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Abstract

Angiogenesis in tumors is driven by multiple growth factors that activate receptor tyrosine 

kinases. An important driving force of angiogenesis in solid tumors is signaling through vascular 

endothelial growth factor (VEGF) and its receptors (VEGFRs). Angiogenesis inhibitors that target 

this signaling pathway are now in widespread use for the treatment of cancer. However, when 

used alone, inhibitors of VEGF/VEGFR signaling do not destroy all blood vessels in tumors and 

do not slow the growth of most human cancers. VEGF/VEGFR signaling inhibitors are, therefore, 

used in combination with chemotherapeutic agents or radiation therapy. Additional targets for 

inhibiting angiogenesis would be useful for more efficacious treatment of cancer. One promising 

target is the signaling pathway of hepatocyte growth factor (HGF) and its receptor (HGFR, also 

known as c-Met), which plays important roles in angiogenesis and tumor growth. Inhibitors of this 

signaling pathway have been shown to inhibit angiogenesis in multiple in vitro and in vivo models. 

The HGF/c-Met signaling pathway is now recognized as a promising target in cancer by inhibiting 

angiogenesis, tumor growth, invasion, and metastasis.
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INTRODUCTION

Angiogenesis, the formation of new blood vessels from the existing vasculature, contributes 

to many diseases, including cancer, age-related macular degeneration, diabetic retinopathy, 

neovascular glaucoma, psoriasis, and rheumatoid arthritis (1, 2). In solid tumors, 

angiogenesis is driven by multiple growth factors that act on via receptor tyrosine kinases (1, 

2). An important driving force of angiogenesis in solid tumors is the signaling pathway of 

vascular endothelial growth factor (VEGF) and its receptors (VEGFRs) (2).

Several angiogenesis inhibitors that target the VEGF/VEGFR signaling pathway have been 

approved by the FDA (Food and Drug Administration) and are now used for the treatment of 

cancer patients (3–6). The first approved inhibitor of this signaling pathway is bevacizumab 
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(Avastin, from Genentech), which is a monoclonal antibody against human VEGF (3). The 

other inhibitors are sunitinib (SU11248, from Pfizer) (4, 5) and sorafenib (BAY 43-9006, 

from Bayer) (6), which are small molecule compounds that inhibit phosphorylation of 

VEGFR and certain other receptor tyrosine kinases.

VEGF/VEGFR signaling inhibitors can block VEGF-driven angiogenesis in tumor models 

in mice (7, 8). These inhibitors cause regression of tumor vessels that depend on VEGF as a 

survival factor. However, tumor vessels that do not regress after VEGF signaling inhibition 

tend to become more normal (“normalization”) (8–11). Moreover, VEGF signaling 

inhibitors alone do not destroy all blood vessels in tumors (12). Therefore, additional targets 

of angiogenesis are being sought to augment the effects of VEGF inhibitors (13).

One promising target is the signaling pathway of hepatocyte growth factor (HGF, also 

known as scatter factor, SF) along with its receptor (HGFR, also known as c-Met). HGF, a 

potent mitogenic, motogenic and morphogenic factor that also plays an important role in 

angiogenesis and tumor growth (14–16). HGF and VEGF act synergistically on endothelial 

cells (16–19). HGF and c-Met are upregulated in many human cancers (20–22). Activation 

or upregulation of c-Met is a negative prognostic indicator in patients with various 

carcinomas, multiple myeloma, or glioma (23–26). For these reasons, various inhibitors of 

HGF/c-Met signaling pathway are being studied and developed as additional potent 

therapies to inhibit angiogenesis and tumor growth.

Molecular structure of HGF and c-Met

HGF is a multifunctional growth factor (20–22). It is produced as a single-chain inactive 

precursor protein (27, 28) (Fig. 1A). Mature active HGF is a heterodimer composed of an 

alpha- chain subunit (69 kDa) and a beta-chain subunit (34 kDa), which are linked by a 

disulfide bond (27, 29). The alpha-chain subunit contains an N-terminal hairpin domain and 

four kringle domains; the beta-chain subunit is a serine-protease-like domain lacking 

catalytic activity due to mutations in essential residues (27).

c-Met is also produced as a single-chain precursor protein (30, 31). This precursor receptor 

is cleaved to produce a glycosylated alpha-chain subunit (50 kDa) and a transmembrane 

beta- chain subunit (145 kDa), which are linked by a disulfide bond to form the mature 

receptor (32) (Fig. 1B).

The extracellular portion of c-Met, which is responsible for binding to HGF, contains a 

Sema domain (homologous to semaphorins), a cysteine-rich Met-related-sequence (MRS) 

domain, and four immunoglobulin-like structure (IgG domain) (32).

The intracellular portion of c-Met, which is responsible for signal transduction, is composed 

of a juxtamembrane domain, a tyrosine kinase domain, and a C-terminal regulatory tail (33). 

The juxtamembrane domain plays a key role in downregulation of the receptor (34, 35). The 

phosphorylation of a serine residue (Ser 985) in this domain inhibits the tyrosine kinase 

activity of c-Met (34). In addition, the phosphorylation of a tyrosine residue (Tyr 1003) is 

responsible for polyubiquitination and degradation of the receptor (35).
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In the tyrosine kinase domain, two tyrosine residues (Tyr 1234 and Tyr 1235) regulate the 

kinase activity of c-Met (36). The other two tyrosine residues (Tyr 1349 and Tyr 1356), 

which are located in the C-terminal regulatory tail (the multi-substrate docking site), are the 

most important sites for recruiting downstream adapter molecules (37–39). Both tyrosine 

residues in the C-terminal tail are sufficient for the signal transduction of c-Met in vitro and 

in vivo (38, 40).

Expression of HGF and c-Met

HGF is expressed only by cells of mesenchymal origin (41). However, c-Met is expressed 

mainly by epithelial cells (41). In addition, c-Met is expressed by various other cell types 

including vascular endothelial cells (16), lymphatic endothelial cells (42), neural cells (43), 

hepatocytes (44), hematopoietic cells (45), and pericytes (46). In many tumor cells, c-Met 

expression is activated by HGF through an autocrine loop (47–52). The activation or 

upregulation of both the ligand and the receptor in tumors is a negative prognostic indicator 

in human cancer (23–26, 53, 54).

HGF/c-Met signaling pathway in angiogenesis

The HGF/c-Met signaling pathway plays an important role not only in embryogenesis and 

development but also in angiogenesis and tumor growth (15, 16, 19–22). This 

multifunctional signaling pathway induces mitogenesis, motogenesis, morphogenesis and 

angiogenesis (20–22) (Fig. 2).

On the molecular level, after ligand binding, c-Met is activated by phosphorylation of Tyr 

1234 and Tyr 1235 residues, located in the tyrosine kinase domain (36). The 

phosphorylation of the other two tyrosines (Tyr 1349 and Tyr 1356), located in the C-

terminal tail, provides a docking site for multiple substrates of downstream signal 

transduction such as Src, Gab1, and Grb2 (37). Therefore, HGF/c-Met signaling activates 

multiple signal transduction pathways including the Src/focal adhesion kinase (FAK) 

pathway, the p120/signal transducer and activator of transcription (STAT) 3 pathway, the 

phosphoinositide- 3 kinase (PI3K)/Akt pathway, and the Ras/MEK pathway (38, 39). The 

Src/FAK pathway regulates cell adhesion and migration (20–22). The p120/STAT3 pathway 

stimulates branching morphogenesis of cells (20–22). The PI3K/Akt pathway activates cell 

motility and cell survival (20–22). The Ras/MEK pathway mediates HGF-induced scattering 

and proliferation of cells (20–22). Thus, these multiple signaling pathways directly or 

indirectly stimulate endothelial cells: directly by motogenic or morphogenic effects and 

indirectly by regulation of other angiogenic factors (17–19). HGF increases expression of 

angiogenic mediators, including VEGF and its receptor, in endothelial cells (17).

Development of inhibitors targeting HGF/c-Met signaling pathway

Because HGF/c-Met signaling is activated in angiogenesis and tumor growth, several 

strategies have been explored for inhibiting the pathway (20–22). The strategies are based 

on the lessons learned from studies on development of inhibitors targeting other ligands and 

receptor tyrosine kinases (3–5, 55). Each strategy targets one of the molecular events of 

HGF/c-Met activation (Fig. 2). As seen in other signal transduction pathways of receptor 

tyrosine kinases, HGF binds to its receptor, c-Met, on the cell surface, and then the tyrosine 
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kinase domain of c-Met is activated by dimerization and transphosphorylation (20–22, 56). 

The activation of these catalytic tyrosine residues is followed by additional phosphorylation 

of the two tyrosines in the C-terminal regulatory tail (20–22). This fully active receptor is 

ready to propagate c-Met-dependent signals by recruiting and stimulating downstream 

signaling molecules (20–22).

One strategy for inhibiting HGF/c-Met signaling is to block the binding of HGF to c-Met 

(Fig. 2A). Inhibitors of HGF/c-Met binding include HGF antagonists and antibodies against 

HGF or c-Met (Table 1). One HGF antagonist, NK4, is a truncated form of HGF, which 

contains the N-terminal hairpin domain and the subsequent four kringle domains (57, 58). 

NK4 binds to c-Met without activating it (57). The action of NK4, which has been studied in 

multiple in vitro and in vivo models using different approaches of delivery, is the best-

characterized competitive antagonist of HGF (57, 58). Recently, other antagonists of HGF/c-

Met binding have been developed, including an uncleavable HGF (59), an N-terminal Sema 

domain of HGF (60), a soluble extracellular domain of c-Met (decoy Met) (61), and a 

recombinant splice variant of c-Met (62). In addition, an antibody against HGF or c-Met 

inhibits angiogenesis and tumor growth in tumor models by blocking the binding of HGF 

and c-Met (63–67).

Another strategy is targeting phosphorylation of the tyrosine residues in the tyrosine kinase 

domain of c-Met (Fig. 2B, Table 2). Most common agents in this group are small molecule 

inhibitors of c-Met receptor tyrosine kinase. Most of them are competitive analogues of 

ATP, a substrate for phosphorylation of c-Met tyrosine kinase. Several small molecule c-

Met inhibitors are being studied and developed (68–73). In contrast to more specific 

inhibition by inhibitors of HGF/c-Met binding, small molecule inhibitors may have broader 

specificity for targeting receptor tyrosine kinases. However, most small molecule inhibitors 

can be administered orally for treatment of cancer patients.

The third strategy is to inhibit signaling events downstream of the HGF/c-Met signaling 

pathway (21, 22) (Fig. 2C, Table 2). A selective PI3K inhibitor, LY294002, inhibits HGF/c-

Met-induced cell motility and morphogenic changes (74). A MEK inhibitor, PD98059, 

prevents invasiveness of malignant tumor cells dependent on HGF/c-Met signaling (75). Src 

inhibitors, PD180970 and SU6656, reduce Src and STAT3 activity in lung cancer cells 

stimulated by HGF (76).

Conclusion and perspectives

Recently, the HGF/c-Met signaling pathway has come into the spotlight as a promising 

therapeutic target for inhibiting angiogenesis. Research over the past two decades has 

revealed that the HGF/c-Met signaling pathway plays an important role in angiogenesis and 

tumor growth, that this signaling pathway acts on angiogenesis synergistically with the 

VEGF/VEGFR signaling pathway, and that the HGF/c-Met signaling pathway promotes 

tumor invasion and metastasis. Inhibitors of HGF/c- Met signaling, used in combination 

with inhibitors of VEGF/ VEGFR signaling, should have greater efficacy in slowing 

angiogenesis and tumor growth and perhaps reducing tumor invasion and metastasis.
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Fig. 1. 
Schematic molecular structure of HGF and its receptor, c-Met. HGF (A) and c-Met (B) are 

initially expressed as precursor proteins and are then cleaved to mature heterodimers 

composed of an alpha- chain subunit and a beta-chain subunit linked by a disulfide bond. 

Mature HGF is a heterodimer composed of an alpha chain, which contains an N-terminal 

hairpin domain and four kringle domains, and a beta chain consisting of a serine-protease-

like domain without enzymatic activity. Mature c-Met is composed of a glycosylated alpha 

subunit and a transmembrane beta subunit. The extracellular region of mature c-Met 
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contains a Sema domain, a cysteine-rich Met-related sequence (MRS) domain, and four 

immunoglobulin-like structure domain. The intracellular region is composed of a 

juxtamembrane domain, a tyrosine kinase domain, and a C-terminal regulatory tail.
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Fig. 2. 
Summary of the HGF/c-Met signaling pathway. HGF/c-Met signal transduction is initiated 

by binding of HGF to c-Met, as with other receptor tyrosine kinases. Dimerization or 

oligomerization of c-Met activates transphosphorylation of tyrosines (Tyr1234 and Tyr 

1235) in the kinase domain followed by additional phosphorylation of other tyrosines (Tyr 

1349 and Tyr 1356) in the C-terminal regulatory tail. Fully activated c-Met propagates HGF 

signaling in cells by recruiting and activating various adapter molecules downstream. 

Inhibitors of the HGF/c-Met signaling pathway, competitive inhibitors (A), tyrosine kinase 
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inhibitors (B) or downstream inhibitors (C), target one of the molecular events of HGF/c-

Met signaling activation and transduction.
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Table 1

Antagonists of HGF and c-Met binding

Group Compound Developmental
stage

References

HGF/c-Met antagonists NK4 Preclinical (57, 58)

Uncleavable HGF Preclinical (59)

Sema Preclinical (60)

Decoy Met Preclinical (61)

Recombinant variant Met Preclinical (62)

Antibodies against HGF L2G7 (Galaxy Biotech) Preclinical (63)

AMG102 (Amgen) Phase II (64)

Antibodies against HGF OA-5D5 (Genentech) Preclinical (65)

CE-355621 (Pfizer) Preclinical (66)

DN30 (Metheresis) Preclinical (67)
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Table 2

Inhibitors of the HGF/c-Met signaling pathway

Group Compound Developmental
stage

References

Small molecule inhibitors of c-Met tyrosine kinase SU11274 (Pfizer) Preclinical (68)

PHA665752 (Pfizer) Preclinical (69)

PF2341066 (Pfizer) Phase I/II (70)

XL880 (Exelixis) Phase II (71, 72)

XL184 (Exelixis) Phase III (73)

Downstream inhibitors LY294002 (LC Laboratories) Preclinical (74)

PD98059 (LC Laboratories) Preclinical (75)

PD180970 (Parke-Davis Pharmaceutical Research) Preclinical (76)

SU6656 (Pfizer) Preclinical (76)
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