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Abstract

Selecting near-native conformations from the immense number of conformations generated by 

docking programs remains a major challenge in molecular docking. We introduce DockRank, a 

novel approach to scoring docked conformations based on the degree to which the interface 

residues of the docked conformation match a set of predicted interface residues. Dock-Rank uses 

interface residues predicted by partner-specific sequence homology-based protein–protein 

interface predictor (PS-HomPPI), which predicts the interface residues of a query protein with a 

specific interaction partner. We compared the performance of DockRank with several state-of-the-

art docking scoring functions using Success Rate (the percentage of cases that have at least one 

near-native conformation among the top m conformations) and Hit Rate (the percentage of near-

native conformations that are included among the top m conformations). In cases where it is 

possible to obtain partner-specific (PS) interface predictions from PS-HomPPI, DockRank 

consistently outperforms both (i) ZRank and IRAD, two state-of-the-art energy-based scoring 

functions (improving Success Rate by up to 4-fold); and (ii) Variants of DockRank that use 

predicted interface residues obtained from several protein interface predictors that do not take into 

account the binding partner in making interface predictions (improving success rate by up to 39-

fold). The latter result underscores the importance of using partner-specific interface residues in 

scoring docked conformations. We show that DockRank, when used to re-rank the conformations 

returned by ClusPro, improves upon the original ClusPro rankings in terms of both Success Rate 

and Hit Rate. DockRank is available as a server at http://einstein.cs.iastate.edu/DockRank/.
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INTRODUCTION

The 3D structures of complexes formed by interacting proteins are valuable sources of 

information needed to understand the structural basis of interactions and their role in 

pathways that orchestrate key cellular processes. High-throughput methods such as yeast-2-

hybrid (Y2H) assays provide a source of information about possible pairwise interactions 

between proteins, but not the structures of the corresponding complexes.1 Because of the 

expense and effort associated with X-ray crystallography or NMR experiments to determine 

3D structures of protein complexes, the gap between the number of possible interactions and 

the number of experimentally determined structures is rapidly expanding. Hence, there is 

considerable interest in computational methods for determining the structures of complexes 

formed by proteins. This is especially important in the case of complexes resulting from 

transient and nonobligate interactions, which tend to be partner-specific2,3 and play 

important roles in cellular communication and signaling pathways.3,4 When the structures of 

individual proteins are known or can be predicted with sufficiently high accuracy, docking 

methods can be used to predict the 3D conformation of complexes formed by two or more 

interacting proteins, to identify and prioritize drug targets in computational drug design,5 

and to potentially validate6,7 or to provide putative structural models8,9 for interactions 

determined using high-throughput methods such as Y2H assays.

In general, solving the protein–protein docking problem involves three steps10–13: (1) 

generation of candidate conformations (models or decoys) by sampling the space of possible 

conformations of complexes formed by the given component proteins. The resulting large 

number (typically thousands to tens of thousands) of putative conformations are ranked and 

filtered using some criteria (e.g., geometric complementarity assessed using the Fast Fourier 

Transform (FFT)); (2) clustering of the top ranked conformations and often ranking the 

resulting clusters by their size, that is, the number of conformations contained in the 

clusters; (3) refinement of docked structures and final conformation selection.

Substantial efforts have been dedicated to the design of scoring (ranking) functions for 

docking programs. Scoring functions in the literature can be broadly classified into four 

types: 1) geometric complementarity-based scoring functions; 2) energy-based scoring 

functions; 3) knowledge-based scoring functions; 4) hybrid functions that combine the 

scoring functions of the first three types.14–17 Geometric complementarity-based scoring 

functions represent an early generation of scoring functions used in docking programs. 

Vakser and coworkers18 introduced FFT to calculate the geometric fit between a receptor 

and ligand. The fast processing speed of FFT made a full conformational space search 

possible. Scoring functions of this type were successfully applied on bound protein–protein 

docking but could not perform well for unbound protein–protein docking because of the 

conformational changes upon binding.11 Energy-based scoring functions are designed to 

Xue et al. Page 2

Proteins. Author manuscript; available in PMC 2015 May 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



approximate the binding free energy of protein–protein assemblies.19–21 They usually 

consist of weighted energy terms for van der Waals interactions, electrostatic interactions, 

and solvation energies. Knowledge-based scoring functions can be grouped into three 

subtypes. (a) Knowledge-based weighted correlations,22,23 which take into consideration the 

complementarity of physicochemical properties to overcome the limitations of scoring 

functions that rely on geometric complementarity alone; (b) Knowledge-based pairwise 

potentials24–26 derived from observed statistical frequency of amino acid/atom contacts in 

databases of solved protein structures; (c) Machine-learning-based scoring methods, which 

can be further divided into three sub-types: (c1) Classifiers trained (on a data set of near-

native and non-native protein conformations) to predict whether a query docked 

conformation is near-native or non-native27,28; (c2) Classifiers that are trained using data 

extracted from a set of protein complexes to predict the interface residues of proteins, which 

are then used to rank docked conformations29,30; (c3) Consensus scoring methods31,32 that 

use a weighted combination of the scores of multiple scoring functions to score 

conformations.

Despite recent advances in methods for scoring docked conformations, including those used 

by the state-of-theart docking programs, there is considerable room for improvement in 

methods for efficiently and reliably identifying near-native conformations from the large 

number of candidate conformations generated by docking programs.10,33 Hence, there is a 

need for computationally efficient scoring functions that can reliably distinguish the near-

native conformations from non-native ones.

Against this background, we propose DockRank, a novel approach to scoring docked 

conformations. The intuition behind DockRank is as follows: From among the large number 

of docked conformations produced by docking a protein A with protein B, a scoring function 

that preferentially selects conformations that preserve the interface between A and B in the 

native state of the complex A: B will be able to successfully identify near-native 

conformations. However, since a goal of docking is to identify near-native conformation, the 

actual interface residues of the complex A: B in its native state are unknown, and hence 

cannot be used for scoring conformations. However, if we can reliably predict the residues 

that constitute the interface between A and B, we should be able to use the degree of 

agreement between the predicted interface residues and the interface residues of each 

docked conformation to score the conformations.

While a broad range of computational methods for protein–protein interface prediction have 

been proposed in the literature (reviewed in Refs. 34–36), barring a few exceptions,37–39 the 

vast majority of such methods focus on predicting the protein–protein interface residues of a 

query protein, without taking into account its specific interaction partner(s). Because most 

transient protein interactions tend to be partner-specific (PS),2 and reliably predicting 

transient binding sites presents a challenge for nonpartner-specific (NPS) prediction 

methods (i.e., interface predictors that do not take into consideration, a protein's binding 

partner in predicting interface residues),4,40,41 DockRank makes use of partner-specific 

sequence homology-based protein–protein interface predictor (PS-HomPPI),42 a sequence 

homology-based predictor of interface residues between a given pair of potentially 

interacting proteins.
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PS-HomPPI has been shown to reliably predict the interface residues between a pair of 

interacting proteins whenever a homo-interolog, that is, a complex structure formed by the 

respective sequence homologs of the given pair of proteins, is available.42,43 PS-HomPPI 

has been shown to be effective at predicting interface residues in transient complexes 

associated with reversible, often highly specific, interactions. Hence, PS-HomPPI offers an 

especially attractive protein–protein interface prediction method for ranking docked 

conformations.

Given a docking case, that is, a pair of proteins A and B that are to be docked with each 

other, DockRank uses PS-HomPPI to predict the interface residues between A and B. It then 

compares the predicted interface residues with the interface residues in each of the docked 

conformations of A: B produced by the docking program. The greater the similarity of the 

interface of a docked conformation with the predicted interface from PS-HomPPI, the higher 

the rank of the corresponding conformation among all docked conformations. DockRank's 

reliance on partner-specific interface predictions is what distinguishes it from existing 

scoring functions that use predicted interfaces to rank docked conformations.29,30

In this study, we first compare the performance of DockRank with several state-of-the-art 

energy-based scoring functions: ZRank,20,44 IRAD19 and the energy functions built-in 

ClusPro 2.0.15,17,45 We then evaluate the performance of DockRank variants that use 

predicted interface residues obtained from several nonpartner-specific protein interface 

predictors. We also evaluate DockRank on several targets (docking cases) of the Critical 

Assessment of PRedicted Interactions (CAPRI).12,33 Finally, we illustrate that DockRank 

complements homology modeling methods for protein complexes such as superimposition 

and multimeric threading.46–48

An online implementation of DockRank is available at http://einstein.cs.iastate.edu/

DockRank/.

MATERIALS AND METHODS

Decoy sets

In this study, for different purposes, we used two benchmark decoy sets: ZDock3-BM3 and 

ClusPro2-BM3. ZDock3-BM3 is used to compare DockRank with other scoring functions, 

and ClusPro2-BM3 is used to evaluate the extent to which DockRank can improve upon the 

ranking of conformations produced by docking programs such as ClusPro.15,17,45 ZDock3-

BM3 decoy set faithfully reflects the initial population of conformations generated by 

ZDock 3.044 before the conformations are clustered or otherwise post-processed. ClusPro2-

BM3 corresponds to top 30 conformations that represent the clusters of conformations 

output by ClusPro 2.0.15,17,45 We also evaluated DockRank on five CAPRI targets and 

compared with 29 CAPRI scorer groups.

ZDock3-BM3

Docking Benchmark 3.0 (BM3)49 consists of a set of nonredundant nonobligate complexes 

(3.25Å or better resolution, determined using X-ray crystallography) from three biochemical 

categories: enzyme-inhibitor, antibody-antigen, and “others”. This data set includes 
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complexes that are categorized into three difficulty groups for benchmarking docking 

algorithms: Rigid-body (88 complexes), Medium (19), and Difficult (17), based on the 

conformational change upon binding. Obligate complexes are filtered out manually. BM3 

originally had 124 cases. 2VIS (rigid-body), 1K4C (rigid-body), 1FC2 (rigid-body), 1N8O 

(rigid-body) were deleted because the bound complexes and the corresponding unbound 

complexes have different number of chains. 1K74 (rigid-body) was deleted because the 

sequence of chain D in the bound complex is different from the corresponding unbound 

chain 1ZGY_B. There are finally 119 docking complexes: Rigid-body (83 complexes), 

Medium (19), and Difficult (17). A set of 54,000 decoys for each case generated using 

ZDock 3.0 was downloaded from http://zlab.umassmed.edu/zdock/decoys.shtml. Despite the 

large number of generated decoys, there are only 97 cases that have at least one near-native 

structure (e.g., a decoy with interface Cα atom Root Mean Square Deviation I–RMSD ≤ 

2:5Å). Out of these 97 cases, our homology-based protein–protein interface predictor, PS-

HomPPI,42 returned interface predictions for only 67 cases. Therefore, our final decoy set 

consists of decoys generated for these 67 cases (see Supporting Information Table S1 for the 

PDB50 IDs for these cases).

ClusPro2-BM3

ClusPro2-BM3 was also generated from the 119 cases in BM3 using ClusPro 2.0 program. 

For each docking case ClusPro returned 30 conformations. ClusPro2-BM3_31 set of 31 

cases was generated using the following selection criteria: i) each case should have at least 

one hit (i.e., a docked conformation with ligand Root Mean Square Deviation L2RMSD ≤ 

10Å); ii) PS-HomPPI interface predictions are available for the proteins in that complex. To 

evaluate the capability of DockRank to give top ranks to meaningful though incorrect 

conformations in cases for which ClusPro returns no hits, another set of 45 cases, ClusPro2-

BM3_45, was generated by relaxing the definition of a hit to include conformations with 

L2RMSD ≤ 15Å (see Supporting Information Table S1 and S2 for the corresponding PDB 

IDs for ClusPro2-BM3_31 set and ClusPro2-BM3_45 set).

CAPRI uploader decoys

CAPRI is a community wide competition of computational protein complex modeling and 

scoring methods (http://www.ebi.ac.uk/msd-srv/capri/). In the scoring experiments of the 

CAPRI competition, docking groups uploaded 100 models for each target, which are 

referred to as “uploader models” and can be downloaded by the participating scorers to rank 

and submit their selected top 10 models. Through e-mail communications with the CAPRI 

organizers, we obtained the uploader models and the corresponding CAPRI model 

classification files for Targets 30 (trimer), 35 (dimer), 36 (dimer), 41 (dimer), 47 (hexamer), 

and 50 (trimer). We discarded the data for Target 36 because none of the uploader models is 

near-native. We also discarded models with no chain IDs at all, because DockRank, which is 

based on the predicted interfaces between chains, requires the information of protein chain 

boundaries. Specifically, 60 uploader models for Target 30, 99 uploader models for Target 

41 and 299 uploader models for Target 50 have no chain IDs at all and were discarded from 

this study. We were left with a total of 1,283 uploader models for Target 30, of which two 

models are acceptable models (based on CAPRI criteria13); a total of 499 uploader models 

for Target 35, of which three models are acceptable models; a total of 1,100 uploader 
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models for Target 41, of which 230, 115 and two models are acceptable, medium, and high-

quality models, respectively; a total of 1051 models for Target 47, of which 26, 307, and 

278 models are acceptable, medium, and high-quality models, respectively; and a total of 

1,152 models for Target 50, of which 84 and 21 models are acceptable and medium quality 

models, respectively. Because high-quality bound complexes were publicly available for 

Target 47 at the time of the competition, docking was not needed; instead, the prediction of 

interface water molecule positions was the real challenge. To evaluate the prediction of 

interface water molecule positions for Target 47, we used the CAPRI criteria fw (nat), which 

is the of fraction of actual water-mediated contacts in the target bound complex that are 

correctly predicted in the docked model. A pair of amino acids, each from the receptor or the 

ligand, is called a water-mediated contact if both of the amino acids have at least one heavy 

atom within a 3.5Å distance of the same water molecule. fw(nat) is analogous to an 

evaluation term in the protein interface prediction literature [73, 74], Sensitivity (see 

Supporting Information Text S3). Based on fw(nat), each model of Target 47 was classified 

as bad (0:0 ≤ fw(nat) < 0:1), fair (0:1 ≤ fw(nat) < 0:3), good (0:3 fw(nat) < 0:5), excellent :5 

fw≤(nat) < 0:8), and outstanding (0:8 fw (nat) < 1:0).

Partner-specific sequence homology-based protein–protein interface predictor

DockRank uses the predicted interfaces by PS-HomPPI to rank docked models. PS-HomPPI 

is a sequence homology-based method for partner-specific protein–protein interface residue 

prediction.42,43 PS-HomPPI uses the experimentally determined interfaces of homo-

interologs (homologous interacting proteins) to infer those of a query protein pair. PS-

HomPPI is described in detail in Ref. 42, and we briefly summarize it in Supporting 

Information Text S1 and Figure S1.

To avoid using the target bound complexes as templates due to the redundancy of the PDB 

(Protein Data Bank),50 highly similar homo-interologs were removed. Specifically, for 

query A: B and its homologous interacting pair A’ : B’, we also discard the interacting 

protein pair A’ : B’ if (A and A’) and (B and B’) share ≥ 90% sequence identity. Each case in 

the decoy sets has bound and unbound proteins. Unbound proteins were used by docking 

programs to generate docked models and their sequences were used by PS-HomPPI to 

predict interfaces. The bound complexes were used to evaluate the ranking schemes of 

docked models. The bound complex of each case (although most bound complexes are 

probably removed in the first filter of highly similar homologs) was also explicitly deleted 

from the homo-interolog list, and was not used in later prediction.

Databases used by PS-HomPPI

Three databases are used by PS-HomPPI to make inter-face predictions—
ProtInDB51 (version Sep 27th 2012) and S2C DB52 (version Sep 27th, 2012): Used by PS-

HomPPI to calculate the interface residues of homo-interologs. ProtInDB is a protein–

protein interface residues database (http://einstein.cs.iastate.edu/protInDb/). It contains 

protein complexes with at least two interacting chains in PDB. S2C DB is used to map the 

calculated interface residues based on ProtInDB to the whole protein sequences.
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BLAST nr_pdbaa_s2c: Used by BLASTP 2.2.27+53 to search for close sequence homologs. 

It is built based on ProtInDB and S2C DB. Only protein chains existing in ProtInDB are 

included into nr_pdbaa_s2c. We built a nonredundant database for BLAST queries from the 

S2C fasta formatted database. To generate the nonredundant BLAST database, we grouped 

proteins with identical sequences into one entry. As of Sep 27th 2012, nr_pdbaa_s2c 

contains 38,478 sequences and 9,294,363 total letters.

Interface definition

Interface residues are defined as residues with at least one atom that is within a distance of 

5Å from any atoms in the interaction partner chain.

DockRank's scoring function

Given a pair of proteins A and B that are to be docked against each other by a docking 

program, we use PS-HomPPI to predict the interface residues between A and B. We 

represent predicted and docked interfaces as binary vectors in which “1” means interface 

residue and “0” noninterface residue. We then compare the binary vectors of interface 

residues between A and B predicted by PS-HomPPI with the interface residues in each of 

the conformations of the complex A: B produced by the docking program. The docked 

conformation with the greatest interface similarity with the predicted interface residues is 

assigned the top rank.

Many similarity measures for binary vectors have been proposed (See Ref. 54 for a review). 

Among these, only Russell-Rao, SoKal-Michener, and Rogers-Tanmoto(-a) measures are 

defined in the case when both sequences consist of all 0 elements (which is the case when 

there are no interface residues between the corresponding protein chains and both PS-

HomPPI and the docking model correctly predict no interface residues). Because the 

numbers of interface and noninterface residues are highly unbalanced, we used weighted 

SoKal-Michener metric to measure the similarity between the interface and noninterface 

residues in a protein chain A (in complex with chain B) encoded in the form of binary 

sequences  and  based on PS-HomPPI predictions and the docked conformation, 

respectively,

where N is the length of the binary sequence, S11 and S00 are the numbers of positions where 

the two sequences match with respect to interface residues and noninterface residues, 

respectively, and β is a weighting factor (0 < β < 1) that is used to balance the number of 

matching interface residues against the number of matching noninterface residues.

The weighting factor β is defined as a PS-interface residue ratio. In this study, we set 

β=0:08, which is calculated using a set of transient interaction proteins [71] with 

experimentally determined interfaces (see Supporting Information Text S2 for details).

Xue et al. Page 7

Proteins. Author manuscript; available in PMC 2015 May 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Only the interface residues between the receptor and the ligand are used to rank docked 

models. When the predicted interface vector is a zero vector, it is NOT used in ranking 

docked models.

For each docked conformation we calculate one score using our scoring function. When a 

protein complex consists of more than two chains, multiple interface similarities are 

calculated by pairing each chain of the receptor with each chain of the ligand, and they were 

weighted (based on the prediction confidence zones of PS-HomPPI) and avaraged to get a 

final DockRank score. In this study, the weight of the interface similarity is 1 if the 

predicted interface is from Safe Zone of PSHomPPI, 1 for Twilight Zone, and 0.001 for 

Dark Zone.

Evaluation of scoring functions

We used Root Mean Square Deviations (RMSDs) to assess the structural difference between 

each conformation and the corresponding bound complex (target complex). L-RMSD 

(Ligand-RMSD) is the backbone RMSD between the ligand in the docked conformation and 

the bound ligand after superimposing the receptor of the docked conformation and that of 

bound complex. I-RMSD (Interface RMSD) is calculated through two steps: first, map the 

interface residues of the bound complex to the docked conformation using sequence 

alignments; second, superimpose the 3D structure of the bound interface of the bound 

complex onto that of the mapped interface of the docked conformation, and calculate the 

backbone RMSD as I-RMSD.

We used Success Rate and Hit Rate to evaluate different scoring functions. We define the 

Success Rate of a scoring function as the percentage of the docking cases in the data set for 

which at least one near-native structure (hit) is among the m top conformations according to 

the scoring function. For example, a Success Rate of 25% for top m = 1 predictions means 

that for 25% of the total test docking cases, the highest ranked conformation is a near-native 

conformation. Hit Rate is defined as the percentage of hits that are included among the set of 

m top-ranked conformations. For example, a Hit Rate of 25% for the top m predictions 

means that 25% of the total hits are found in the top m ranked predictions. Hit Rate 

measures the enrichment of hits among top ranked conformations.

Upper bound: We supply actual PS-interfaces extracted from bound complexes to 

DockRank's scoring function to rank the conformations in order to obtain the upper bound of 

DockRank's scoring function.

RESULTS

DockRank Outperforms Energy-based Scoring Functions

We compared the performance of DockRank with two energy-based scoring functions, 

ZRank20,44 and IRAD,19 on a subset of 67 docking cases from ZDock3-BM3 benchmark 

decoy set (see Methods for details). ZRank and IRAD are two energy-based scoring 

functions developed by the ZDOCK group.44 The ZRank scoring function is a linear 

combination of atom-based potentials, and it has been shown to be one of top scoring 

functions in CAPRI.33 IRAD is an improved version of ZRank that augments the ZRank 
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scoring function with residue-based potentials.19 For each of the 67 docking cases, ZDock 

3.0 generates 54,000 candidate decoys; however, in 55 of 67 cases the number of total hits 

(near-native conformations with interface Root Mean Square Deviation I–RMSD 2:5Å19) 

generated by ZDock 3.0 is fewer than 200 [Supporting Information Fig. S2(A)]. Thus, 

identifying the hits from a large population of candidate conformations presents a significant 

challenge.

Figure 1 compares the Success Rate of DockRank (red) with that of ZRank (yellow) and 

IRAD (black) on the ZDock3-BM3 benchmark decoy set. DockRank consistently has a 

significantly higher Success Rate than both IRAD and ZRank for choices of m ranging from 

1 to 1000 (see Materials and Methods section for details). If we limit our comparison to the 

top ranked conformations (m = 1), DockRank has a Success Rate of 39%, which means that 

for 39% of the docking cases the highest ranked conformation selected by DockRank is a 

near-native conformation (a hit), whereas the Success Rates of ZRank and IRAD are 9 and 

15%, respectively. When we consider the conformations ranked among the top 10 (m = 10), 

DockRank achieves a Success Rate of 61%, as compared to 21 and 33% achieved by ZRank 

and IRAD, respectively. Thus, DockRank improves Success Rate by a factor of 1.8 (61/33 

when m = 10) to 4.3 (39/9 when m = 1). Because the 54,000 conformations for each docking 

case in ZDock3-BM3 are not clustered, each docking case is likely to have a large number 

of highly similar conformations. In light of this fact, the success of Dock-Rank in ranking 

near-native conformations among the top 10 conformations is especially encouraging.

A comparison of the Hit Rates of DockRank with those of other scoring functions, including 

IRAD and ZRank, on the ZDock3-BM3 benchmark decoy set is provided in Supporting 

Information Figure S3. Dock-Rank has a higher Hit Rate than IRAD and ZRank in 53 of 67 

cases.

Partner-specific interface predictions can be used to reliably rank docked conformations

Li and Kihara55 had concluded that predicted interfaces cannot be used to reliably identify 

near-native conformations, based on their study using predicted interfaces from meta-

PPISP,56 a nonpartner-specific interface predictor, to rank docked conformations using their 

scoring function. In light of the fact that most existing protein interface predictors are 

nonpartner-specific, it is of interest to examine the extent to which partner-specific interface 

predictions can improve the reliability of identifying near-native docked conformations. To 

answer this question, we compared the performance of DockRank using predicted interface 

residues from PS-HomPPI (a partner-specific predictor), with variants of DockRank using 

interface residues predicted by three state-of-the-art nonpartner-specific protein interface 

residue predictors: i) NPS-HomPPI,42 a sequence homology-based nonpartner-specific 

method for predicting the interface residues, which has been shown to outperform several 

structure-based and sequence-based interface predictors when sequence homologs of the 

query protein can be reliably identified; ii) PrISE,57 a local structural similarity based 

method for predicting protein–protein interfaces that has been shown to outperform other 

structure-based nonpartner-specific interface prediction methods; iii) meta-PPISP,56 a 

consensus method that takes as input the scores of three other structure-based machine-

learning predictors cons-PPISP,58,59 PINUP,60 and Promate.29
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Our results on the ZDock3-BM3 decoy set show that DockRank (using PS-HomPPI 

predicted interface residues) significantly outperforms DockRank variants that use 

predictions from the nonpartner-specific interface predictors NPS-HomPPI, meta-PPISP, 

and PrISE based on three criteria. First, in terms of Success Rate, DockRank successfully 

places at least one near-native conformation within the top ranked conformations (m = 1) for 

39% docking cases (i.e., a Success Rate of 39%), while Dock-Rank variants that use 

predicted nonpartner-specific interfaces can only pick out a near-native conformation to top 

rank for 1%–7% of docking cases (Fig. 1). This translates to an improvement in Success 

Rate by a factor of 39 (39%/1%) when m = 1. Second, in terms of Hit Rate, the top 1000 

ranked conformations selected by DockRank contain more hits than those selected by 

DockRank variants that use predicted nonpartner-specific interfaces in 43 of 67 docking 

cases (Supporting Information Figure S3). Third, in terms of I-RMSD, top ranked 

conformations selected by DockRank have statistically significantly lower I-RMSDs than 

those selected by DockRank variants that use predicted nonpartner-specific interfaces (as 

shown by the boxplot of I-RMSDs and by the nonparametric Nemenyi Test [75] at a 

significance level of 0.05, see Figure 2 and Supporting Information Figure S4).

Because DockRank ranks conformations based on a measure of similarity between the 

predicted interface and the interface defined by a docked conformation, it is natural to ask 

how well DockRank can be expected to perform if it were provided with the best possible 

partner-specific interface predictions. In order to estimate an upper-limit for the performance 

of the DockRank's scoring function, we tested its performance using the actual partner-

specific interfaces extracted from the bound complexes. Figure 1 shows that DockRank, 

when supplied with the actual interface residues for a docking case (grey), ranks at least one 

hit (a near-native conformation) among the top 10 conformations for 85% of the docking 

cases. When supplied with interfaces predicted by PS-HomPPI, DockRank ranks at least one 

hit among the top 10 conformations for 61% of the docking cases. Also, DockRank's scoring 

function, when supplied with actual partner-specific interface residues, is able to rank ≥50% 

of all hits among the top 1000 conformations in 60 of 67 docking cases (Supporting 

Information Fig. S3). These results demonstrate that the scoring function used by DockRank 

can reliably place near-native conformations among the top ranked conformations when it is 

provided with reliable partner-specific interface residues. Furthermore, the gap between the 

performance of Dock-Rank when supplied with interface residues predicted by PS-HomPPI 

(red line in Figure 1) and the performance of DockRank when supplied with actual partner-

specific interface residues (grey dashed line) suggest that there is considerable room for 

improving the performance of DockRank by improving the reliability of partner-specific 

protein–protein interface prediction.

In the following text, unless otherwise specified, we refer to our ranking method using 

partner-specific interface residues predicted by PS-HomPPI as DockRank.

DockRank identifies conformations with lower RMSD at the interface than other scoring 
functions

We compared the top ranked conformations identified by different scoring functions with 

respect to I-RMSDs. Figure 2 shows the distributions of I-RMSDs of top ranked 
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conformations (m = 1) selected by different scoring schemes. The top ranked conformations 

selected by DockRank have two to four times smaller average and median I-RMSDs than 

those selected by other scoring schemes. The average I-RMSD value of top ranked 

conformations selected by DockRank is 6.6Å, compared with 11.7, 12.8, 12.0, 11.4, and 

13.0Å of those selected by IRAD, ZRank, NPS-HomPPI, PrISE, and meta-PPISP, 

respectively. The median I-RMSD value of top ranked conformations selected by DockRank 

is 3.4Å, compared with 11.9, 12.3, 12.11, 11.4, and 11.7Å for IRAD, ZRank, NPS-HomPPI, 

PrISE, and meta-PPISP, respectively.

Our statistical analysis further shows that when performance is measured in terms of I-

RMSD of the top ranked conformations, DockRank significantly outperforms other scoring 

schemes (see Supporting Information Fig. S4 and Text S4).

DockRank improves upon the success rate, average hit rate, and L-RMSD of ClusPro-
ranked conformations

Existing docking programs such as ClusPro typically use built-in scoring functions to rank 

the conformations they produce. In this context, it is natural to ask whether Dock-Rank, 

when used to re-rank the docked conformations returned by the docking program using its 

own built-in scoring schemes, can improve upon the original ranking. For this comparison, 

we chose ClusPro 2.0,15–17,45 because it has been reported to have superior performance in 

recent CAPRI competitions.33 Briefly, ClusPro is built on top of a FFT-based rigid docking 

program PIPER.16 PIPER rotates and translates the ligand with ~109 positions relative to 

the receptor. PIPER's scoring function, which contains terms of shape complementarity, 

electro-static, and pairwise potentials, is applied to these candidate conformations, and 

returns the top 1000 conformations to ClusPro's clustering algorithm. ClusPro ranks the 

conformations by cluster size. ClusPro also provides two scores from PIPER: Lowest 

Energy and Center Energy.

We applied ClusPro to the 119 cases in Docking Benchmark 3.0 (See Methods for details 

about this dataset). In 47 of the 119 cases, ClusPro 2.0 generated at least one hit (a 

conformation with L–RMSD ≤ 10Å).1 Among these 47 cases, PS-HomPPI is able to return 

partner-specific interface predictions for 31 cases. Thus, our experiment is limited to only 

these 31 cases, which we refer to as ClusPro2-BM3_31 benchmark set. In each case, 

ClusPro returns about 30 ranked conformations. We re-ranked the conformations returned 

by ClusPro using DockRank and compared the resulting ranking of conformations with the 

original ranking produced by ClusPro.

Figure 3 compares the Success Rates of DockRank based on actual partner-specific 

interfaces (PS-Act Int, grey), DockRank using PS-HomPPI predicted interfaces (Dock-

Rank, red) and the three ClusPro scoring schemes: ClusPro (cluster-size based, black), 

1In our experiments on the ZDock3-BM3 benchmark decoy set, for direct comparisons with published results on the same decoy set, 
we adopted the quality measures for evaluating the docked conformations used by ZDock3-BM3 set, that is the IRMSDs, which were 
precalculated and provided by the authors of ZDock3-BM3 along with the decoys. In our experiments on the ClusPro decoy set that 
we generated using ClusPro 2.0 webserver, we used L-RMSD as the quality measure for the docked conformations. Using L-RMSD, 
we measure the ability of DockRank to select docked conformations with meaningful 3D conformations of the ligand; using I-RMSD, 
we evaluate DockRank's ability to select docked conformations with correct 3D interface area.).
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Lowest Energy (yellow), and Center Energy (magenta). DockRank's re-ranking process 

identifies at least one near-native conformation (hit) for more docking cases than ClusPro 

scoring schemes (i.e., DockRank improves on the ClusPro scoring schemes in terms of 

Success Rate). For example, applied to the pre-filtered docked models by ClusPro, 

DockRank is able to select at least one hit to top rank (m = 1) for 52% cases (i.e., a Success 

Rate of 52%), whereas the original Success Rates of ClusPro cluster-size based scoring 

scheme is 32%, ClusPro Lowest Energy based is 42%, and ClusPro Center Energy based is 

16% (Fig. 3 at m = 1). In addition, Dock-Rank improves the average Hit Rate of top ranked 

models (m = 1) selected by ClusPro scoring functions to 0.38 from 0.22, 0.29, and 0.15 

produced by ClusPro cluster-size based, Lowest Energy, and Center Energy scoring 

functions, respectively (Supporting Information Fig. S5).

Our statistical analysis (see Supporting Information Fig. S6 and Text S5 for details) shows 

that at a significance level of 0.05, the mean L-RMSDs of the top ranked conformations 

identified by DockRank are significantly lower than those selected by ClusPro Center 

Energy. However, although DockRank produces top ranked conformations with lower 

average L-RMSD values than those produced by ClusPro and ClusPro Lowest Energy 

scoring functions, the difference is not statistically significant. This lack of a statistically 

significant difference could be due to the limited power of the nonparametric test, which is 

exacerbated by the small number of cases (31) and the small number of docked 

conformations (30) used in the comparisons.

It must be noted that this experiment should not be interpreted as a direct comparison 

between DockRank and ClusPro because ClusPro scoring functions have access to ~109 

decoys, generated by PIPER,16 whereas DockRank has access to only a very small set (~30 

conformations) of these 109 conformations. Also, DockRank in this experiment is used to 

re-rank these ~30 conformations output by ClusPro as opposed to the entire set of 109 

conformations.

DockRank identifies useful conformations with lower ligand RMSD for further refinement

ClusPro 2.0 generated at least one near-native conformation with L–RMSD 10Å for only a 

small proportion of cases (47 out of 119). It is interesting to consider whether DockRank can 

select useful, although incorrect, conformations in cases for which ClusPro returns no hits. 

The conformations output by ClusPro are the representative conformations selected from 

clusters of docked conformations that share similar 3D conformations. When no hit (L–

RMSD ≤ 10Å) is returned by ClusPro, it is still possible that the cluster, from which the 

representative conformation is chosen, may contain hits. We examined the docking cases 

with at least one docked conformation with L–RMSD 15Å in order to study DockRank's 

ability to indirectly identify clusters that might contain actual hits, and DockRank's ability to 

identify meaningful conformations for further refinements.

There are 45 cases that have at least one docked conformation with L–RMSD 15Å, and have 

interface predictions returned by PS-HomPPI. We chose to further analyze these 45 cases, 

which we refer to as the ClusPro2-BM3_45 decoy set. For each case, we calculate the 

average L-RMSD of the top five conformations selected by a scoring function.
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Figure 4 shows the difference between the average of L-RMSDs of top conformations 

produced by ClusPro and DockRank scoring functions in each case. Positive values 

correspond to cases where the top ranked Dock-Rank conformations have a lower average 

L-RMSD than the top ranked ClusPro conformations. In 34 of 45 (75.6%) cases, top 

conformations selected by DockRank have lower L-RMSD than their ClusPro counterparts. 

Futhurmore, a pairwise Wilcoxon signed rank test shows that top five conformations 

selected by DockRank have significantly lower averaged L-RMSD than those selected by 

ClusPro (p-value < 0.0001).

Error analysis

Although in general, DockRank identifies top ranked conformations with lower L-RMSD 

than those produced by ClusPro, there are some exceptions, for example, docking case 22 

(PDB ID 1ML0) in Figure 4. Figure 5(A) illustrates the top ranked ClusPro and DockRank 

conformations. Note that the docked ligand position in the top DockRank conformation 

(blue ribbon) is out of place relative to its correct position, that is, the position of the 

experimentally determined bound ligand (in pink surface representation). However, the 

interface residues predicted by PS-HomPPI for the 1ML0 case are drawn from the homologs 

in Safe Zone and hence are expected to be reliable.42 We further note that the structure of 

the receptor (red ribbon) is symmetric. This raises the possibility that the ligand may bind on 

both sides of the symmetric receptor as opposed to only one side.

Examination of the biological assembly structure of 1ML0 downloaded from the PISA web 

server61 reveals that the 1ML0 bound complex has two identical ligands, which bind on 

each side of the receptor. The authors of BM3 (Docking Benchmark 3.0) chose to include 

only one ligand chain in the docking case in Docking Benchmark 3.0 and excluded the other 

ligand chain. DockRank was able to select docked ligand positions on both sides of the 

receptor. The ligand of the top ranked conformation selected by DockRank is located close 

to the bound ligand that was omitted from Docking Benchmark 3.0. The top five 

conformations selected by ClusPro and DockRank for case 1ML0 are shown in Figure 5(B). 

Both ClusPro and DockRank have successfully selected conformations with ligands bound 

to both sides of the receptor.

We recalculated the L-RMSD for all docked conformations for case 1ML0 by considering 

both of the two identical bound ligands to correspond to native ligand positions. We found 

that the highest ranking DockRank model is that with the lowest L-RMSD. However, 

ClusPro identifies four hits (L–RMSD 10Å) among its top five models, whereas DockRank 

selects only one (albeit, one with the lowest L-RMSD).

We also identified a second case, 1RLB, for which PS-HomPPI returned Safe Zone interface 

predictions, but DockRank assigned high ranks to conformations with unusually large L-

RMSDs. As in the case of 1ML0, it turned out that one of the bound ligands of 1RLB was 

left out from Docking Benchmark 3.0, and DockRank, in fact, improved the rankings of 

docked models returned by ClusPro (see Supporting Information Text S6 for details).
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DockRank performance on CAPRI uploader models

In the scoring experiments of the CAPRI competition, docking groups were invited to 

upload a set of 100 predicted models for each target (referred as “uploader models”). The 

scorer groups ranked the uploader models and submitted their top 10 models.11,33 We 

evaluated DockRank on the uploader models for Targets 30 (trimer), 35 (dimer), 41(dimer), 

47 (hexamer), and T50 (trimer), and compared the quality of the top 10 models selected by 

DockRank with those selected by the CAPRI scorer groups. 29 CAPRI scorer groups, 

including both human scorers and web server scorers, evaluated at least one of these targets. 

We removed the target PDB bound complex from our set of templates. To avoid using 

complexes that are essentially the same as the target complex due to the redundancy of PDB, 

we also removed any template A’ : B’ if the sequence homolog A’ and the query protein 

chain A share ≤90% sequence identity AND B’ and B share ≤90% sequence identity.

Figure 6 summarizes the performance of DockRank and the CAPRI scorers on the five 

targets. Target 30 had only two acceptable models and 0 medium/high models out of 1343 

uploader models. Neither DockRank nor any of the scorer groups was able to identify either 

of the acceptable models for Target 30. Target 35 had three acceptable models and 0 

medium/high models out of 499 uploader models, and only the Bonvin group was able to 

rank an acceptable model at rank 2. For Target 41, DockRank selected one acceptable model 

and nine medium quality models, while the best CAPRI scorer for the same target, the 

Bonvin group, selected two acceptable models, six medium quality models, and two high-

quality models. For Target 47, because high-quality templates are publicly available, no 

docking was required, and the prediction of the water-mediated interactions was the true 

challenge for this target. Although DockRank does not use any information regarding water 

molecules of the template structures, it is able to select seven fair models (0:1 fw(nat) < 0:3) 

and three good models (0:3 ≤ fw(nat) < 0.5) in terms of interface water positions, which is 

comparable to the performance of the top CAPRI performers for Target 47. For Target 50, 

DockRank can predict interfaces for only a subset of query chains but was able to identify 

one acceptable model (rank 5).

These results suggest that DockRank performed competitively with other top CAPRI scorers 

on these five targets. To quantitatively evaluate the performance of each scorer group, we 

assigned a score to each model based on its quality (0 for incorrect models, 1 for an 

acceptable model, 2 for a medium quality model, and 3 for a high-quality model), and used 

the sum of the scores of the top 10 models selected by each scorer group to assess the scorer 

group's performance on one target (see Table I). On the five CAPRI targets tested, the 

Bonvin group was the best scorer; they selected at least one acceptable or better model for 

four of the five targets, and their models have the largest sum of model scores, representing 

the overall highest model quality compared with those selected by other scorers. The other 

groups: Zou, Dock-Rank, the groups of Bates, Weng, and Wang (ordered according to the 

sum of their model scores) were able to select at least one acceptable or better model for 

three of the five targets. The rest of scorers performed well on fewer than three targets. 

Based on this comparison, DockRank ranks #3 overall (Table I). However, no definitive 

conclusions can be drawn regarding how the different scoring methods perform relative to 

one another until more CAPRI targets are made available.
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DockRank complements homology modeling

Because DockRank uses homologous complexes to infer interfaces and to rank docked 

conformations, it could be argued that superimposing or threading component structures 

onto the homointerologs (templates) used by Dock-Rank would provide a simpler method 

for modeling protein complexes, thereby obviating the need for docking and hence scoring 

the docked conformations using Dock-Rank. Although our purpose in developing DockRank 

was to provide reliable ranking of docked structures, not to generate docked models, we 

examined the utility of Dock-Rank in relation to homology modeling methods,46,47 such as 

superimposition or multimeric threading by conducting the following two experiments:

Experiment 1

For all dimer cases, we generated conformations by using TM-align62 to superimpose 

unbound component structures onto the templates (homo-interologs) used by DockRank to 

predict interfaces. Among 51 dimers considered, there are 19 cases (37%) for which all 

superimposed models are near-native (Supporting Information Table S4, section B), 19 

cases (37%) for which at least one superimposed model is near-native and at least one model 

is incorrect (Supporting Information Table S4, section A), and 13 cases (25%) for which no 

superimposed model is near-native (Supporting Information Table S4, section C).

For the 19 cases with at least one near-native superimposed model and at least one incorrect 

model, we used DockRank to rank the resulting models. The results summarized in 

Supporting Information Table S4 section A show that DockRank reliably assigns lower 

ranks to incorrect models in 18 of 19 cases. DockRank is able to differentiate the correct, 

that is, near-native, models from the incorrect, that is, non-near-native, models whereas 

sequence similarity fails to distinguish between them.

Among the 13 cases in which none of the superimposed models is correct (suggesting that 

the structures of the templates for these cases are not close enough for homology modeling 

to reliably predict the structure of the protein complexes), PS-HomPPI reliably predicts both 

sides of the interface in five cases (sensitivities range from 0.51 to 0.96, i.e., 51–96% of the 

actual interface residues are correctly predicted as interface residues; Specificities range 

from 0.40 to 0.96, that is, 40–96% of the predicted interface residues are actual interface 

residues). The three cases are 1H1V (difficult), 2OT3 (difficult), 2CFH (medium), 1ZHI 

(rigid-body), and 2AJF (rigid-body), where rigid-body, medium, and difficult denote the 

(increasing) levels of difficulty of docking as measured by the extent of conformational 

change upon binding (according to Docking Benchmark 3.0).

Experiment 2

We consider proteins that have more than two chains and for which no complete templates 

are available. We identified seven such cases, for which PS-HomPPI templates can be 

identified for only a subset of query chains and hence current approaches to superimposition 

or threading cannot be used (see Table II and Supporting Information Table S5).

We evaluated the interface prediction performance of PS-HomPPI, and compared the 

scoring performance of DockRank with that of IRAD, ZRank, and ClusPro on two decoy 
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sets of ZDock3-BM3 and ClusPro2-BM3. In order to examine the impact of the reliability of 

PSHomPPI predictions on the performance of DockRank in ranking conformations, we 

divided the cases into three groups: (i) Group I: cases in which PS-HomPPI can reliably 

predict both sides of the interface; (ii) Group II: cases in which PS-HomPPI can reliably 

predict only one side of the interface; (iii) Group III: cases in which PS-HomPPI cannot 

reliably predict interacting residues on either side of the interface (see Supporting 

Information Table S5). Three of the four cases in Group I belong to the “difficult” or 

“medium” categories (corresponding to large vs. medium conformational change upon 

binding) of the Docking Benchmark 3.0. The reliability of PS-HomPPI in predicting 

interfaces for these cases demonstrates that, as expected, our sequence-based interface 

predictor PS-HomPPI is robust to large conformational changes. For all four cases, 

DockRank significantly improved the ranking of docked conformations (Table II). For 

example, for case 1GP2, DockRank ranked one acceptable model as number 1, in contrast to 

IRAD and ZRank, whose top ranked acceptable models are ranked at position 85 and 133, 

respectively. This result shows that when both sides of the interface are reliably predicted, 

even for a subset of the query chains, DockRank is able to improve the rankings of docked 

conformations. As expected, for the two cases in Group II and the one case in Group III, 

DockRank cannot rank docked conformations reliably. However, for six of seven multiple-

chain cases in this experiment, PS-HomPPI is able to reliably predict the interfaces for at 

least one chain (Supporting Information Table S5), which can be used to provide important 

constraint information for docking programs.

From the results of the experiments, we conclude that structure superimposition can be a 

viable alternative for generating all-atom models of complexes when templates that share 

high global sequence similarity are available, and DockRank can be used to reliably 

differentiate the correct superimposed models from incorrect ones. In the case of multimeric 

complexes, for which PS-HomPPI can identify only partial templates for a subset of query 

chains, we find that PS-HomPPI reliably predicts interface residues for at least one side of 

the interface. When both sides of an interface can be reliably predicted by PS-HomPPI, 

DockRank can significantly improve the rankings of docked models. When only one side of 

an interface can be reliably predicted, DockRank cannot improve the ranking of docked 

models, but the interfaces predicted by PS-HomPPI can be used to constrain docking and 

thus potentially improve the quality of the resulting models. The ability of our ranking 

method, DockRank, and our interface predictor, PS-HomPPI, to reliably make use of 

dimeric protein complex templates in cases with more than two chains is of special interest 

in light of the fact that solving 3D structures using experimental methods is usually more 

difficult for large protein complexes with multiple chains than for small protein complexes.

DISCUSSION

Selecting near-native conformations from a large number of decoys generated by a docking 

program remains a challenging problem in computational molecular docking.10 In this 

study, we presented DockRank—a novel scoring method for protein–protein docking based 

on predicted interfaces. The proposed scoring function relies on a measure of similarity 

between interfaces of docked models and predicted interfaces by a partner-specific interface 

predictor, PS-HomPPI.
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The major conclusions of this study are as follows: (1) Comparisons of DockRank with two 

state-of-the-art energy-based docking scoring functions, ZRank, and IRAD, show that 

DockRank consistently outperforms both on a decoy set of 67 docking cases for which 

PSHomPPI is able to predict the interface residues between the receptor and the ligand and 

for which ZDock 3.0 is able to generate at least one hit among 54,000 candidate decoys per 

case. These results suggest the viability of DockRank as an alternative to complex energy-

based scoring functions in cases where it is possible to obtain reliable partner-specific 

interface predictions. (2) Comparisons of DockRank variants that use different sources of 

predicted interfaces underscore the importance of using partner-specific interface predictions 

to rank docked conformations. (3) DockRank is able to improve upon the Success Rate, 

average Hit Rate, and L-RMSD of the conformations returned by ClusPro. (4) DockRank 

performs competitively with the CAPRI top scorers on the five targets we assessed. (5) 

DockRank complements structural superimposition and threading methods in important 

ways. In cases where sufficiently good templates can be identified for structural 

superimposition or threading methods to be applicable, DockRank can be used to reliably 

differentiate near-native superimposed models from incorrect superimposed models; in cases 

where homology modeling cannot be directly applied (i.e., cases in which only a subset of 

chains have templates), PS-HomPPI can reliably identify at least one side, and in some cases 

both sides, of the interface allowing DockRank to reliably rank docked models. (6) The 

results of our comparison of DockRank using actual partner-specific interfaces as opposed 

to PS-HomPPI predicted partner-specific interface residues for scoring docked 

conformations suggests that there is significant room for improving the performance of 

DockRank by improving the reliability of partner-specific interface residue predictions.

We hypothesize that the poor performance of Dock-Rank variants that use interface residues 

predicted by nonpartner-specific interface predictors, in comparison with DockRank using 

PS-HomPPI predicted interfaces, is at least in part explained by the fact that the docking 

cases used in this study correspond to nonobligate protein complexes. Most nonobligate 

complexes are transient interactions,63 which tend to be highly partner-specific.3,4,42 A 

perfect nonpartner-specific protein interface predictor can reliably predict, at best, the union 

of all the actual interface residues of a protein with all of its possible binding partners. 

Therefore, interface residues predicted by even the perfect nonpartner-specific interface 

predictor on the two proteins (A and B) that make up a docking case will include not only 

the actual interface between receptor A and ligand B, but also residues that play a role in 

interactions of A with partners other than B, and B with partners other than A. Thus, the 

interface residues predicted by nonpartner-specific predictors have a high rate of false 

positives when used in partner-specific setting. And these “false positive interface residues” 

may falsely give top ranks to docked conformations that have interfaces near these “false 

positive” interfaces, resulting in the corresponding deterioration in the quality of ranked 

conformations. This underscores the critical role of a reliable partner-specific interface 

predictor in the effectiveness of DockRank, at least for docking cases that correspond to 

transient interactions. The results of our experiments with DockRank using nonpartner-

specific interface predictions are consistent with the observation made by Li and Kihara55 

that nonpartner-specific interface predictions cannot reliably rank docked conformations. 

However, the reliable performance of DockRank using partner-specific interface predictions 
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indicates that predicted partner-specific interfaces can indeed be used to rank docked 

conformations more reliably than other state-of-the-art scoring functions, when interacting 

templates for both sides of the query interactions are available.

To facilitate comparisons with new scoring functions that may be developed in the future, 

the DockRank scores on the decoy sets used in this study are available to the community. 

Docked conformations generated using different ClusPro energy functions, L-RMSD for 

each docked conformation, ClusPro scores, and the recalculated L-RMSDs of models of 

1ML0 and 1RLB after including both identical bound ligand chains, are also available at 

http://einstein.cs.iastate.edu/DockRank/supplementaryData_journal.html.

Docking cases with large conformational changes upon binding present challenges for most 

scoring schemes. It is challenging both for docking programs to generate sufficient numbers 

of near-native conformations for such cases and for interface residue predictors to make 

reliable interface predictions. Therefore, it is important to evaluate the performance of 

scoring functions on complexes with different conformational change levels. Complexes in 

the BM3 dataset are classified into three groups based on the degree of conformational 

changes upon binding. We studied the performance of our underlying interface predictor, 

PS-HomPPI, with respect to different conformational change levels to indirectly study the 

performance of DockRank in ranking docked models of cases with different conformational 

changes. For each interface prediction, PS-HomPPI provides an interface prediction 

confidence zone (Safe/Twilight/Dark Zone) based on the degree of sequence similarity of 

the homo-interologs used for interface inferences. Because the effects of conformational 

changes and the prediction confidence zones on the performance of PS-HomPPI may be 

confounded, we summarized the interface prediction performance of PS-HomPPI into nine 

subgroups with respect to three levels of conformational changes and three prediction 

confidence zones (Table III). The results in Table III show that the performance of PS-

HomPPI is insensitive to conformational changes upon binding and it is clearly correlated 

with the prediction confidence zones: the higher confidence, the more reliable the interface 

predictions. Because both the interface prediction of PSHomPPI and the calculation of 

DockRank scores are insensitive to the conformational changes, we can expect that the 

ranking of conformations produced by Dock-Rank is relatively insensitive to conformational 

changes upon binding.

This allows us to investigate the performance of Dock-Rank as a function of prediction 

confidence, independent of the extent of conformational change upon binding. We studied 

the Success Rates and Hit Rates of DockRank on cases with only Safe, Twilight, and Dark 

Zone interface predictions (See Fig. 7).2 As expected, DockRank performs best with Safe 

Zone interface predictions. Although the performance of DockRank degrades in the Twilight 

Zone, it still outperforms other scoring functions in terms of the Success Rate. In Dark Zone 

(2 docking cases), DockRank is able to rank a hit at the rank of 100 out of 54,000 models for 

one case, but fails to find any hits for the other case among the top 1000 conformations.

2When a docking case has more than two protein chains (hence more than one pair of query proteins), the multiple pairwise interface 
predictions may have different confidence values. When a case has different confidence zones, it is not further analyzed here.
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Different weights can be assigned to predicted interfaces with different prediction 

confidences when calculating the scores for each docked conformation. In this study, we 

used weights 1, 1, and 0.001 for the Safe, Twilight, and Dark Zone interface predictions, 

respectively. Our web server allows users to set different weights for interface predictions 

from PS-HomPPI when ranking docked models: higher weight for Safe Zone predicted 

interfaces and lower weight for Dark Zone predicted interfaces.

Although superimposition or threading provides a simpler method for modeling protein 

complexes, they have several important limitations. To the best of our knowledge: (i) 

superimposition and threading methods cannot adjust the relative orientation of proteins to 

generate more accurate interface structures, which can be important in many practical 

applications; (ii) threading can generate only partial models aligned with the templates 

provided and the resulting models usually contain only C-alpha atoms, necessitating the use 

of other programs to add side chains and fill in unaligned portions of the structures; and (iii) 

in the case of large proteins with more than two chains or domains, it could be difficult to 

find complete templates or even partial templates that can be assembled into a complete 

template. Even in cases where it is possible to do so, the process relies heavily on the 

relative orientation of the shared template proteins with other proteins and on the structural 

similarity between the shared template proteins; inaccuracies in these steps can cumulatively 

decrease the accuracy of the resulting models. Our results show that DockRank 

complements structural superimposition and threading approaches in important ways. 

DockRank's ability to make use of partial templates could be useful in light of the fact that 

experimentally solving the structure of multiple-chain/domain protein complexes is harder 

than solving that of proteins with fewer chains/domains.

The applicability of DockRank is limited by the availability of partner-specific interface 

predictions used by DockRank. At present, PS-HomPPI, the sequence homology-based 

partner-specific interface predictor42 used by DockRank, can reliably predict interface 

residues only in settings where reliable homo-interologs of a docking case are available. For 

example, PS-HomPPI returns interface predictions for 85 out 119 cases comprising Docking 

Benchmark 3.0 (which translates to a coverage of 71%, data not shown). The limited 

coverage of PS-HomPPI limits the applicability of DockRank to the subset of docking cases 

for which homo-interologs are available. The coverage of PS-HomPPI, and hence that of 

DockRank, can be expected to increase as more and more complexes are deposited in PDB. 

Expanding the applicability of DockRank to a much broader range of docking cases than 

currently possible calls for the development of alternatives to PS-HomPPI. To identity 

templates, PS-HomPPI currently uses the sequence-sequence alignment method BLASTP, 

which has relatively low sensitivity in detecting remote homologs. This limits the ability of 

PS-HomPPI to predict interfaces for cases that have templates with conserved interfaces but 

low sequence similarity. Work in progress is aimed at exploring alternatives to BLASTP, for 

example, profile–profile alignments, to detect remote sequence homologs, and thereby 

enable PS-HomPPI to identify more templates with high local sequence similarity and 

conserved interface residues. In addition, we are also developing machine-learning 

approaches to partner-specific interface prediction that do not rely on homo-interologs, as 

well as hybrid methods that combine the complementary strengths of homology-based 

partner-specific methods, such as PS-HomPPI, and partner-specific machine-learning 
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predictors trained using sequence and structural features of component proteins to be docked 

against each other. Because the performance of DockRank in ranking conformations is 

limited ultimately by the reliability of available partner-specific interface information, any 

advances in methods for reliable partner-specific interface prediction or for that matter, 

high-throughput interface identification methods, can be leveraged to obtain corresponding 

improvements in the performance of DockRank.

Because of the high computational cost of exploring the large conformational space of 

complexes formed by several protein chains, there has been increasing interest in utilizing 

knowledge of the actual or predicted interface residues between a pair of proteins to 

constrain the exploration of docked configurations to those that are consistent with the 

predicted interfaces (thus improving the computational efficiency of docking and the 

accuracy of docking33,64–69). This raises the possibility of using PS-HomPPI predicted 

interfaces as a source of constraints to limit or bias the conformational space sampled by 

docking algorithms.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Success rates of DockRank and other scoring schemes on the ZDock3-BM3 decoy set 

plotted against the top m conformations. The x-axis is plotted on a logarithmic scale to 

emphasize the region of top ranks. The Success Rate of DockRank (red, using predicted 

interface residues from a partner-specific predictor, PS-HomPPI) is compared with two 

energy-based scoring functions, IRAD (black) and ZRank (yellow), and with variants of 

DockRank using interface residues predicted by three state-of-the-art protein interface 

residue predictors: NPS-HomPPI (pink), PrISE (green), and meta-PPISP (blue). NPS-

HomPPI, PrISE, and meta-PPISP are nonpartner-specific (NPS) interface predictors. The 

success rate of DockRank's scoring function supplied with partner-specific actual interface 

residues (labeled as “PS-Act Int,” gray-dashed line) is plotted to define the upper bound of 

DockRank's scoring function. Studied here are 67 docking cases that have at least one hit (a 

conformation with I–RMSD ≤ 2:5å) among 54,000 candidate decoys and for which PS-

HomPPI is able to return interface predictions.
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Figure 2. 
I-RMSDs of top ranked conformations selected by different docking scoring methods on the 

ZDock3-BM3 decoy set. The lower (Q1), middle (Q2), and upper (Q3) quartiles of each box 

are 25th, 50th, and 75th percentile. Interquartile range IQR is Q3–Q1. Any data value that 

lies more than 1.5 × IQR lower than the first quartile or 1.5 × IQR higher than the third 

quartile is considered an outlier, which is labeled with a red cross. The whiskers extend to 

the largest and smallest value that is not an outlier. Averages are marked by green dots. 

Studied here are 67 cases for which ZDock 3.0 is able to generate at least one hit (I–RMSD 

2:5Å) and for which PS-HomPPI is able to return interface predictions. DockRank's scoring 

function supplied with actual partner-specific interfaces (PS-Act Int) set the lower bound of 

I-RMSDs of top ranked conformations that DockRank's scoring function can select.
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Figure 3. 
Success rates of DockRank and ClusPro scoring functions on the ClusPro2-BM3_31 decoy 

set plotted against the top m conformations. The x-axis is plotted on a logarithmic scale to 

emphasize the region of top ranks. ClusPro scoring functions (default cluster-size based, 

center energy-based, lowest energy-based) were applied on the original docked 

conformations (109 docked conformations per docking case) generated by ClusPro's 

underlying docking program, PIPER. DockRank was applied on the docked conformations 

(30 of the 109 docked conformations per case) output by ClusPro scoring functions. The 

success rate of DockRank's scoring function supplied with partner-specific interface-based 

ranking (gray-dashed line) is also plotted to show the upper bound of the success rate of 

DockRank's scoring function. Studied here are 31 cases for which ClusPro 2.0 is able to 

return at least one hit (a docked conformation with L–RMSD 10Å) and for which PSHomPPI 

is able to return interface predictions. We limited m (the number of top ranked 

conformations) to 9, since ClusPro returned only nine conformations for one of the docking 

cases, 1PPE.
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Figure 4. 
The difference between the averages of L-RMSDs of top models between DockRank and 

ClusPro Rank on each case of the ClusPro2-BM3_45 decoy set. Positive values correspond 

to cases where the top five ranked DockRank conformations have a lower average L-RMSD 

than those ranked by ClusPro.
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Figure 5. 
The top conformations ranked by DockRank and ClusPro for docking case 1ML0. The red 

ribbon is the receptor. (A) The highest ranked models selected by ClusPro (ligand shown as 

gold ribbon) and DockRank (ligand shown as blue ribbon), with the bound ligand that is 

included in the BM3 dataset (pink surface representation). (B) The top five ranked models 

(ribbons) with two bound ligands from PISA. Figure generated using PYMOL [70].
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Figure 6. 
The rankings of top 10 selected models by DockRank and the CAPRI scorers.
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Figure 7. 
The interface prediction of PS-HomPPI on the ZDock3-BM3 decoy set in different interface 

prediction confidence zones. A docking case with more than one receptor-ligand chain pair 

may have predicted interfaces from different confidence zones. Only cases with predictions 

in a single confidence zone and with at least one hit are studied here. Fifty-eight cases have 

only Safe Zone interface predictions, out of which ZDock 3.0 is able to generate at least one 

hit for 48 cases. Fourteen cases have only Twilight Zone interface predictions, out of which 

10 cases have at least one hit. Two cases have only Dark Zone interface predictions, of 

which two cases have at least one hit.
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Table I

The Comparison of DockRank with the 29 CAPRI Scorers

Scorer groups Target 30 Target 35 Target 41 Target 47 water Target 50

1 Bonvin 0 1 20 17 7

2 Zou – 0 12 16 13

3 DockRank 0 0 19 13 1

4 Bates 0 0 11 14 2

5 Weng 0 0 4 11 3

6 Wang 0 0 1 7 10

7 Korkin – – – 17 2

8 Umeyama – – – 16 –

9 Xiao – – 11 – 1

10 Camacho – – – 11 –

Alexov 0 – – – –

Bajaj – – 0 – 1

Elber – – 4 – 5

FireDock – 0 – – –

Fernandez-Recio 0 0 0 2 0

Gray – – – 0 2

Grudinin – – – 0 2

Haliloglu – – 4 5 0

Jiang 0 – – – –

Jin 0 – – – –

Kemp 0 0 – – –

Kihara – – 7 0 –

Lee – 0 – – –

Pal – – – – 1

SAMSON – – 5 – –

Sternberg 0 – – – –

Takeda-Shitaka 0 0 10 – –

Vajda 0 – – – –

Vakser – 0 – – –

Wolfson 0 – – – –

Incorrect, acceptable, medium, and high-quality models are assigned with a score of 0, 1, 2, and 3, respectively. Dash denotes that a scorer did not 
submit any model for that target. The number in each cell is the sum of the scores of the 10 models selected by a scorer group. Ranks of the top 10 
scorers are shown. All other scorers are listed alphabetically.
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Table III

Interface Residue Prediction Performance of PS-HomPPI on the BM3 Dataset with Three Different Prediction 

Confidence Zones on Three Levels of Conformational Changes upon Binding

Confidence zones Conformational change upon 
binding

Number of predictions (out of 372) CC F1 Specificity Sensitivity

Safe Rigid 138 0.63 0.64 0.71 0.65

Medium 22 0.59 0.59 0.72 0.59

Difficulty 26 0.56 0.55 0.74 0.55

Twilight Rigid 34 0.46 0.52 0.55 0.59

Medium 4 0.38 0.4 0.43 0.38

Difficulty 4 0.54 0.6 0.58 0.63

Dark Rigid 4 0.12 0.19 0.19 0.38

Medium 0 – – – –

Difficulty 0 – – – –

Average 232/372 = 62% 0.58 0.59 0.67 0.61

Only the interfaces between the receptors and ligands are predicted and used by DockRank in ranking docked models. During the evaluation, we 
consider each partner-specific-predicted receptor–ligand interface as one prediction. For example, for a complex AB:C with two receptor chains A 
and B and one ligand chain C, we consider four predictions: A|A:B, A|A:C, B|B:A, C|C:A, where A|A:B means the interface of A that interacts 
with its binding partner B. Sometimes, part of a protein may not have interface predictions from PS-HomPPI because of the lack of aligned 
residues from putative sequence homologs. These residues are not considered in the evaluation here, because they are not used by DockRank in 
ranking docked models. Correlation coefficient (CC), F1, specificity, and sensitivity are performance measurements of interface predictions (see 
Supporting Information Text S3 for definitions). The higher their values, the more reliable the predictions.
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