells or antibody-forming plasma cells [194]. 5-
HT increases the proliferation of murine B cells by activating
5HT
1A [41]. In addition, SERT expression is proportional to

the proliferation rates of human leukemic B cells. Specifically,
SERT-specific inhibitors, such as fluoxetine, fenfluramine,
or 3,4-methylenedioxymethamphetamine (MDMA), elicited
anti-proliferative and pro-apoptotic effects [195].

4.6. NK Cells. NK cells recognize antigen in the context
of CD1 controlling viral replication early in infection and
inhibiting the development of cancer [196, 197]. These cells
are inhibited with oxidation produced by autologous mono-
cytes and with apoptosis induced by reactive oxygen species
(ROS); however, 5-HT signaling limits these forms of inhibi-
tion [198]. NK cells express 5-HT

1A and therefore can sense
5-HT local concentration [199–202]. In fact, 5HT

1A-specific
antagonists, such as pindobind, exacerbate the inhibitory
effect of monocyte-mediated ROS production on NK cells
[202].

4.7. Eosinophils. Eosinophils are responsible for fightingmul-
ticellular parasites and other infections in vertebrates; they
also control mechanisms associated with allergy and asthma.
Eosinophils express the 5-HT receptors 5HT

1A, 5HT
1B,

5HT
1E, 5HT

2A, and 5HT
6
, but they do not express 5HT

2C,
5HT
3
, 5HT

4
, and 5HT

7
. However, differential expression of

5HT
2A was detected in allergy and asthma patients [39].
The serum levels of 5-HT are higher in symptomatic

asthma patients in comparison to asymptomatic patients,
which may influence eosinophil-mediated inflammation in
patients with active disease. 5-HT is a potent chemoattractant
for eosinophils both in vivo and in vitro and supports rolling,
an important feature of these cells. Antagonists of 5HT

2A
inhibit both effects suggesting that 5-HTmediates eosinophil

activation [45]. Migration and rolling require changes in the
actin cytoskeleton and activation of PKC and calmodulin
signaling [39, 45], which control the morphological changes
required for eosinophil infiltration from circulation to sits of
inflammation [39].

4.8. Basophils. While basophils represent less than 2% of
leukocytes, they actively participate in immune responses in
peripheral organs where they are recruited during nematode
and ectoparasite infections. They also participate in allergic
reactions by releasing histamine in response to specific
growth factors, such as IL-3 [203, 204]. In addition, basophils
are an important source of IL-4 and therefore may promote
Th2 differentiation [205, 206].

The role of 5-HT on basophil functions has not been
clarified. Murine basophil exposure to 5-HT inhibits IL-4
secretion in a dose-dependent manner both in vitro and in
vivo [204]. 5-HT also blocks the release of histamine, IL-4,
and IL-6 from murine basophils following IL-3 stimulation
as well as blocking the release of IL-13 and IL-4 from human
peripheral blood basophils [204]. Intraperitoneal adminis-
tration of IL-33 to mice normally increases the serum levels
of IL-4, but is blocked by the administration of 5-HT [204].
Although murine basophils express SERT, drugs targeting
the transporter, such as fluoxetine or citalopram (Selective
SerotoninReuptake Inhibitor, SSRI), do not block the effect of
5-HT on cytokine release suggesting that other transporters
may be used, such as the organic cation transporter 3 [204].

4.9. Mast Cells. Human mast cells play a local regulatory
role at the site of inflammation. Human mast cells express
5HT
1A, 5HT

1B, 5HT
1E, 5HT

2A, 5HT
2B, 5HT

2C, 5HT
3
, 5HT

4
,

and 5HT
7
. Cell migration and fibronectin adhesion are both

influenced by the addition of 5-HT to these cells. Although
5HT
2A is the predominant receptor, responses are primarily

mediated through 5HT
1A and can be blocked by the G-

protein inhibitor pertussis toxin [38].

4.10. Platelets. Platelets are well known for initiating coagula-
tion and maintaining vascular tone; however, these cells also
participate in inflammatory responses by releasing histamine
and PAF. They provide a local source of biogenic amines,
including 5-HT, in damaged regions of the vasculature [207].
Platelets uptake 5-HT fromplasma in a fast and saturable pro-
cess; therefore, they are also key regulators of the circulatory
5-HT concentration [164]. The local concentration of 5-HT
during platelet aggregation is approximately 100 𝜇M [208]. 5-
HT uptake is mediated by SERT, and once inside the cell it is
transported to dense granules byVMAT (VesicleMonoamine
Transporter) or hydrolyzed by MAO [136].

5-HT signaling activates Rab4, which controls alpha
granule secretion, and RhoA, which induces the cytoskeletal
reorganization required for adhesion and aggregation [144,
145, 209]. It is reported that Rab4 activation occurs by
serotonylation (see Box 1), and it is likely that RhoA is
similarly activated.

Increases in the serum levels of 5-HT enhance SERT
density on the platelet cell membrane [142, 148, 156, 157].
Some studies suggest that human platelets initiate murine
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Table 3: Pathology-associated serotonergic protein expression in immune cells.

Patology/condition 5-HT, SERT and 5HTR variation Reference

Major depression disorder
Human

↓ SERT in platelets
↓ 5-HT serum levels
↓ SERT in lymphocytes

Mössner et al., 2007 [63]
Fazzino et al., 2008 [64]
Lima and Urbina, 2002 [52]
Peña et al., 2005 [65]

Fibromyalgia
Human

↓ 5-HT serum levels
↓ SERT platelets Bazzichi et al., 2006 [66]

Schizophrenia
Human

↑ 5HT2A (polymorphism T102C) in lymphocytes
↑ 5HT3A (gene) in PMBC
↓ SERT (re-uptake) in lymphocytes

Williams et al., 1997 [67]
Abdolmaleky et al., 2004 [68]
Shariati et al., 2009 [69]
Marazziti et al., 2006 [70]

Asthma
Human ↑ 5-HT plasma levels Lechin et al., 1998 [71]

Alzheimer disease
Human

↑ 5HT2C in NK cells
↓ 5-HT serum levels Martins et al., 2012 [72]

Psoriasis
Human ↑ SERT of skin biopsies, dendritic cells Thorslund et al., 2013 [59]

Alcohol exposition 0.1% 24 h
Culture, dendritic cells

↑ SERT in dendritic cells
↓ 5-HT extracellular levels Babu et al., 2009 [73]

Arthritis
Cell culture

↑ 5HT2A mRNA in macrophage-like synovial cells
↑ 5HT3 mRNA in macrophage-like synovial cells Seidel et al., 2008 [74]

Mitogen activation with concanavalin
Rat lymphocyte ↑ 5HT7 mRNA Urbina et al., 2014 [75]

T cell activation by Fc𝜖RI-mediated contact sensitivity and
the release of 5-HT [207]. However, the functional role that
platelet-derived 5-HT plays in the immune system is still far
from being fully understood.

5. Changes to the Serotonergic System
Affect Immune Responses and Have
Clinical Implications

Immune cells respond to 5-HT with varying degrees of
sensitivity, which can be partially explained by differences in
the expression of serotonergic components. In this section,
we review how pathologies with reported alterations to the
serotonergic system affect the immune system (Table 2). We
also discuss the effects of SERT-targeting drugs, such as SSRIs,
as well as drugs that target 5-HT receptors (Table 3).

5.1. Diseases Associated with Systemically Low 5-HT Levels.
Major depressive disorder (MDD), Fibromyalgia, infections,
and Alzheimer’s disease commonly display reduced 5-HT
serum levels. The precise effects these changes have on the
immune system in each disease are poorly defined. However,
MDD provides a good example because serotonergic alter-
ations are directly related to the severity of disease.

5.1.1. Major Depressive Disorder (MDD). MDD is defined as a
pervasive and persistent low mood with a multi-factor cause.
Symptoms have degrees of severity that are associated with
changes in both CNS and peripheral 5-HT concentrations
[210]. In addition, MDD patients commonly have altered
cortisol and cytokine blood levels [210–212]. Lymphocytes

from MDD patients express lower levels of SERT in com-
parison with those from healthy volunteers without changes
in the intracellular concentration of 5-HT [52, 64]. There
are no changes in SERT expression in monocytes, but the
intracellular concentration of 5-HT in monocytes is higher
in MDD patients [64]. MDD patient lymphocytes display a
three-fold increase in LPS-stimulated proliferation, an effect
blocked by 5-HT

1
antagonists [213]. In addition, there are

more 5-HT
2A clusters on the lymphocytes of MDD patients,

whom are responsive to SSRI treatment [44].
When MDD patients are treated with SSRIs there are

changes in lymphocyte subpopulations and in systemic
inflammatory mediators (Table 4). Before treatment, MDD
patients have higher blood cortisol, IL-4, IL-13, and IL-10 than
healthy volunteers [210–212]. After 20 weeks of treatment,
concomitantly with a remission of the depressive episode
there are increases in IL-2 and IL-1𝛽 but no change in cortisol
levels. At week 52 of treatment there is a significant reduction
in cortisol levels with an increase in IL-1𝛽 and IFN-𝛾 and
a decrease in anti-inflammatory cytokines [211]. Regarding
lymphocyte subpopulations, before SSRI treatment MDD
patients had more NK cells compared to healthy volunteers
(312 ± 29 versus 158 ± 30; cells/mL), but no differences
were found in the T and B cell populations. After 20 weeks
of treatment, patients experienced a remission of depressive
episodes along with an increase in NK cell and B cell
populations, which remained heightened until the 52nd week
of treatment [214]. These findings in conjunction with the
fact that lymphocytes fromMDDpatients respond differently
than healthy subjects suggest that the general inflammatory
response and specific immune subsets are sensitive to sys-
temic levels of 5-HT and changes in those levels induced
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Table 4: Serotonergic drugs and their effects on the immune system.

Pathology/treatment Result Reference
HIV chronic infection/
SSRI (citolopram)
Human

↓Macrophage infectivity
↓ Viral replication in macrophages and T cells
↑ NK cell activity

Benton et al., 2010 [57]
Evans et al., 2008 [76]

HCV infection
IFN-𝛼 and SSRI (escitalopram)
Human

↓ Depression symptoms Schaefer et al., 2012 [77]

Tendinopathy and facial pain
5-HT3 antagonist (tropisetron)
Human

Analgesic effect Müller and Stratz, 2004
[78]

Infection with Leishmania donovani
SSRI (sertraline)
Balb/c mice

SSRI killed L. donovani promastigotes and intracellular
amastigotes Palit and Ali, 2008 [79]

CT26/luc colon carcinoma-bearing mice
Mirtazapine ↓ T cell infiltration in tumor Fang et al., 2012 [80]

by SSRIs. However, further studies are still required to fully
understand how components of the serotonergic system are
differentially expressed on immune cell subsets. This may
clarify the mechanisms involved in MDD progression and
highlight new therapeutic targets for its treatment.

5.1.2. Fibromyalgia. Fibromyalgia (FM) is a common chronic
pain syndrome that primarily affects the joints and muscles
and is generally associatedwith other somatic and psycholog-
ical symptoms, including fatigue, poor sleep, cognitive diffi-
culties, and stress [214]. FMpatients have central sensitization
and increasing glial cell activation, which, in turn, favors
pain signaling and activates the release of pro-inflammatory
cytokines, nitric oxide, prostaglandins, and ROS that sustain
the hyperexcitable state of the spinal cord [215–217].

Several neurotransmitters are involved in FM-associated
central sensitization. 5-HT

2
and 5-HT

3
are involved in pain

control, indicating a key participation of the serotonergic
system [218, 219]. Levels of 5-HT are low in the serum and
cerebrospinal fluid of FM patients and correlate with clinical
symptoms [66, 220–222]. FM patients also have increased B
cell and decreased NK cell counts [223]. The administration
of the 5-HT

3
antagonist tropisetron [224] or high doses

(45mg) of the SSRI fluoxetine [225] produce analgesic and/or
other beneficial effects in FM patients (Table 4), suggesting
that regulation of the serotonergic system can be useful.
However, to date it is not known whether the components of
the serotonergic system can be altered in the immune cells of
patients.

5.1.3. Infections. Immune responses to viruses, bacteria,
fungi, and parasites all require 5-HT. Human immunode-
ficiency virus (HIV) infection is a primary model for the
study of 5-HT during infection (Table 4). 5-HT controls HIV
replication in T4 lymphocytic cell lines [226] and modulates
NK cell activation in HIV-infected patients [76]. The virus
infects macrophages, which provide a reservoir of infection
[227]. 5-HT decreases the expression of the HIV coreceptor
CCR5 on infected macrophages and reduces proviral syn-
thesis 50% [228, 229]. These effects can also be achieved

with an agonist targeting 5-HT
1
but not with one of 5-

HT
2
[229]. Furthermore, SHIV-infected PBMCs fromRhesus

monkeys (Macaca mulatta) have 10 times less SERT mRNA
than uninfected controls [230]. The authors of this study
suggest that low SERT expression may be responsible for the
symptoms of depression found in HIV-patients. SSRI drugs
are cytotoxic to NK cells taken from HIV-infected patients
[76]. Similarly, SSRIs stimulate macrophage activity in vivo
and reduce HIV replication in macrophages and T cells
[57]. Interestingly, these effects were independent of patients’
psychological status indicating that mood changes are not
necessary for 5-HT to have an immunomodulatory effect.
These findings suggest that components of the serotonergic
system may be suitable therapeutic targets for the control of
HIV infection.

Patients infectedwith hepatitis C virus (HCV) and treated
with IFN-𝛾 have reduced levels of tryptophan and kynure-
nine [231], suggesting that 5-HT synthesis and systemic
concentrations may be reduced. Furthermore, HCV-infected
patients given SSRI therapy have lower viral replication rates
[232].Therefore, SSRIs and/or 5-HTR-targeting drugsmay be
beneficial for many viral infections.

There is also evidence that SSRIs have antibacterial (espe-
cially against gram-negative bacteria) [233, 234], antifungal
[235], and antiparasitic [79, 236] effects.The available reports
establish a direct cytotoxic effect of SSRIs on the pathogen
(Box 2). However, it will be interesting to characterize
whether immune cells contribute to infection control during
SSRI treatment.

Box 2 (selective serotonin reuptake inhibitors (SSRIs) have
antiparasitic and antifungal activity). Sertraline and fluox-
etina decrease in vitro cell viability of Aspergillus spp. and
Candida parapsilosis [235, 237, 238]. Sertraline is likely effec-
tive at controlling Leishmania donovani infection in a mouse
model by inhibition of parasite respiration [79]. Mianserine
decreases the motility of Schistosoma mansoni, the most
common species of schitosomes, and 5-HT receptors are
expressed in these helminthes at the larvae and adult stages
but are overexpressed once they enter NCS [236]. Together
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these results demonstrate that parasites and fungi express
SERT-like proteins indicating that they are likely sensitive to
SSRIs and systemic changes of 5-HT in the host. Further-
more, the serotonergic system in parasites and fungi may
constitute a pharmacological target for drug design. ABLAST
search using the human sequence of SERT (gen SLC6A4)
against the Aspergillus taxa (taxid: 5052) in the GeneBank
database identified seven conserved hypothetical proteins
assigned either as uncharacterized eukaryotic solute carrier
6 (EAU35443.1; XP 682235.1; CBF84552.1; XP 001215815.1;
EIT73756.1) or sodium/chloride dependent neurotransmitter
transporter (XP 001826855.1; XP 002385196.1).

5.1.4. Alzheimer’s Disease. Alzheimer’s disease is a neurode-
generative disorder and the primary cause of dementia in
elderly people [239]. 𝛽-amyloid deposits in senile plaques
and neuro-fibrillary tangles that affect brain cell function are
characteristic of the disease [240]. Symptoms of dementia
and depression, which are related to reduced levels of 5-HT,
are present in 50–90% of patients [241]. NK cells isolated
from patients with Alzheimer’s disease have a high density
of 5-HT

2C compared with cells from late onset depression
patients. However, there is no difference in the level of
5-HT
1A, 5-HT

2A, and 5-HT
2B receptors on PBMCs [72].

The abundant increase of 5-HT
2C on NK cells may be

a compensatory mechanism for reduced 5-HT availability.
Activation of 5-HT

2C inhibits NK cell activity, which may
partially explain why Alzheimer’s disease patients are more
susceptible to viral infections [72, 242].

SSRIs have been used to treat depression in Alzheimer’s
disease patients. In these patients, SSRIs stimulate cell sur-
vival mechanisms, cell adhesion, and lymphocyte activation
[243]. Similarly, in amurinemodel of the disease (hAPP/PS1),
chronic oral administration of a 5-HT

4
-selective agonist

(SSP-002392) reduced 𝛽-amyloid production and deposition
and improved mouse memory [244]. Given the complexity
of the cell population expressing 5-HT

4
in the brain, it is

difficult to speculate about a mechanism of action. However,
microglial cells may be involved because they express 5-
HT
4
and can phagocytose 𝛽-amyloid deposits, an activity

promoted by agonist [244].This indicates that 5-HT
4
agonists

induce immunomodulation in microglial cells. It remains
to be determined whether similarly activated immune cells
influence Alzheimer’s disease progression and symptoms.

5.2. Diseases with High Systemic Levels of 5-HT. From an
immunological point of view, the diseases in this group, such
as asthma, arthritis, and cancer, are the result of dysregulated
inflammatory responses. Therefore, the association of these
diseaseswith high circulating levels of 5-HT reinforces its role
as an immunomodulator.

5.2.1. Asthma. Asthma is a chronic inflammatory disease of
the lungs with consequent narrowing of the airways. 5-HT
levels are increased in asthma patients and SSRI treatment
improves clinical symptoms. In vitro, addition of 5-HT or 5-
HT
1
/5-HT

2
agonists to alveolar macrophages increases the

production of IL-10, nitric oxide, and PGE-2, but reduces

TNF-𝛼 and IL-12 production. Interestingly, receptor antag-
onists do not affect secreted-cytokine profiles [177]. Regard-
less, these results indicate that cytokine production is under
the control of 5-HT, and therefore, regulating its systemic
concentrations may be useful for asthma patients.

5.2.2. Rheumatoid Arthritis (RA). Rheumatoid arthritis is a
chronic disease that causes pain, stiffness, and swelling that
limits the motion and function of many joints. While RA
can affect any joint, smaller joints of the hands and feet are
most commonly involved. Inflammation can affect organs,
such as eyes and lungs, in addition to joints. The 5-HT con-
centrations in platelet-free blood are 1.6- to 2.3-fold higher
in RA patients than in healthy controls (reported average
serum concentrations were 1130 nmol/L versus 704 nmol/L,
resp.) [245]. This has led to proposals that 5-HT is involved
in the pathology, onset, and/or progression of the disease.
Treating patients with 5-HT

3
antagonists combined with

intra-articular glucocorticoids has analgesic effects [246].
While there have yet to be any reports on the responses of RA
patient immune cells to 5-HT, the role of serotonergic system
in arthritis or osteoarthritis has been studied in vitro and in
vivo. An osteoarthritis model using cultured synovial tissue
demonstrated that 5-HT stimulation increases the expression
of 5-HT

2A and 5-HT
3
as well as the release of PGE-2 into the

medium.The addition of receptor antagonists inhibits PGE-2
production [74], whichmay explain the beneficial effects seen
in arthritis patients given this treatment [74].

SSRIs can also affect arthritis development. Fluoxetine
and citalopram inhibit disease progression in a collagen-
induced mouse model of arthritis as well as in human RA
synovialmembranes cultures. In addition,macrophages from
RA patients display impaired TLR-3, -7, -8, and -9 signaling
after SSRI exposure [247]. Therefore the evaluation of SSRIs
in RA patients is of interest.

5.2.3. Cancer. While the role of serotonergic system in cancer
patients has not been largely studied, advanced stages of
breast cancer correlate with increased levels of systemic 5-
HT [248]. In mouse models of melanoma and lymphoma,
SSRI treatment reduced tumor growth by 50%, inhibited IL-
10 and IFN-𝛾 production, and increased IL-1𝛽 production
[249]. Similarly, exposing a Burkitt’s lymphoma cell line
to different SSRIs (fluoxetine, paroxetine, or citalopram)
decreased DNA synthesis and induced cell death [250].
Although further studies are required, these results suggest
that the serotonergic system can impact cancer cells directly
or indirectly through immune cell activation.

6. Conclusions

Given the importance of 5-HT as a neurotransmitter, studies
of the serotonergic system have primarily been limited to
the CNS. Recently, however, a large amount of experimental
evidence indicates that the serotonergic systemhas important
physiological roles in the immune, vascular, and digestive
systems. In this review we discussed the immunomodulatory
effects that 5-HT can induce by activating 5HTR and SERT,
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which are differentially expressed on many leukocytes. These
effects can be variable depending on cellular phenotype. For
example, 5-HT induces dose-dependent cytoskeletal reorga-
nization and diapedesis during chemotaxis as well as granule
secretion in granulocytes and myeloid cells. In comparison
to these non-transcriptional responses, 5-HT regulates cell
proliferation and cytokine production at the transcriptional
level in leukocytes.

The human serotonergic system is complex and com-
prised of many elements. It includes 18 genes, including
5HTRs and one SERT, several of which have multiple iso-
forms (creating at least 10 additional proteins). Furthermore,
the receptor signaling-transduction system that regulates 5-
HT responses involves a large number of genes [251, 252]
providing several points of regulation depending on cellular
phenotype. In conclusion, cells of the immune system express
transduction machinery that does not necessarily overlap
with that in the CNS. This allows for differential responses
to the same 5-HT ligand within the immune and nervous
systems.

The information presented here is based on existing
reports, but wemust consider thatmany early studies of 5-HT
receptors used primarily pharmacologic approaches and the
results are sometimes not supported by more recent genetic
approaches. For example, although early studies suggest role
of SERT in T cells, genetic studies suggest that T cells express
DAT (dopamine but also low affinity 5-HT transporter) [253,
254]. Although the effects of 5-HT on the immune system
requires further characterization, it is logical to anticipate
altered immune responses in patients with dysregulated sero-
tonergic systems. For these patients, experimental evidence
suggests that SSRI or 5HTRantagonist treatmentmay provide
beneficial immunomodulatory effects.
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[11] R. Mössner and K.-P. Lesch, “Role of serotonin in the immune
system and in neuroimmune interactions,” Brain, Behavior, and
Immunity, vol. 12, no. 4, pp. 249–271, 1998.

[12] T. C. Janeway, H. B. Richardson, and E. A. Park, “Experiments
on the vasoconstrictor action of blood serum,” Archives of
Internal Medicine, vol. 21, no. 5, pp. 565–603, 1918.

[13] M. Vialli and V. Erspamer, “Ricerche sul secreto delle cellule
enterocromaffini. IX Intorno alla natura chimica della sostanza
specifica,” Bollettino della Societa Medico-Chirurgica di Pavia,
vol. 51, pp. 1111–1116, 1937.

[14] M.M. Rapport, A. A. Green, and I. H. Page, “Partial purification
of the vasoconstrictor in beef serum,” The Journal of Biological
Chemistry, vol. 174, no. 2, pp. 735–741, 1948.

[15] M. M. Rapport, A. A. Green, and I. H. Page, “Serum vasocon-
strictor, serotonin; isolation and characterization,” The Journal
of Biological Chemistry, vol. 176, no. 3, pp. 1243–1251, 1948.



14 Journal of Immunology Research

[16] M. M. Rapport, A. A. Green, and I. H. Page, “Crystalline
serotonin,” Science, vol. 108, no. 2804, pp. 329–330, 1948.

[17] M. M. Rapport, “Serum vasoconstrictor (serotonin) the pres-
ence of creatinine in the complex; a proposed structure of the
vasoconstrictor principle,” The Journal of Biological Chemistry,
vol. 180, no. 3, pp. 961–969, 1949.

[18] K. E. Hamlin and F. E. Fischer, “The synthesis of 5-
hydroxytryptamine,” Journal ofThe American Chemical Society,
vol. 73, no. 10, pp. 5007–5008, 1951.

[19] G. Reid and M. Rand, “Pharmacological actions of synthetic
5-hydroxytryptamine (serotonin, thrombocytin),” Nature, vol.
169, no. 4306, pp. 801–802, 1952.

[20] V. Erspamer and B. Asero, “Identification of enteramine, the
specific hormone of the enterochromaffin cell system, as 5-
hydroxytryptamine,” Nature, vol. 169, no. 4306, pp. 800–801,
1952.

[21] B. M. Twarog and I. H. Page, “Serotonin content of some mam-
malian tissues and urine and a method for its determination,”
The American Journal of Physiology, vol. 175, no. 1, pp. 157–161,
1953.

[22] W. G. Dewhurst, “Amines and abnormal mood,” Proceedings of
the Royal Society of Medicine, vol. 62, no. 11, pp. 1102–1107, 1969.

[23] T. Canli and K.-P. Lesch, “Long story short: the serotonin
transporter in emotion regulation and social cognition,”Nature
Neuroscience, vol. 10, no. 9, pp. 1103–1109, 2007.

[24] L. Passamonti, M. J. Crockett, A. M. Apergis-Schoute et al.,
“Effects of acute tryptophan depletion on prefrontal-amygdala
connectivity while viewing facial signals of aggression,” Biolog-
ical Psychiatry, vol. 71, no. 1, pp. 36–43, 2012.

[25] J. M. Monti, “Serotonin control of sleep-wake behavior,” Sleep
Medicine Reviews, vol. 15, no. 4, pp. 269–281, 2011.

[26] J. E. Blundell, “Serotonin and appetite,” Neuropharmacology,
vol. 23, no. 12, pp. 1537–1551, 1984.

[27] L. Bardin, “The complex role of serotonin and 5-HT receptors
in chronic pain,” Behavioural Pharmacology, vol. 22, no. 5-6, pp.
390–404, 2011.

[28] P. Ducy, “5-HT and bone biology,” Current Opinion in Pharma-
cology, vol. 11, no. 1, pp. 34–38, 2011.

[29] G. Karsenty and V. K. Yadav, “Regulation of bone mass by
serotonin: molecular biology and therapeutic implications,”
Annual Review of Medicine, vol. 62, pp. 323–331, 2011.

[30] N. Li, N. H. Wallén, M. Ladjevardi, and P. Hjemdahl, “Effects
of serotonin on platelet activation in whole blood,” Blood
Coagulation and Fibrinolysis, vol. 8, no. 8, pp. 517–523, 1997.

[31] M. Lesurtel, C. Soll, R. Graf, and P.-A. Clavien, “Role of
serotonin in the hepato-gastroIntestinal tract: an old molecule
for new perspectives,” Cellular and Molecular Life Sciences, vol.
65, no. 6, pp. 940–952, 2008.

[32] M. R. Irwin and A. H. Miller, “Depressive disorders and
immunity: 20 years of progress and discovery,” Brain, Behavior,
and Immunity, vol. 21, no. 4, pp. 374–383, 2007.

[33] M. Masana, N. Santana, F. Artigas, and A. Bortolozzi, “Dopam-
ine neurotransmission and atypical antipsychotics in prefrontal
cortex: a critical review,” Current Topics inMedicinal Chemistry,
vol. 12, no. 21, pp. 2357–2374, 2012.

[34] S. Tanahashi, S. Yamamura, M. Nakagawa, E. Motomura, and
M. Okada, “Dopamine D2 and serotonin 5-HT1A receptors
mediate the actions of aripiprazole inmesocortical andmesoac-
cumbens transmission,” Neuropharmacology, vol. 62, no. 2, pp.
765–774, 2012.

[35] M. Abdouh, J. M. Storring, M. Riad et al., “Transcriptional
mechanisms for induction of 5-HT

1𝐴
receptor mRNA and

protein in activated B and T lymphocytes,” The Journal of
Biological Chemistry, vol. 276, no. 6, pp. 4382–4388, 2001.

[36] M. Abdouh, P. R. Albert, E. Drobetsky, J. G. Filep, and E.
Kouassi, “5-HT1A-mediated promotion of mitogen-activated T
and B cell survival and proliferation is associated with increased
translocation of NF-kappaB to the nucleus,” Brain, Behavior,
and Immunity, vol. 18, no. 1, pp. 24–34, 2004.

[37] T. M. Aune, H. W. Golden, and K. M. McGrath, “Inhibitors of
serotonin synthesis and antagonists of serotonin 1A receptors
inhibit T lymphocyte function in vitro and cell-mediated
immunity in vivo,” Journal of Immunology, vol. 153, no. 2, pp.
489–498, 1994.

[38] N. M. Kushnir-Sukhov, A. M. Gilfillan, J. W. Coleman et al., “5-
hydroxytryptamine induces mast cell adhesion and migration,”
The Journal of Immunology, vol. 177, no. 9, pp. 6422–6432, 2006.

[39] B. N. Kang, S. G. Ha, N. S. Bahaie et al., “Regulation of
serotonin-induced trafficking and migration of eosinophils,”
PLoS ONE, vol. 8, no. 1, Article ID e54840, 2013.

[40] M. León-Ponte, G. P. Ahern, and P. J. O’Connell, “Serotonin
provides an accessory signal to enhance T-cell activation by
signaling through the 5-HT7 receptor,” Blood, vol. 109, no. 8, pp.
3139–3146, 2007.

[41] K. Iken, S. Chheng, A. Fargin, A.-C. Goulet, and E. Kouassi,
“Serotonin upregulates mitogen-stimulated B lymphocyte pro-
liferation through 5-HT1A receptors,”Cellular Immunology, vol.
163, no. 1, pp. 1–9, 1995.

[42] T. Dürk, E. Panther, T. Müller et al., “5-hydroxytryptamine
modulates cytokine and chemokine production in LPS-primed
humanmonocytes via stimulation of different 5-HTR subtypes,”
International Immunology, vol. 17, no. 5, pp. 599–606, 2005.

[43] T. Müller, T. Dürk, B. Blumenthal et al., “5-hydroxytryptamine
modulates migration, cytokine and chemokine release and T-
cell priming capacity of dendritic cells in vitro and in vivo,”PLoS
ONE, vol. 4, no. 7, Article ID e6453, 2009.

[44] T. Rivera-Baltanas, J. M. Olivares, J. R. Martinez-Villamarin, E.
Y. Fenton, L. E. Kalynchuk, and H. J. Caruncho, “Serotonin 2A
receptor clustering in peripheral lymphocytes is altered inmajor
depression and may be a biomarker of therapeutic efficacy,”
Journal of Affective Disorders, vol. 163, pp. 47–55, 2014.

[45] S. A. Boehme, F.M. Lio, L. Sikora et al., “Cutting edge: Serotonin
is a chemotactic factor for eosinophils and functions additively
with eotaxin,” Journal of Immunology, vol. 173, no. 6, pp. 3599–
3603, 2004.
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F. A. Jiménez-Orozco, M. A. Velasco-Velázquez, and M. J.
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of selective serotonin reuptake inhibitors and immunomod-
ulator on cytokines levels: an alternative therapy for patients
with major depressive disorder,” Clinical and Developmental
Immunology, vol. 2013, Article ID 267871, 11 pages, 2013.
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et des Maladies Ostéo-Articulaires, vol. 57, no. 1, pp. 21–23, 1990.

[223] L. S. C. Carvalho, H. Correa, G. C. Silva et al., “May genetic fac-
tors in fibromyalgia help to identify patients with differentially
altered frequencies of immune cells?” Clinical & Experimental
Immunology, vol. 154, no. 3, pp. 346–352, 2008.
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