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Abstract

The potential utility of synthetic macrocycles as drugs, particularly against low druggability 

targets such as protein-protein interactions, has been widely discussed. There is little information, 

however, to guide the design of macrocycles for good target protein-binding activity or 

bioavailability. To address this knowledge gap we analyze the binding modes of a representative 

set of macrocycle-protein complexes. The results, combined with consideration of the 

physicochemical properties of approved macrocyclic drugs, allow us to propose specific 

guidelines for the design of synthetic macrocycles libraries possessing structural and 

physicochemical features likely to favor strong binding to protein targets and also good 

bioavailability. We additionally provide evidence that large, natural product derived macrocycles 

can bind to targets that are not druggable by conventional, drug-like compounds, supporting the 

notion that natural product inspired synthetic macrocycles can expand the number of proteins that 

are druggable by synthetic small molecules.
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INTRODUCTION

It has been estimated that, of the ~3000 human proteins with potential utility as drug targets, 

only a minority are addressable using current approaches for small molecule drug 

discovery1. There is consequently great interest in developing approaches for identifying 

therapeutically useful inhibitors for the large number of targets that are not conventionally 

“druggable”, such as protein-protein interfaces (PPI)2–5. Two decades of experience 
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applying fragment-based lead identification methods has shown that the difficulty with PPI 

targets is not simply that drug-like compounds that can bind them are rare and require more 

powerful screening strategies, but rather reflects an intrinsically low propensity to bind small 

druglike molecules with high affinity4,6,7. Thus, although a number of druglike inhibitors of 

PPI targets have been reported2,8,9, attention is increasingly turning to exploration of 

compound classes that fall outside conventional definitions of druglikeness10–13. The search 

for suitable new chemotypes is complicated by the need to consider not only their potential 

to bind strongly and specifically to their intended target, but also whether they are likely to 

possess the properties required for pharmacological activity in vivo, such as good solubility, 

the ability to penetrate cell membranes to access intracellular targets, and resistance to 

metabolic degradation.

Synthetic macrocycles have received growing attention for their potential as drugs, due in 

large part to their proposed utility against low druggability targets14–19. This interest was 

initially sparked by the observation that natural product-derived drugs often violate 

conventional definitions of druglikeness, suggesting that they identify distinct regions of 

chemical space that represent alternative solutions to the challenge of achieving both potent 

target modulation and good pharmaceutical properties20. The high prevalence of 

macrocycles among these drugs strongly suggests that a macrocyclic structure helps confer 

these favorable properties. The notion that cyclization of a ligand can increase its binding 

affinity by eliminating unproductive conformations is well established14,16,17, but how a 

macrocyclic structure might help confer drug-like pharmaceutical properties is less clear. 

Lipinski21 and others20 have speculated that natural products might be substrates for 

transporter proteins that mediate their active uptake through cell membranes. Moreover, 

there is evidence that the constrained flexibility of macrocycles also contributes to increased 

passive permeation through biological membranes22–24 and thus to improved oral 

bioavailability25. The ability of macrocycles to display “chameleonic” properties by 

adopting conformations that partially bury hydrophilic or hydrophobic functionality from 

the solvent environment, for example by formation of intramolecular hydrogen bonds to 

bury polar groups during permeation through biological membranes, has also been invoked 

as a potential contributor to solubility and membrane permeability14,22–24. It is also 

proposed that some cyclic peptides might permeate membranes by pore formation, chelation 

of divalent metals, or direct binding to specific phospholipids14,24.

The term “macrocycle” encompasses an enormous range of chemical structures, only a tiny 

fraction of which are likely to have the characteristics required for good pharmacological 

activity. To aid in the design of MC compound libraries for drug discovery it would be 

helpful to know what structural and physicochemical features render MCs most likely to 

bind strongly and specifically to a targeted protein, and to have good solubility, good cell 

permeability and high metabolic stability. For example, it would be useful to know whether 

protein binding is better achieved by considering the MC ring merely as a scaffold that 

presents a set of substituents that engage the protein, or whether a better approach is to 

design compounds with the expectation that some ring atoms will directly participate in 

binding. The physicochemical balance of the compounds is also an important question. 

Conventional metrics for druglikeness are of limited value in addressing this question, as 
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generally these have been constructed by empirically evaluating conventional drug 

candidates, which are dominated by non-macrocyclic compounds. New, MC-specific design 

guidelines are thus needed.

One approach to filling this information gap is to analyze how proteins bind 

pharmacologically active MC natural products, with the goal of identifying common 

features that might inform the design of synthetic MCs intended to target proteins. 

Surprisingly, no systematic structural survey of MC binding modes has previously been 

reported. Here we identify a representative set of MC-protein complexes for which co-

crystal structures have been reported, and examine these structures to establish the key 

characteristics of their binding modes in comparison to complexes with conventional, drug-

like ligands. We also develop a refinement to the FTMap algorithm for computational 

fragment mapping26–28, and use this method to evaluate the number, strength and spatial 

distribution of druggable subsites (a.k.a. binding energy “hot spots”) within each MC 

binding site, to assess how MC binding sites differ from sites that bind conventional drugs. 

Based on our analysis we propose specific guidelines for the design of synthetic MC 

libraries that possess structural and physicochemical features likely to be favorable for 

binding to protein targets and also for good bioavailability. We additionally provide 

evidence that large, natural product derived MCs can bind targets that are not druggable by 

conventional, drug-like compounds, giving concrete support to the notion that natural 

product inspired MCs can expand the range of proteins that can be targeted with 

pharmaceutically relevant synthetic small molecules.

RESULTS

To identify a representative, non-redundant set of protein-MC X-ray co-crystal structures for 

analysis, we began by identifying all entries in the Protein Data Bank (PDB) that contained 

natural products or natural product-derived MC ligands with ring sizes of 14 or more atoms. 

We filtered the structures in this set using several additional criteria, detailed in Methods, to 

exclude low quality structures and also certain chemotypes, such as cyclic nucleotides, that 

we considered of low relevance for drug discovery. Most importantly, where the database 

contained complexes of the same protein bound to close structural analogues of a given MC, 

or complexes of a given MC bound to paralogs or orthologs of the same protein target, we 

selected one representative example to avoid biasing our data set with multiple copies of 

essentially the same complex. This selection process resulted in the surprisingly small 

number of 22 distinct MC-protein complexes, encompassing 19 distinct MCs and 13 distinct 

proteins (Supplementary Results, Supplementary Fig. 1). Although this set represents a 

relatively small number of complexes, it contains all non-redundant examples we could find 

that met our quality criteria, and thus represents the most complete data set available on 

which to base such an analysis.

Characteristics of the Test Set

The MCs in the test set range in size from 14–35 ring atoms, with molecular weights ranging 

from 365–1291 Da. For the subsequent analysis we found it useful to divide these 

compounds into two size categories: “small macrocycles”, which include the six MCs in the 
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test set with molecular weights <600 Da. – i.e. within or close to the accepted upper limit for 

conventional drugs21 – and “large macrocycles”, which comprise the 13 MCs with m.w. 

>600 Da, which thus substantially violate this key descriptor of conventional druglikeness. 

To determine whether the limited number of non-redundant MCs for which complex 

structures exist are representative of natural product MCs in general, and of MC drugs in 

particular, we compared our test set against 3747 natural product MCs15, and also against 44 

MC compounds identified as approved drugs, primarily taken from the CHEMBL 

database29 (Supplementary Table 1). In terms of ring size, our test set is fairly representative 

of all natural product MCs, and closely mirrors the size distribution found for approved MC 

drugs even though only three compounds are common to both sets (Supplementary Fig. 2). 

In terms of lipophilicity (clogP), polar surface area (PSA), number of hydrogen bond donors 

(HBD) and acceptors (HBA), and number of rotatable bonds (NRB), the large MCs in the 

test set closely match the oral MC drugs, with an average MW that is ~3-fold higher than 

that for conventional oral drugs, and a substantially higher number of hydrogen bond donors 

and acceptors, but with comparable lipophilicity as measured by clogP (Fig 1a–d, 

Supplementary Table 2). Both the large MCs in the test set and the oral MC drugs 

additionally have a greater number of rotatable bonds compared to the set of all oral drugs. 

In contrast, the small MCs in the test set possess structural and physicochemical properties 

that fall within the ranges observed for conventional oral drugs, aside from having a slightly 

higher average molecular weight. From these results it is clear that (i) approved MC drugs 

occupy a region of chemical space that is quite distinct from that defined by conventional 

druglike ligands, and (ii) the MCs in our test set appear to resemble the subset of MC drugs 

that can be taken orally.

Protein-MC binding geometry and extent of interface

The MC-protein binding modes observed among the test set can be described in terms of 

three broadly distinct interaction geometries. Slightly more than half of the large MCs bind 

with the MC ring roughly perpendicular to the protein surface, such that one edge of the ring 

binds along the bottom of an extended groove or cleft on the protein, with substituents 

interacting with adjacent binding pockets, and the outer edge of the ring exposed to solvent. 

An example of this “edge-on” binding mode is shown in Figure 2a. The remaining large 

MCs adopt a different binding geometry in which the MC ring lies face-on to the protein 

surface, making contacts across a large area (Figure 2b). The MCs that display this face-on 

binding mode invariably have 1–2 large substituents that interact with substantial adjacent 

clefts or pockets on the protein. In contrast, most of the small MCs adopt a compact, roughly 

globular conformation and bind in a cleft or pronounced depression on the protein (Figure 

2c).

The small MCs tended to be almost fully enveloped within their protein binding sites, 

burying a quite uniform 82 ± 4 % of their total solvent accessible surface area (SASA) upon 

binding (Figure 3a; Supplementary Table 3), as exemplified by Macbecin in its complex 

with hsp90 (Figure 2c). In contrast, the large MCs appeared to bury a fairly uniform 630 ± 

120 Å2 of surface upon binding, corresponding to an average of 57 ± 8 % of the 

compounds’ total SASA, with at most a modest dependence on MC size. This value is 

roughly twice the 300 ± 130 Å2 of SASA buried by a typical drug30, and approaches the 800 
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± 200 Å2 of SASA buried on average by each binding partner at a protein-protein 

interface31.

Physicochemical Characteristics of Binding Regions of MCs

It has been proposed that the advantageous pharmacological properties seen for certain large 

natural product MCs arises because these compounds possess distinct structural domains 

whereby, for example, a predominantly hydrophobic target binding region is 

physicochemically balanced by the presence of polar functionality on other parts of the 

molecule14,15. To test this proposal we analyzed the polar/non-polar balance of the MC 

atoms that make contact with their protein targets, as defined by their burial of >5 Å2 of 

SASA in the complex. For the large MCs in our test set, on average 73 ± 9 % of the MC 

atoms that make contact with the protein are nonpolar (i.e. C, S or Cl) and 27 % are polar (N 

or O) (Fig. 3b). This non-polar/polar ratio is essentially identical to the 71%/29% (±7%) 

ratio we found for the MC atoms as a whole. Similar results are obtained if the ratio of non-

polar/polar contacts is instead quantified in terms of MC atoms within 4.5 Å of the protein, 

or total buried surface area. Thus, for the complexes with large MCs for which X-ray 

structures exist, the physicochemical nature of the regions that participate directly in binding 

is similar to that for the compound as a whole.

Participation of Different MC Regions in Target Binding

To gain insight into the roles that different regions within the MC structure play in protein 

binding, we categorized MC heavy atoms into three different regional types (Fig. 3c). These 

are; (i) “ring atoms”, that comprise the contiguous, sigma-bonded ring by which the MC size 

is defined; (ii) “peripheral atoms”, which are small groups such as methyl, carbonyl, 

hydroxyl, and halogens that consist of a single heavy atom directly appended to the ring; and 

(iii) “substituent atoms”, comprising larger (i.e. two or more heavy atoms) structures 

connected to the ring. The large MCs in our test set, and also the oral MC drugs, contain an 

average of 4–5 of these larger substituents, together encompassing roughly half of the heavy 

atoms in the MC (Supplementary Table 4). Approximately 38% of the structure is made up 

of ring atoms, on average, while peripheral groups make up the remaining ~15%. Analyzing 

the extent to which different regions of MC structure participate in binding we found that, 

for the large MCs, ~60% of MC atoms that make direct contact with the protein are 

contributed by substituents, with ring atoms contributing only 15% and peripheral atoms – 

which are the least numerous regional atom type – contributing a surprisingly high 22% of 

the total contact atoms (Figure 3d). Normalizing for the different abundances of the regional 

atom types (Figure 3e) shows that, although peripheral atoms make up only a small fraction 

of the structure of a given MC, where present they are highly likely to directly participate in 

binding to the target. Specifically, among the large MCs 72 ± 17 % of peripheral atoms 

make direct contact with the protein, whereas only about half of substituent atoms do so, and 

about one quarter of ring atoms (Supplementary Table 4).

Examining the physicochemical composition of contact atoms from different sites on the 

MC ligands revealed the surprising finding that, although the physicochemical composition 

of contact atoms overall matched that of the whole MC molecule, significant biases exist for 

atoms in certain regions of the MC structure. Figure 3f shows the percentage of polar versus 

Villar et al. Page 5

Nat Chem Biol. Author manuscript; available in PMC 2015 May 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



nonpolar contact atoms, enumerated separately for substituent, peripheral and ring atoms. It 

can be seen that the balance of polar versus nonpolar contact atoms in the substituents tends 

to match the composition of the compound as a whole. Contacts involving ring atoms are 

largely nonpolar, however. Peripheral atoms, in contrast, are much more likely to be polar 

compared to other regions of MC structure, and those peripheral atoms that directly contact 

the protein similarly are predominantly polar.

We additionally evaluated the occurrence and locations of intramolecular hydrogen bonds in 

the bound MCs. We found that in 12 of the 22 protein-MC complexes the bound MC 

showed no intramolecular hydrogen bonds, and all but one of the remaining complexes 

showed only one or two such interactions (Supplementary Table 5). The exception was 

argadin bound to chitinase, for which the 10 HBD and 11 HBA present on the MC engage in 

5 intramolecular hydrogen bonds. The overall picture, however, is that among MCs in our 

test set only a small minority of HBD or HBA are internally complemented in the bound 

conformations. This finding suggests that if these compounds passively permeate cell 

membranes they likely adopt alternative conformations to do so.

Characteristics of MC binding sites on proteins

In addition to understanding how natural product MCs bind to their targets, it is also of 

interest to know whether the sites on proteins that bind MCs differ in measurable ways from 

sites that bind conventional drug-like small ligands (Fig. 4). Identifying distinctive 

properties of MC binding sites might give insights into how to design synthetic MCs to be 

complementary to such sites, and might additionally provide a basis for identifying which 

proteins are most suitable to target with natural product-inspired MCs. In addition to global 

binding site characteristics such as size, shape and physicochemical composition32, it has 

been shown that the ligand-binding properties of protein surfaces are governed by the 

number, strength and spatial distribution of binding energy “hot spots”33–35. Hot spots are 

local surface regions whose shape and physicochemical character gives them the potential to 

develop substantial binding energy through interaction with atoms from a binding partner.

To analyze the MC binding sites in the test set we developed a modification to the well-

validated FTMap method for computational fragment mapping (Figure 4a). Validation of the 

FTMap algorithm across a large number of different systems has shown that the method can 

reliably identify the locations of binding energy hot spots that are exploited by known 

ligands26–28,36–39. It has also been shown that the number of probe clusters in a given CC 

provides a relative measure of the energetic importance of the hot spot for binding to small 

molecule ligands40 or to other proteins39,41. For the current work we constrained the initial 

mapping to a sphere of radius 10 Å centered on the ligand binding site (Figure 4b). This 

constraint restricted the analysis to a more or less uniform area of the protein surface, large 

enough to encompass the regions that accommodate even the largest MCs in our set, so that 

the number and strengths of the CCs could be compared between different proteins. For 

comparison to the MC-protein complexes, we assembled a diverse “comparator drug set” of 

24 X-ray co-crystal structures of conventional drugs or drug-like ligands bound to their 

protein targets (Supplementary Table 6). When computationally mapping the comparator 

drug set the initial probe map was restricted to the same 10 Å sphere used for the MC 
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complexes, so that the number of binding energy hot spots identified and the density of 

probes at each hot spot could be directly compared. The FTMap analysis was done using the 

protein from each complex structure after removing the ligand atoms, to characterize the 

binding site without reference to which portions of it are occupied by a particular ligand.

Figure 4b shows a typical result from FTMap analysis of a MC binding site, for the 

Pectenotoxin-2 binding site on actin. Multiple binding energy hot spots were identified. A 

subset of these – including the top ranking CCs that are predicted to be energetically most 

significant – trace out the regions of the protein surface that accommodate the MC ligand. 

Other CCs occur in nearby regions of the protein surface, indicating that these regions have 

the potential to interact favorably with ligands, but are not exploited by the particular ligand 

present in the complex. The results of analysis of all the MC binding sites, together with the 

comparator set of druglike ligand binding sites, are collected in Table 1. They show that the 

binding sites that accommodate the large MCs are about 15% larger than those for 

conventional drug-like ligands (p < 0.05), as measured by the distance between the two CCs 

that define the furthest extent of the site. This difference is derived from the locations of the 

binding energy hot spots alone, without regard to whether these hot spots are occupied by 

the ligand in the experimentally observed complex, and thus reflect the intrinsic properties 

of the binding sites. The MC binding sites and conventional drug binding sites on average 

contained the same number of hot spots, but in the large MC binding sites these are spaced 

significantly further apart (P < 0.01). In particular, the two top ranking hot spots, which are 

most important for binding26,28, are on average separated by 10.2 Å for the large MC 

binding sites versus only 7.5 Å for the drug-like comparator set (p < 0.01). The top two 

binding hot spots were not always widely separated in the large MC binding sites, but in 

most instances were >10 Å apart and in some cases were separated by as much as 18 Å. In 

contrast, for the binding sites for the drug-like ligands, in over 80% of cases the two most 

important CCs were within 9 Å of each other. In all of the above measures, the binding sites 

for the small MCs were essentially indistinguishable from sites that bind conventional drug-

like ligands.

In addition to differences in the binding sites themselves, the MC and non-MC ligands also 

differed in how they exploited binding energy hot spots within their binding sites. Hot spots 

were designated as being occupied if both (i) the center of mass of the probes in a given CC 

fell within 2 Å of any non-hydrogen atom of the ligand, and (ii) at least 25% of the CC 

probe atoms were within 1.25 Å of the MC atoms. On average, the drug-like ligands in our 

comparator set occupied 3.6 CCs, representing 45% of the hot spots present at the binding 

site. In contrast, the large MCs utilized an average of 5.2 distinct hot spots, comprising some 

66% of those available (Fig. 4c). This difference in hot spot utilization was statistically 

significant (P < 0.01; Table 1). Therefore, in addition to being somewhat larger than sites 

that bind conventional druglike ligands, the MC binding sites were also more fully occupied 

by their ligands. These two factors together lead to the very large protein-ligand contact area 

for the large MCs that was described above (Fig. 3a, Supplementary Table 3). Analyzing the 

degree to which different regions of the MC structure engage with hot spots in the binding 

site we found that ring, peripheral and substituent atoms that make contact with the protein 

were equally likely to interact at a hot spot versus a non hot spot region (Supplementary Fig. 

4). This result suggests that contacts involving any portion of the MC structure can 

Villar et al. Page 7

Nat Chem Biol. Author manuscript; available in PMC 2015 May 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



contribute to the generation of binding energy. Interestingly, the finding that MCs interact 

with a greater number of hot spots than conventional drug-like ligands was also seen for the 

small MCs, emphasizing the different binding modes of small MCs and drug-like ligands 

despite their rather similar dimensions and physicochemical properties.

Role of Target Site in Determining MC Interaction Mode

Comparing the binding of structurally different MCs that bind at the same site provides 

insight into the extent to which binding site structure dictates binding mode. The binding of 

small MC ligands such as geldanamycin and radicicol to the nucleotide binding site of 

HSP90 has been described42. The commonalities in the binding modes of Rapamycin and 

FK506 for FKBP have also been extensively discussed14, though this ligand pair represents 

a special case in that the chemical structures of the regions that make contact with the 

protein are essentially identical. Among the complexes in the test set, however, are several 

examples of MC pairs with quite distinct structures that bind at the same site on a common 

target protein.

Reidispongiolide A (RspA) and Kabiramide C (KabC) each bind to the same surface site on 

actin. Figure 5a shows that the macrocyclic portions of these two natural products employ 

different strategies to achieve binding to the target, finding alternative ways to position their 

large and structurally homologous substituents so they can exploit key binding hot spots in 

an adjacent cleft. Figure 5b shows that the 15-member MC argadin and the 17-member MC 

argifin bind to a common surface site on chitinase, but again exploit this site in different 

ways. The two ligands occupy roughly the same space and exploit many of the same hot 

spots, but the geometries with which the ring and substituent portions of these ligands 

interact with the site are quite different. The MC rings of the compounds do not significantly 

overlap, and the largest substituents project in opposite directions, leading to an almost 

“head to tail” relationship between the binding geometries. As a third example, Cyclosporin 

(Csp) and Sanglifehrin A (SfA) display an “edge on” binding mode with cyclophilin (Figure 

5c), with the MC rings themselves occupying largely the same region of space and 

interacting with mostly the same binding hot spots. However, the two ligands exploit 

different hot spots with some of their substituents. Overall, these examples show that a given 

binding site can interact with different MC structures by employing quite distinct binding 

mechanisms.

Druggability of MC binding sites

Finally, we addressed the question of whether the MC binding sites in the test set can be 

considered druggable with respect to conventional small molecule ligands, or whether they 

represent conventionally undruggable sites that are uniquely targeted by MCs. The latter 

result would provide concrete support for the hypothesis that using natural product-inspired 

MCs might expand the range of proteins that can be targeted with pharmaceutically relevant 

synthetic molecules. It is well established that the hit rate achieved in an experimental 

fragment screen is a good predictor of druggability6,43, and that application of the same 

principle computationally using FTMap can distinguish druggable from non druggable 

targets with high reliability26,28,35,44. Specifically, published studies show that when a 

protein is globally mapped (i.e. with no constraints on where probes can lie on the protein 
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surface) using the standard FTMap 16 probe library, druggable binding sites are 

characterized by the presence of a strong (>16 probe clusters) CC plus at least one other CC 

containing 5 or more probe clusters, located within 7 Å of the first26,28. We therefore used 

FTMap to globally map the 16 distinct MC binding proteins represented in the test set, to 

evaluate which sites would be rated as druggable using these previously established criteria. 

As was the case in the published FTMap druggability analyses, the protein targets were 

mapped using separate crystal structures of the unbound proteins, rather than using the 

protein structures from the bound complexes. The analysis showed that six of the MC 

binding sites were rated as druggable and ten as not druggable (Supplementary Table 7). 

Thus, a substantial proportion of the MC binding sites in the test set appear to be poor 

prospects to bind conventional drug-like ligands with high affinity.

DISCUSSION

The notion that MCs might provide a means to achieve pharmaceutically useful inhibitors of 

PPIs and other traditionally difficult targets rests principally upon two ideas: (i) being larger 

than conventional drugs, and also conformationally constrained, MCs can potentially make 

more extensive contact with the protein target, and can do so without excessive entropic 

penalty16; and (ii) a macrocyclic structure can promote good pharmaceutical properties 

despite a high compound molecular weight and other significant deviations from 

conventional definitions of druglikeness14,17,19,23,24,45. The validity of these ideas is 

supported by the existence of a modest number of PPI-targeting MC drugs that violate 

conventional druglikeness guidelines14,19,23. However, we currently lack any framework for 

assessing the utility of MCs as a general approach to inhibiting low druggability targets, or 

for predicting which types of macrocyclic molecular structures might be good for this 

purpose.

The premise that the larger size of MCs renders them good prospects to bind and inhibit PPI 

targets can be quantitatively framed in terms of Ligand Efficiency (LE), a concept in which 

the binding affinity of a ligand is normalized for differences in ligand size to provide a 

measure of how efficiently the ligand generates binding energy per heavy atom (HA) of its 

structure46. To achieve a pharmacologically relevant binding affinity of KD ≤10 nM, a 

ligand with a molecular weight within the Rule of Five threshold of 500 Da. – which on 

average corresponds to ~38 HA – must generate at least –RTln10−8/38 = ~0.3 kcal.mol−1 of 

binding energy per HA of ligand structure46,47. Supplementary Table 2 shows that oral MC 

drugs have an average MW of 920 Da., and range up to well over 1000 Da., corresponding 

to 75 or more heavy atoms, and that some non-oral MC drugs are even larger. Thus, for a 

MC to achieve a binding affinity of 10 nM would require only −RTln (10−8)/75 = 0.15 

kcal.mol−1/HA, or even less for larger MCs. Thus, MCs of a size that demonstrably can 

have good pharmaceutical properties are potentially able to target proteins that are less than 

half as druggable as conventional drug targets, where druggability is defined as the potential 

of a site to generate binding energy with a small molecule ligand. Indeed, developing an 

earlier suggestion3 we propose that Potential Ligand Efficiency (PLE) represents a 

quantitative way to think about the druggability of PPI interfaces and other challenging 

targets that can give insight into the level of difficulty presented, and also into the prospects 

for compounds of a given size to achieve strong binding.
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The above analysis suggests that natural product inspired MCs do indeed have broad 

potential to bind strongly to low druggability targets, provided that they can interact with a 

geometry that results in a substantially increased contact area compared to conventional 

drug-like ligands. Our analysis shows that this condition is invariably satisfied by the large 

MCs in the test set, whose average contact area is more than twice that seen for conventional 

drug-like ligands. Consistent with this idea, our analysis of the druggability of the MC 

binding sites in the test set revealed that the majority do not appear to be druggable as 

assessed by the FTMap benchmarks previously established for other target classes26,28,35,44. 

This result suggests that MCs can bind to target sites capable of generating as little as 0.1–

0.15 kcal.mol−1 of binding energy per HA of ligand structure, which would be very far from 

druggable by conventional compounds. Overall, our results suggest that use of appropriately 

designed MCs can substantially expand the range of druggable targets, as illustrated in 

Figure 4d. The historical success of macrocyclic natural products and their derivatives as 

drugs14,19,20,23 suggests that such targets present a significant opportunity for drug 

discovery.

Exploiting the opportunity provided by natural product-inspired MCs would be greatly 

enabled by knowledge of what structural features of such compounds are likely to promote 

strong binding to protein targets and, separately, good pharmaceutical properties. To meet 

the latter need, we might envision a set of guidelines analogous to Lipinski’s Rule of Five21, 

Veber’s Rules48, or similar druglikeness guidelines8, but based on the behavior of 

macrocyclic chemotypes. Based on the value ranges observed for the molecular properties 

encompassed in the Rule of Five and Veber’s Rules for the 18 orally available MC drugs 

(Supplementary Table 2), we tentatively propose a modified set of property ranges that we 

believe is more appropriate for the design of synthetic MC libraries for use in the discovery 

of oral drugs (Table 2). The set of compounds on which these ranges are based is necessarily 

very small, though it includes all known examples of orally available macrocyclic drugs. 

Nonetheless, the results show that the oral MC drugs display quite consistent properties that 

in many cases are clearly distinct from those observed for conventional drugs.

An enormous variety of MC structures might be envisioned that conform to the guidelines in 

Table 2. We therefore attempted to use our analysis of MC binding modes to devise more 

specific design guidelines for the kinds of MC structures likely to bind to proteins, and 

therefore likely to have useful pharmacological as well as pharmaceutical properties. The 

properties of the large MCs contained in our test set of protein-MC complexes coincide 

closely with the oral MC drugs, supporting the notion that analysis of the binding modes of 

the test set might return information relevant to the design of orally available MC 

compounds. This analysis led us to identify a number of structural features in the MCs that 

are common to these pharmacologically active MCs.

i. The oral MC drugs and the large MCs in our test set typically contain 1–2 large 

substituents, often totaling 20–30 heavy atoms or more, plus several much smaller 

substituents such as acetyl, methoxy or isobutyl groups. In natural product MCs the 

vast majority of substituent atoms, including small peripheral groups attached to 

ring atoms, participate directly in contact with the protein. Thus, structural diversity 

in these regions is an important consideration when designing MC libraries for drug 
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discovery. Although only about one in three ring atoms contacts the protein, 

collectively these contribute ~25% of the contact area. Moreover, ring, peripheral 

and substituent atoms that contact the protein are equally likely to bind at a hot 

spot. Therefore, all regions of the MC must be considered potentially important for 

achieving good binding complementarity.

ii. The disproportionate role in binding played by single HA substituents attached to 

the ring suggests that achieving an appropriate number and diversity of such 

peripheral groups is particularly important for good protein binding activity. 

Mimicking natural product MCs by including multiple polar atoms in these 

peripheral positions also provides a means to ensure adequate PSA, which is 

critical for good aqueous solubility and thus for pharmaceutical utility49.

iii. The regions of the MC that interact with the protein target, and the MC structure as 

a whole, have a drug-like physicochemical balance of one polar (O or N) atom per 

2–3 nonpolar (C, S, Cl) atoms. Consequently, the clogP for oral MC drugs is 

similar to that for conventional drugs, while absolute PSA scales with molecular 

weight and is much higher.

iv. Whether a large MC adopts an edge-on or a face-on binding mode appears to be 

dictated by the topology of the protein surface. However, different MC structures 

can interact at a given binding site in otherwise quite distinct ways, by exploiting 

different sub-sets of the available binding energy hot spots. The face-on binders 

often bind such that a large – in some cases almost drug-sized – substituent can 

access a substantial neighboring pocket or cleft. The edge-on binders typically 

display a bound conformation in which the ring is flattened and elongated, such 

that even substituents attached to the solvent-exposed edge of the ring can reach to 

make extensive contact with the protein (see, for example Figure 5c). Thus, even 

for edge-on binders the substituents are typically not restricted to a single edge of 

the MC ring. These findings argue that a diverse, general purpose MC library with 

large and small substituents distributed around the ring might have utility across a 

wide range of different protein binding site topologies.

v. A common feature among the oral MC drugs and the MC test set is a significant 

degree of unsaturation in the ring, due to alkene or amide bonds or to cross-links or 

externally fused small rings. Unlike rotatable bonds in general, single bonds within 

an MC ring do not substantially mitigate against oral availability48. Nevertheless, 

the relatively high degree of unsaturation observed for these MCs suggests that 

substantial rigidification of the MC ring is a feature of pharmaceutically relevant 

MC chemotypes.

The MC structural features described above are summarized in Table 3, which, together with 

the property ranges in Table 2, we tentatively propose as a set of design guidelines for 

synthetic MCs intended as pharmaceutically useful binders or inhibitors of protein drug 

targets. These guidelines must be considered as provisional, requiring validation and further 

refinement based on prospective experimental tests. Nonetheless, the available evidence 

supports the notion that compounds conforming to these properties represent a useful class 

for the discovery of pharmacologically active synthetic MCs
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Finally, our analysis also provides clues as to what features on a protein target might make it 

suitable for inhibition by a macrocyclic ligand. Specifically, the results of the FTMap 

analysis of the MC binding sites in our test set suggests that such sites typically contain at 

least 5 relatively strong binding energy hot spots, 1–2 more than is required for binding a 

conventional drug. These hot spots can be substantially further apart than is acceptable for a 

conventionally druggable binding site. In particular, the two strongest hot spots – which for 

conventional drug binding must be close together – for MCs can be separated by as much as 

18 Å. These criteria potentially provide a means to identify protein targets that are 

particularly well suited to bind MC ligands, based only on computational analysis of the 

structures of the unbound proteins.

METHODS

Selection of the MC-binding protein set

Selection began by identifying Protein Data Bank (PDB) entries containing natural product 

MC compounds (or a close derivative), excluding compounds that were discovered via 

linking or tethering of acyclic leads. This search was done over a period of several months, 

and included PDB entries deposited up to December 2012. The resulting complexes were 

then subject to a series of selection criteria in order to ensure set consistency and remove 

redundancies. MC were included only if they contained a minimum of 14 atoms in the main 

ring and were documented to function as a protein inhibitor (no substrates or coordinated 

metal cofactors). “Ring atoms” were defined as atoms in the continuous, sigma-bonded 

chain of atoms that defines the macrocyclic scaffold. In cases of fused ring or multi-cyclic 

systems, where two or more sigma bonds are shared between the rings, the system was 

regarded as a fused ring – i.e. the macrocyclic chain encompass both rings, and thus 

comprises the longest continuous cyclic sigma-bonded chain of atoms. Exceptions to this 

latter rule were if the smaller fused ring was aromatic, in which case it was counted along 

the shorter continuous side of sigma-bonded atoms. Also, where the fused rings share only a 

single sigma bond, then the macrocyclic chain was considered to include only the larger of 

the two rings, with the smaller fused ring considered as a substituent.

To minimize redundancy, if a compound had a series of closely related analogs bound to the 

same protein, only one was selected. For cases where identical MCs bound orthologs of a 

protein, one was selected, prioritizing human when possible. Structures of the same MC 

complexed to distinct proteins, or the same protein bound to different MC ligands, were not 

considered to be duplicates, because a different binding partner requires a distinct binding 

mode. Complexes with a mutation in the binding site were excluded, as well as those with a 

binding site conformation known to be dependent on crystal contacts. The PDB codes for 

the 22 complexes in the final test set are as follows: cyclosporin/cyclophilin, 1cwa; 

sanglifehrin/cyclophilin, 1ynd; rapamycin/FKBP, 2dg3; FK506/FKBP, 2fke; scyptolin/pan-

elastase, 1okx; ge2270a/ef-tu, 1d8t; nodularin R/PP1a, 3e7a; arylomycin/signal peptidase, 

1t7d; argadin/chitinase, 1waw; argifin/chitinase, 1wb0; pectenotoxin/ actin, 2q0r; 

kabiramide C/actin, 1qz5; reidispongiolide A/actin, 2asm; latrunculin B/actin, 2q0u; 

sorephan A/acetylCoA carboxylase, 3gid; geldanamycin/hsp90 (hu), 1yet; pochoxime A/
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hsp90 (hu), 3inw; macbecin/hsp90 (yeast), 2vwc; radicicol/hsp90 (yeast), 1bgq; radicicol/

topoisomerase VI-B, 2hkj; radiciol/PDK3, 2q8i; radicicol/PhoQ, 3cgy.

Defining Protein-MC Contact Regions

The interaction of the ligands with their respective proteins was assessed in two ways: (1) 

solvent accessible surface area (SASA) analysis and (2) determination of contact atoms. 

Changes in SASA were determined both for the ligand binding as a whole and for the 

individual ligand atoms using methods based on Lee and Richards51. For the individual 

ligand atom analysis, only those atoms burying more than 5 Å2 SASA upon binding were 

considered in order to exclude internal atoms that were unlikely to be able to interact with 

the protein. Contact atoms were defined as heavy atoms of the ligand within a 4.5 Å radius 

of a heavy atom of the protein.

Characterizing MC binding sites on proteins

To investigate the binding sites of proteins, a slightly modified version of the FTMap26 

algorithm was used, to normalize the results and thereby allow direct comparison between 

different protein types. The modification constrained the initial placement of the probes to a 

10 Å radius sphere around the center of mass of the ligand, so that mapping of each protein 

involved distribution of the probes across a similar extent of protein surface. The 10 Å 

distance constraint restricted only the starting positions for the probes, which through 

subsequent energy minimization could relax to locations slightly outside the initial 

placement perimeter.

The comparator set of complexes containing conventional druglike ligands was created from 

proteins found in the Astex Diverse 

Se

t 52 and the EMBL-EBI index of approved drugs (http://www.ebi.ac.uk/thornton-srv/databases/drugport/). Inhibitors with IC50 values of ≤ 1 µM or KD ≤ 100 nM were selected from these established sets. Only one protein from each family was used, to minimize bias. The complexes included in the comparator set are listed in Supplementary Table 6.

The analysis of which hot spots are occupied by the MC ligand was also done using the 

results of the constrained mapping. A consensus cluster, identifying a hot spot, was 

considered “occupied” by the ligand if any heavy atom of the ligand was within 2 Å of the 

geometric center of the cluster. For borderline cases an additional criterion was used, 

requiring a minimum of 25% of all probe atoms in the consensus cluster to be within 1.25 Å 

of a heavy atom of the ligand.

For the analysis of druggability, global (unconstrained) mapping of the ligand-free structures 

of MC binding proteins was performed using the FTMap algorithm26, implemented as the 

FTMap server (http://ftmap.bu.edu/). Based on previously published benchmarks26,53,54, a 

site was considered druggable only if it contained a consensus cluster containing at least 16 

probe clusters, plus at least one other consensus cluster located within a 7 Å radius and 

containing 5 or more probe clusters.
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Statistical Analysis

Table 1. The non-parametric Mann-Whitney U (rank) test55 was used to compare various 

properties of macrocycles to the same properties calculated for the comparator drug set. The 

P value shown is the probability that the two populations do not significantly differ.

Table S2. Here the statistical problem is to compare macrocycle properties to the same 

properties observed for all oral drugs. Since the latter sample is much larger than the others, 

non-parametric (rank-based) tests are not effective, and hence we had to use classical non-

paired t-tests based on the sample estimates of mean and standard deviation. The test 

assumes that each of the two populations being compared follows a normal distribution. We 

used the Anderson-Darling test56 to check the normality based on the samples. Since the test 

requires at least 7 samples, no test was applied to the small macrocycles. We found that each 

property of the large macrocycles followed a normal distribution, as the hypothesis of 

normality cannot be rejected at the P=0.01 level. Similarly, the properties of the not orally 

available MC drugs followed normal distributions. For all oral drugs we had only the 

statistics and not the detailed data. However, this sample is so large that significant 

deviations from normality are very unlikely. The only data where deviations from normality 

occurs are the orally available MC drugs, although in most cases the hypothesis of normality 

still cannot be rejected at the P=0.001 level. In spite of this result, the P values shown in 

Table S2, comparing macrocycle properties to the properties of all oral drugs, are based on 

the t-test, since we do not have other viable options, and the t-test results are generally not 

very sensitive to deviations from normality. Table 2 shows the two-tailed P values obtained 

by unpaired t-tests assuming unequal sample sizes and unequal variance s. In most cases the 

differences are significant at very low P, thus it is unlikely the deviations from normality 

would change the outcome.

Table S4. Since we compare samples with equal sizes, we again used the Mann-Whitney U 

(rank) test to calculate the P values shown in the table.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Properties of MCs in the test set, compared to MC drugs and to all oral drugs. (a)–(d) 
Physicochemical properties relevant to druglikeness for the MCs from the test set, in 

comparison to the 18 oral MC drugs and the 26 non-oral MC drugs from Supplementary 
Table 1, and also 1193 oral drugs described previously50. The bold horizontal lines indicate 

the mean value, and the vertical bars show the 10–90% value range. An asterisk (*) indicates 

that the mean value differs from that for all oral drugs at the P < 0.05 significance level, 

calculated using classical (non-paired) t-tests after establishing sample normality using the 
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Anderson-Darling test (see Methods). Numerical values for these and other properties are 

collected in Supplementary Table 2. (e) Conventional drugs and MC drugs occupy distinct 

regions of chemical space. The spheroids represent approximately the 10th–90th percentile 

range of values observed for molecular weight, polar surface area and number of rotatable 

bonds (NRB). The colored “X” symbols show the mean values for each compound class, and 

the dashed lines show the projection of the mean values on the MW versus NRB axes that 

represent the floor of the plot. The transparent blue box shows the range of property values 

encompassed by Lipinski’s “Rule of Five” (MW ≤ 500 Da)21 and Veber’s Rules (PSA ≤ 

140 Å2NRB ≤10)48.
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Figure 2. 
MC Binding Modes. (a) Edge-on binding mode, as exemplified by cyclosporin (Csp) 

binding to cyclophilin. MCs that bind edge-on typically adopt a conformation in which the 

ring is flattened and elongated, such that even substituents attached to the solvent-exposed 

edge of the ring can reach to make extensive contact with the protein. (b) Face-on binding 

mode, exemplified by the binding of Pectenotoxin-2 to actin. MCs that bind face-on 

typically project a large substituent into a substantial neighboring pocket or cleft. (c) 
Compact binding mode observed for most of the small MCs, exemplified by Macbecin 

bound to hsp90. Upper panel shows the conformation of the ligand (red) when bound to its 

protein target (wheat). The images below show surface representations of the MC ligands 

from the upper panels, viewed looking down on the exposed portion of the compound (upper 

image) and from the side (lower image), with the ligand atoms color-coded according to 

how much contact they make with the protein (Red ≥ 90% buried, orange = 50–90 % buried, 

Yellow = 25–50% buried, and White = <25% buried).
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Figure 3. 
Extent and character of the protein-MC binding interface. (a) Plot of buried SASA versus 

total SASA. The dotted line represents the line of identity, corresponding to 100% of MC 

SASA buried in the complex. Small MCs (triangles) bury ~80% of their SASA upon 

binding, with the size of the binding interface being roughly proportional to the surface area 

of the MC ligand. The large MCs (circles) bury a roughly constant 630 ± 150 Å2 of SASA 

(dashed line), with only a small dependence on compound size. The solid curve is an 

arbitrary interpolation of the data. (b) Comparison of the fraction of MC atoms that make 
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direct contact with the protein (defined as atoms burying >5 Å2 of MC SASA) that are polar 

versus nonpolar, versus the corresponding ratio for all MC atoms. (c) Example showing how 

MC heavy atoms can be categorized by region into ring atoms (black), substituent atoms 

(blue) and “peripheral” atoms (green). (d) Contributions to total MC buried surface by 

region. (e) Percentage of atoms from each region that make direct contact with the protein 

(defined as atoms burying >5 Å2 of MC SASA). (f) Average polar/nonpolar ratio for the 

atoms from each MC region that make contact with the protein. Error bars are standard 

deviations; an asterisk (*) indicates that the specified difference is statistically significant 

using the Mann-Whitney U (rank) test (see Methods).
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Figure 4. 
FTMap analysis of MC binding sites. (a) FTMap involves (i) placing probe molecules 

(represented by cyan or red spheres) on a dense grid around the protein, (ii) energy 

minimization and clustering to identify regions on the protein that interact most favorably 

with each probe type, and (iii) overlaying the results across all probe types to define “Cross-

Clusters” (CCs) that identify binding energy hot spots26(b) Representative result of FTMap 

analysis for Pectenotoxin-2 (magenta) bound to actin (wheat). CCs are shown as colored 

sticks. (c) Number of CCs occupied by ligands from the MC test set (blue) or the drug-like 

ligand comparator set (red). The plot shows the total number of probes the ligands overlap 

with, starting from the most highly-populated of the occupied CCs (ranked number 1) to the 

least populated (highest CC number), averaged over the entire set of complexes. The 

average number of CCs occupied is 5.2 for the MC ligands versus 3.6 for the druglike-

ligands (p < 0.01; see Table 1). (d) Venn diagram illustrating the proposal that MCs can 

bind conventionally druggable targets, and also additional targets whose Potential Ligand 

Efficiency (PLE) falls below 0.3 kcal.mol−1/HA. The distribution of druggabilities observed 

for the 16 large MC binding sites assessed using FTMap are shown by red “X” symbols.
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Figure 5. 
Comparison of binding modes for distinct MCs that bind at a common target site. (a) 
Reidispongiolide A (yellow) and Kabiramide C (green) bound to actin (wheat). The 

locations of the FTMap CCs are shown as colored sticks. Both compounds utilize the top 

two ranking hot spots, which line the site that accommodates their homologous large 

substituents, but the 26-member ring of RspA and the 25-atom ring of KabC exploit 

different sets of hot spots in their face-on interaction with the adjacent protein surface. (b) 
Argadin (green) and Argifin (yellow) bound to chitinase (wheat). Right panel is a 
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superposition of the two ligands with the protein removed, to more clearly show the “head-

to-tail” relationship between their binding modes, and the overlap with the FTMap CCs. (c) 
Cyclosporin A (green) and Sangliferhrin A (yellow) bound to cyclophilin (wheat). Lower 

panel is a superposition of the two ligands with the protein removed. The MC rings of these 

compounds bind edge-on, occupying largely similar sets of hot spots along the bottom of the 

binding cleft. But the large substituent of Sanglifehrin A reaches into a strong hot spot that is 

not exploited by Cyclosporin A, while an isobutyl substituent on the larger Cyclosporin A 

ring instead interacts with other hot spots not used by Sangliferhrin A.
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Table 1

Binding site statistics for macrocycles versus conventional druglike ligandsa

Binding Site Property

Macrocycles
Comparator

Drug SetAll Small
(mw <600)

Large
(mw >600)

Longest dimension 15.9 Å
(P = 0.13)

14.4 Å
(P = 0.90)

16.9 Å
(P = 0.044)

14.3 Å

Number of Hot Spots 7.9
(P = 0.68)

7.9
(P = 0.90)

7.9
(P = 0.98)

8.2

Occupied Hot Spots 5.1 (64%)
(P= 0.0008)

5.0 (60%)
(P = 0.011)

5.2 (66%)
(P = 0.008)

3.6 (44%)

Average Separation of
Hot Spots

8.9 Å
(P = 0.07)

8.3 Å
(P = 0.90)

9.3 Å
(P = 0.006)

8.1 Å

Separation of Top Two
Hot Spots

9.5 Å
(P = 0.013)

7.8 Å
(P = 0.40)

10.6 Å
(P = 0.004)

7.5 Å

Average CC Population 15.7
(P = 0.81)

16.1
(P = 0.90)

15.4
(P = 0.85)

15.7

Top CC population 26.5
(P = 0.21)

26.3
(P = 0.50)

26.7
(P = 0.23)

28.5

Top two CC population 49.1
(P = 0.17)

49.3
(P = 0.12)

48.9
(P = 0.51)

50.9

a
Values shown are mean values. P values are based on the Mann-Whitney U test, and indicate whether the mean for the set or subset of MCs is 

significantly different from the mean for the comparator drug set.
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Table 2

Proposed physicochemical guidelines for the design of synthetic large MC libraries for use in the discovery of 

oral drugs

Property Conventional
Drugs Oral MC Drugs Non-Oral MC

Drugs

Molecular Weight ≤500a 600–1200 600–1300

clogP ≤5a −2–6 −7–2

Polar Surface Area ≤140 Å2b 180–320 Å2 150–500 Å2

Number of hydrogen
bond donors ≤5a ≤12 ≤17

Number of hydrogen
bond acceptors ≤10a 12–16 9–20

Number of Rotatable
Bonds ≤10b ≤15 ≤30

a
From Lipinski’s Rule of Five21

b
From Veber’s Rules48.
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Table 3

Proposed structural guidelines for the design of synthetic large MC libraries for use in the discovery of oral 

drugs

Property Observed Rangea

Ring Size (R) 14–38

Number of Substituents 4.4 (3–8)

    Large substituents (≥5 HA)b 1.9 (1–3)

    Small Substituents (2–4 HA)b 2.4 (1–6)

Proportion of HA that are in Substituents 47% (40–59%)

Number of Peripheral
Groupsc 5–12

Polar/Nonpolar balance, Substituents ~30/70

Polar/Nonpolar balance, Peripheral
Groups

~60/40

Degrees of Unsaturation in Ring ~0.4R – 4 (±3)

N:O ratio 0.25:1 (0–0.4:1)

Chiral Centers 15 (9–18)

a
Mean (10–90% range).

b
HA = Heavy (i.e. non-hydrogen) atoms.

c
Peripheral groups are groups connected to the MC ring that contain only a single HA (see text).
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