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Abstract

Purpose—To assess the possible utility of machine learning for classifying subjects with and 

subjects without osteoarthritis (OA) using sodium magnetic resonance imaging (MRI) data.

Theory—Support vector machine (SVM), k-nearest neighbors (KNN), naïve Bayes (NAB), 

discriminant analysis (DIA), linear regression (LNR), logistic regression (LGR), neural networks 

(NNE), decision tree (DTR) and tree bagging (TBG) were tested.

Methods—Sodium MRI with and without fluid suppression by inversion recovery was acquired 

on the knee cartilage of 19 controls and 28 OA patients. Sodium concentrations were measured in 

regions-of-interest (ROIs) in the knee for both acquisitions. Mean (MEAN) and standard deviation 

(STD) of these concentrations were measured in each ROI, and the minimum, maximum and 

mean of these two measurements were calculated over all ROIs for each subject. The resulting 12 

variables per subject were used as predictors for classification.

Results—Either Min[STD] alone, or in combination with Mean[MEAN] or Min[MEAN], all 

from fluid suppressed data, were the best predictors with an accuracy >74%, mainly with linear 

LGR and linear SVM. Other good classifiers include DIA, LNR and NAB.

Conclusion—Machine learning is a promising technique for classifying OA patients and 

controls from sodium MRI data.

Keywords

sodium MRI; classification; machine leaning; cartilage; osteoarthritis

*Corresponding author: Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, 660 
First Avenue, 4th Floor, New York, NY 10016, USA. guillaume.madelin@nyumc.org. 

HHS Public Access
Author manuscript
Magn Reson Med. Author manuscript; available in PMC 2016 November 01.

Published in final edited form as:
Magn Reson Med. 2015 November ; 74(5): 1435–1448. doi:10.1002/mrm.25515.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



INTRODUCTION

Osteoarthritis (OA) is a degenerative disease of the articular cartilage that can be associated 

with a reduction in glycosaminoglycan (GAG) concentration, changes in the size and 

organization of collagen fibers, and increased water content [1]. Many magnetic resonance 

imaging (MRI) methods for assessing osteoarthritis in cartilage are under development, such 

as T2 mapping [2], T1ρ mapping [3], GAG chemical exchange saturation transfer 

(gagCEST) [4], delayed gadolinium-enhanced MR imaging of cartilage (dGEMRIC) [5], 

diffusion tensor imaging (DTI) [6], and sodium MRI [7]. All of these methods have their 

advantages and weaknesses [8], but quantitative sodium MRI [9] has been shown to strongly 

correlate with the GAG concentration in the cartilage [1,10,11]. Our team recently 

developed a sodium MRI method in which the synovial fluid signal around the cartilage is 

suppressed by adiabatic inversion recovery [12, 13]. Fluid suppression reduces significantly 

partial volume effect and thus increases the sensitivity of the technique to changes in GAG 

content within the cartilage. This promising technique could be a useful complementary tool 

to other imaging techniques (standard MRI, radiography) for detecting early signs of OA 

(loss of GAG), or follow-up of treatment of OA and cartilage repair, through direct 

assessment of the GAG content in cartilage. In a previous study [13], we found that the 

sodium concentration measurements (means and standard deviations) from fluid-suppressed 

sodium MRI of articular cartilage were best predictors of OA when compared with 

asymptomatic controls. In this latter study, we used logistic regression on full data to find 

the best individual variables (or predictors) for classifying OA subjects and controls, from 

the accuracy point-of-view. In the present work, we used the same data as Ref. [13] and 

applied different methods of machine learning to assess which variables or group of 

variables from sodium MRI generate the most efficient classification between control and 

OA. Efficiency of classification was assessed by adjusted accuracy, which is a modification 

of the accuracy definition that take into account the difference between sensitivity and 

specificity. Data classification using machine learning is a growing field of interest in 

medical diagnosis [14], and in multivariate data analysis of medical imaging, particularly in 

brain [15–17] and cartilage [18,19]. Nowadays, medical data collected is increasing in size 

and complexity, and machine learning could be of importance for interpreting and 

classifying these datasets as an aid to clinicians in the decision making process [14]. Medical 

data classification with machine learning would therefore allow to help develop an 

automatic and objective way of making decisions based on multiple parameters from one or 

different modalities (MRI, x-ray, blood test, biopsy etc.). Machine learning is a branch of 

artificial intelligence that focuses on algorithms capable of learning or adapting their 

structure (or model parameters) based on a training dataset, through optimization of a cost 

function [14,20]. A more detailed description of machine learning and of the methods used 

in the present work can be found in the following Theory section, and in references within. 

The aim of this exploratory study is to estimate if statistical/machine learning methods have 

the potential to be of utility for detecting OA in articular cartilage with sodium MRI in a 

robust and objective way.
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THEORY

Machine learning can be defined as “a set of methods that can automatically detect patterns 

in data, and then use the uncovered patterns to predict future data, or to perform other forms 

of decision making under uncertainty” [20]. In general, an original data set is divided in 2 

types of subsets: train datasets will be used to optimize a model that best represent the 

patterns in data (learning/training phase), and tests datasets that are used to assess the 

performance of the model for recognizing these patterns (testing phase). Machine learning 

can be separated in two types: supervised (or predictive) and unsupervised (or descriptive). 

In supervised learning, the goal is to learn a model from a vector of input data x to outputs y, 

given a labeled set of input-output pairs  with Strain the training set and N 

the number of training samples. Classification is a type of supervised machine learning for 

which the goal is to separate the data in different categories (or classes) y. In the present 

study, we will only talk about binary classification, where there are only two classes y ∈ 

{0,1}. For unsupervised learning, there is no known categories y in the data and the goal is 

to use only the input vectors x to find non-labeled patterns in the data (clustering). In this 

section we will present a short and very simplified description of the basic principles of the 

different methods of classification that used in this study (Fig. 1 and 2). More detailed 

descriptions of these methods may be found in references [20–25]. In general, the values of 

input vectors x are called variables, or features, or predictors, while the output values y are 

called categories or classes.

SUPPORT VECTOR MACHINE (SVM)

Support vector machine [26] is a classifier for which the goal is to find the best hyperplane 

in the variable space that separates two categories of data with the largest margin possible. 

Margin means the maximal width of the slab parallel to the hyperplane that has no interior 

data points. The margin is said soft when the algorithm allows a few data to be misclassified 

and to be located within the margin. The support vectors are the data points of each class 

that are closest to the separating hyperplane and form the boundaries of the margin. For 

linear SVM, the separating hyperplane can be described by the dot product equation w·x
+b=0, and the limits of the margin are defined by w·x+b=1 and w·x+b=−1, with b a constant 

and w a vector (normal to the hyperplane). The goal of SVM algorithm is to find the 

optimum b and w that separate the two classes of data with the largest margin possible using 

the train dataset. For quadratic SVM, the dot product equation can be replaced by a kernel 

function which includes w and also quadratic terms of x (nonlinear classification). A 2D 

linear example of SVM classification is illustrated in Fig. 1A.

K-NEAREST NEIGHBORS (KNN)

K-nearest neighbors [27] is a simple classifier in which a data point xi is classified by a 

majority vote of its k neighbors (k is generally an odd number to avoid ties). A commonly 

used distance metric for detecting neighbors in the variable space is the Euclidean distance. 

The training phase of the method consists simply of storing the variable vectors and class 

labels (xi, yi) of the train dataset. A 2D example of KNN classification with Euclidean 

distance, for k=3 and 5, is illustrated in Fig. 1B.
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NAIVE BAYES (NAB)

Naïve Bayes [28] is a probabilistic classifier based on the Bayes’ theorem with strong 

(naïve) independence assumption between variables, which appears to work well in practice 

even when this assumption is not valid. In the training phase, the method estimates the prior 

probability and likelihood that the sample belongs to each class using the train dataset. In the 

test phase, the method computes the posterior probability that a test sample belongs to each 

class. The method then classifies the test sample according the largest posterior probability. 

Written in a simple form, the posterior probability that a data point with vector of variables 

xi belongs to a certain class yi is Posterior = (Prior × Likelihood)/Evidence, with: (1) Prior = 

prior probability of any data to be in category y. The empirical prior probability of a class is 

the number of training samples of this class divided by the total number of training samples. 

(2) Likelihood = probability density functions (pdf) of each variable in the training dataset, 

which are assumed to be normal (Gaussian) distributions. (3) Evidence = a normalizing 

constant that scales both posterior probabilities equally. Therefore it does not affect 

classification and can be ignored. A 2D example of NAB classification with normal pdfs is 

illustrated in Fig. 1C.

DISCRIMINANT ANALYSIS (DIA)

Discriminant analysis [29] is a probabilistic classifier which assumes that the data has a 

Gaussian mixture distribution. For linear discriminant analysis, the model has the same 

covariance matrix for each class; only the means vary. For quadratic discriminant analysis, 

both means and covariances of each class vary. The method then find a weighted 

combination of variables (the discriminant function) in order to maximize difference 

between the classes pdfs. Similarly to NAB, the posterior probability that a data point xi 

belongs to a certain class is the product of the prior probability by the discriminant function 

(or likelihood, or multivariate normal density). DIA is closely related to NAB, analysis of 

variance (ANOVA) and principal component analysis (PCA). A 2D example of linear DIA 

classification with empirical prior is illustrated in Fig. 1D.

LINEAR AND LOGISTIC REGRESSIONS (LNR, LGR)

Linear and logistic regression classifiers can be described within the framework of 

generalized linear models (GLM) [30]. A GLM has 3 characteristics: (1) at each set of 

values for the predictors, the response has a distribution that can be normal, binomial, 

Poisson, gamma, or inverse Gaussian, with parameters including a mean µ; (2) a coefficient 

vector b defines a linear combination xb of the predictors x; (3) a link function f defines the 

model as f(µ) = xb. For LNR, the distribution is normal and the link function is defined as 

the mean function f(µ)=µ=xb (identity). For LGR, the distribution is binomial and the link 

function is defined as f(µ) =ln[µ/(1-µ)]=xb (logit), and the mean function is µ =1/

[1+exp(−xb)]. An extension to a nonlinear model can be made by including squared terms 

and products of pairs of distinct predictors in the model included in the link function 

(quadratic model). The unknown parameters b are typically estimated with maximum 

likelihood or Bayesian techniques using the training data. The outcome of both LNR or LGR 

is a probability 0<p<1. A cutoff probability is therefore defined (generally p=0.5) for 
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deciding to which class the new data sample xi belongs to (yi=0 if p<0.5 or yi=1 if p>0.5). 

An 1D example of LNR and LGR with threshold p=0.5 is illustrated in Fig. 2A.

NEURAL NETWORKS (NNE)

Neural networks [31] classifiers are loosely based on biological neural networks architecture 

in the brain, where neurons connected to each others by axons are used to process 

information. In the original version of NNE, an artificial neuron computes a weighted sum 

of its n input signals xj (j=1,2,…,n), and generates an output response r=1 if this sum is 

above a threshold u, and r=0 otherwise. The response output of each neuron can be 

computed as , with f an activation function, which is generally defined 

as a step function or a sigmoid (logistic) function. NNE can be described as a directed graph 

in which artificial neurons are nodes and directed edges (with weights) are connections 

between neuron outputs and inputs. There are two categories of NNE: (1) feed-forward 

networks, in which there is no loop, and (2) recurrent/feedback, which include loops of 

feedback connections. The most common NNEs are feed-forward networks, also called 

multilayer perceptron, where neurons are organized into multiple hidden layers with 

unidirectional connections between these layers (see Fig. 2B). The training phase of NNE 

consists of optimizing the weights wi using the train dataset, an optimization algorithm and a 

performance function (such as cross-entropy [32]). The train dataset is divided into 3 

subsets: a training subset to adjust the weights, a validation subset to minimize overfitting 

and a testing subset to test the final solution.

DECISION TREE (DTR)

A decision tree [33] classifier is a tree-like graph or model in which each internal node 

represents a test on an attribute (or predictor), each branch represents the outcome of the test 

and each leaf node represents a class label where a decision is taken after computing all 

attributes (see Fig. 2C). The 3 types of nodes are: (1) a root node that has no incoming edge 

(or branch) and one or more outgoing edges; (2) an internal (or test) node that has exactly 

one incoming edge and two or more outgoing edges; (3) a leaf (or terminal) node that has 

exactly one incoming edge and no outgoing edges. Each internal node splits the instance 

space into two or more subspaces according to a certain discrete function of the input 

attribute values. Each leaf node is assigned a class label representing the most appropriate 

target value, or a probability (using Bayes’ theorem for example) for the target attribute to 

have a certain value. Data samples are classified by navigating the tree from the root node to 

a leaf node according to the outcomes of the tests for each internal node along the path. 

Decision tree training is performed on a train dataset for optimizing decision (probability) 

thresholds of the internal nodes, that will then be applied on the test samples. Pruning is a 

technique that can be implemented in the algorithm in order to reduce the size of the 

decision tree by removing sections of the tree that provide little power to classify instances 

(branch trimming). This will reduce the complexity of the final classifier as well as provide 

a better predictive accuracy by reducing overfitting.
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TREE BAGGING (TBG)

Bootstrap aggregating (or bagging) [34] is a method used for enhancing the performance of 

weak learner classifiers such as decision trees, which are adaptive and robust but do not 

generalize well in general. Tree bagging consists in fitting many large trees to bootstrap-

resampled versions of the training data and classify by majority vote. Bagging helps 

reducing the variance of the classifications and helps avoiding overfitting. See Fig. 2D.

METHODS

SODIUM MRI DATA

In the present work, we used the same sodium MRI data of articular cartilage in the knee 

joint that was acquired in a previous study [13]. Sodium data acquisition and processing are 

summarized below. We refer the reader to this previous study [13] for more details on the 

data and for examples of distributions of sodium concentration values in different regions in 

cartilage for controls and OA patients.

Volunteers—19 asymptomatic volunteers (controls) and 28 symptomatic volunteers (OA 

patients) were recruited from the general public and from the New York University-Hospital 

of Joint Diseases knee osteoarthritis cohort, respectively. These OA patients fulfilled the 

criteria for clinical osteoarthritis symptoms defined by the American College of 

Rheumatology [35] and had radiographic evidence of tibial-femoral knee osteoarthritis, with 

a Kellgren-Lawrence (KL) grade of 1–4 on standardized weight-bearing fixed flexion 

posterior-anterior knee radiographs [36]. Among the 28 OA patients, 16 had a diagnosis of 

OA with KL=1, 7 with KL=2, 4 with KL=3 and 1 with KL=4. Patients with KL=1–4 are 

referred as ‘all OA’ population, and patient with KL1–2 are referred as ‘early OA’ 

population (n=23). This study was approved by the institutional review board and performed 

in compliance with the Health Insurance Portability and Accountability Act. All subjects 

provided written informed consent.

Hardware—Sodium MRI data was acquired on a 7 T whole-body scanner (Siemens 

Healthcare, Erlangen, Germany) with either a single-tuned sodium birdcage radiofrequency 

(RF) knee coil (Rapid MR International, Columbus, Ohio, USA), or a home-made 

multichannel dual-tuned 1H/23Na coil (NYU Center for Biomedical Imaging, RF Core, New 

York, NY) [37].

Sodium MRI acquisition and reconstruction—Sodium MRI data were acquired with 

a radial 3D sequence [38] and images were reconstructed offline in Matlab (Mathworks, 

Natick, Mass) by using a nonuniform fast Fourier transform algorithm [39]. Fluid 

suppression was obtained with inversion recovery (IR) by using an adiabatic pulse and 

appropriate inversion time before the radial 3D acquisition. The adiabatic pulse was the 

wideband uniform rate and smooth truncation (WURST) pulse [40] with a sweep range of 2 

kHz. In the present article, we will refer to the acquisition sequence without fluid 

suppression as radial 3D (abbreviation: R3D), and the sequence with fluid suppression as IR 

WURST (IRW). The parameters for R3D acquisition were: 10,000 projections, TR = 100 

ms, TE = 0.4 ms, flip angle = 90°, isotropic field-of-view (FOV) = 200 mm, dwell time = 80 
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µs, nominal (reconstructed) resolution = 2 mm, real (acquired) resolution = 3.3 mm, total 

acquisition time (TA) = 16:44 min. The parameters for IRW acquisition were the same as 

for R3D except TR = 140 ms, WURST pulse amplitude/duration = 240 Hz / 10 ms, 

inversion time (TI) = 24 ms, and TA = 23:25 min.

Image post-processing—All images were acquired in the presence of calibration 

phantoms placed within the FOV. These phantoms were made of 4% agar gel with different 

sodium concentrations (100, 150, 200, 250, and 300 mmol/L) and with known relaxation 

times. Sodium concentration maps (for both R3D and IRW) were calculated by using linear 

regression of the phantom signals after relaxation correction of the gels. The sodium maps 

were then corrected for the average T1 and biexponential T2* of cartilage in vivo [41] to 

achieve a more accurate quantification of the sodium concentration in cartilage. Because, on 

average, 25% of the volume in cartilage is made up of solids without any sodium, the values 

of the voxels of the final sodium maps were divided by a factor of 0.75 [42, 43]. Prior to this 

sodium quantification processing, all sodium images were corrected by the signal-to-noise 

ratio (SNR) map of each coil acquired on a large solution phantom filling the whole volume 

inside the coil. This RF correction was necessary mainly for correcting for sensitivity 

inhomogeneities of the multichannel RF coil.

Sodium data measurements—Three regions of interest (ROIs) of 30 pixels were drawn 

on the patellar (PAT), femorotibial lateral (MED), and femorotibial medial (LAT) cartilage 

on four consecutive sections of the sodium maps. Sodium images with ROIs are presented in 

Fig. 3A alongside proton images. Sodium maps from R3D and IRW in OA and control 

subjects are shown in Fig. 3B. The mean (MEAN) and standard deviation (STD) of sodium 

concentration were then calculated for each ROI (in mmol/L, or mM). For each subject and 

each sequence (R3D, IRW), the minimum, maximum, and mean of sodium MEAN and STD 

were calculated over the 12 ROI measurements (3 compartments: PAT, MED and LAT; and 

4 slices). Therefore, each subject will be assigned a set of 12 global statistical measures (or 

predictors) that will be used for classification. These measures will be abbreviated as 

following in the rest of this article: Min[MEAN]R3D, Max[MEAN]R3D, Mean[MEAN]R3D, 

Min[STD]R3D, Max[STD]R3D, Mean[STD]R3D, and Min[MEAN]IRW, Max[MEAN]IRW, 

Mean[MEAN]IRW, Min[STD]IRW, Max[STD]IRW, Mean[STD]IRW. The standard deviations 

(std) of MEAN and STD were also calculated over the 12 ROIs, but were found non-

significant in the classification analysis, and therefore will be ignored in this study. A z-

score transformation was also tested on all data, but with no effect on the final results, and 

therefore will not be discussed. The coefficient of determination R2 (the square of the 

coefficient of correlation) was calculated between all predictors for data including all OA, 

and early OA subjects only. This coefficient measures the strength of the linear association 

between two variables.

CLASSIFICATION

Classifiers—A total of sixteen classifiers were tested, from nine classification methods 

with different options (see Table 1):

• DIA (2 classifiers): Two types of discriminant analyses were tested: linear and 

quadratic. The prior probability of each class was chosen as empirical.
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• LGR (2 classifiers): Logistic regression was tested with both linear and quadratic 

models. The linear model contains an intercept and linear terms for each predictor. 

The quadratic model contains the linear model completed with all product pairs of 

predictors (including squared terms). Cutoff probability was chosen as 0.5.

• LNR (2 classifiers): Linear regression was also tested with both linear and 

quadratic models and cutoff probability = 0.5.

• KNN (2 classifiers): k-nearest neighbor was tested with k=3 and k=5, with 

Euclidean distance between variables.

• NAB (1 classifier): Naïve Bayes was tested with normal distribution model and 

empirical prior probability.

• NNE (2 classifiers): Neural networks were tested using feed-forward network 

architecture, sig-moid output neurons, and with 10 or 20 hidden layers. Pattern 

recognition was performed with a random selection of values of the training 

dataset, with local train/valid/test ratios = 0.6/0.2/0.2. The training algorithm was 

chosen as scaled conjugate gradient and the training performance was calculated 

using the cross-entropy method.

• SVM (2 classifiers): Support vector machine was tested with two kernels: linear 

and quadratic. Sequential minimal optimization (SMO) algorithm was used for 

finding the separating hyper-plane.

• DTR (1 classifiers): Decision tree was tested with empirical prior probability, and 

pruning option.

• TBG (2 classifiers): Tree bagging was tested with 10 and 20 trees.

Cross-validation partition—Two partition methods were used to classify the data: 

holdout cross-validation and resubstitution [22, 24, 44, 45]. For holdout cross-validation, the 

algorithm divides randomly the values of the predictors into a test (or holdout) set, with 

0<test ratio<1, and a train set, with train ratio = 1-test ratio. This process was performed 100 

times for each predictor, or set of predictors. The average and standard deviation of the 

sensitivity, specificity and (adjusted) accuracy of each classifier was then calculated for 

comparison of their classification performance. In this study, we tested the classifiers with 

train/test ratios = 0.5/0.5, 0.6/0.4 and 0.7/0.3. As the results with train/test ratios = 0.6/0.4 

and 0.7/0.3 were identical to the ones with 0.5/0.5, we will only show and discuss results of 

these latter ratios without loss of generality. For resubstitution, both the training and test sets 

contain all of the original values of the predictors (train ratio = test ratio = 1), and only one 

iteration of the classification process was therefore needed.

Feature selection and PCA—Feature (or variable) selection (FS) was used to select a 

subset of relevant predictors for use in the model construction of each classifier. These 

selected predictors can be different for each classifier, as they all use different methods of 

classification. It is therefore expected that some groups of features might be good predictors 

for certain classifiers but not for others. The criterion for selecting features was 

minimization of the misclassification from the confusion matrix for each classifier (sum of 
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false positive rate + false negative rate). Feature selection was performed sequentially on 

full data resubstitution, either in forward or backward direction. In forward FS, an initial 

candidate set includes only one predictor and the algorithm add predictors sequentially until 

the criterion increases. For backward FS, an initial candidate set includes all the predictors 

and the algorithm removes predictors sequentially until the criterion increases. Principal 

component analysis (PCA) was also applied for reducing the dimensionality of the data (see 

Fig. S1 in Supplementary Material).

Classifications—In this study, we performed first, classifications on all individual 

predictors separately with resubstitution (as a means to determine the optimum performance 

for each classifier with this data), and then with holdout cross-validation. The classification 

methods were then applied on the predictors selected by feature selection (both backward 

and forward) for each classifier with holdout cross-validation. Finally, classifications were 

also applied on the main principal components calculated from PCA with holdout cross-

validation (train/test ratios = 0.5/0.5).

SENSITIVITY, SPECIFICITY, ACCURACY, ROC

We used the standard definitions for sensitivity, specificity and accuracy of classification, 

and we defined OA as ‘Positive’ class and control as ‘Negative’ class. Using the standard 

abbreviations: TP = number of True Positives (OA classified as OA), TN = number of True 

Negatives (control classified as control), FP = number of False Positives (control classified 

as OA), FN = number of False Negatives (OA classified as control), we have the following 

formulas:

For ranking the classifiers, we defined the adjusted accuracy metric, which favors classifiers 

with higher accuracy which minimize the difference between sensitivity and specificity:

Receiver operating characteristics (ROC) analysis was also performed for all classification 

methods with the best predictor and holdout cross-validation (train ratio = test ratio = 0.5) 

and 100 iterations. Mean ROC curves and mean areas under the curve (AUC) were then 

calculated for each case, to compare the performance of the classifiers between each other, 

but also to compare this performance with the ranking of classifiers using adjusted accuracy.

All classification processing was performed in Matlab using functions from the Statistics 

toolbox.
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RESULTS

The coefficients of determination (R2) between all predictors, for data including all OA and 

early OA subjects, are shown in Table 2. For R3D data, a strong correlation (R2≥0.7) is 

observed between Mean values of MEAN or STD of sodium concentrations and their Min 

and Max counterparts. For IRW data, a strong correlation (R2≥0.7) is observed between 

Mean values of MEAN sodium concentrations and their Min and Max counterparts, and 

between Mean of STD and Max of STD. Tables 3 and 4 present the best results (from the 

adjusted accuracy point of view) for each classifier with full data resubstitution, when all 

OA subjects and only early OA subjects are included, respectively. Only individual sodium 

measures were included in each classification. In both cases (all OA and early OA), we can 

see that a majority of the best classifications for each classifier were obtained when using 

data acquired with IRW (16/20 instances for all OA, 20/22 instances for early OA), and 

particularly Min[STD]IRW, as predictors. However, the very best classifiers (adjusted ac-

curacy>80%) were TBG, DTR and KNN and were mostly using the MEAN sodium values 

(either from R3D or IRW) as best predictors.

Tables 5 and 6 present the best results (from the adjusted accuracy point of view) for each 

classifier with holdout cross-validation of the data and 100 iterations, when all OA subjects 

and only early OA subjects are included, respectively. Only individual sodium measures 

were included in each classification. In the holdout case, the best mean results for each 

classifier were obtained only when using data acquired with IRW (16/16 instances for both 

all and early OA), and particularly Min[STD]IRW, as predictors (14/16 instances for all OA, 

12/16 instances for early OA). In this case, the very best classifications (mean adjusted 

accuracy>70%) were obtained with LGR, DIA and LNR for all OA, and LGR, DIA, LNR, 

SVM and NAB for early OA, while TBG, DTR and KNN performed poorer. In both cases, 

linear LGR with Min[STD]IRW was ranked first. Table 7 shows the best classifications 

(mean adjusted accuracy≥65%) for all OA and for early OA data, after feature selection of 

the predictors, and with holdout cross-validation and 100 iterations. For both all OA and 

early OA, the very best classification was obtained when using only a simple predictor, 

Min[STD]IRW and DIA method (quadratic for all OA, linear for early OA), with a mean 

adjusted accuracy ≥70% and mean accuracy, sensitivity and specificity all ≥75%. For both 

cases, we can also notice that linear SVM performed reasonably, with mean adjusted 

accuracy > 68% and mean accuracy, sensitivity and specificity all ≥72%, when using two 

IRW predictors for classification: Min[STD]IRW associated with either Min[MEAN]IRW (for 

early OA) or Mean[MEAN]IRW (for all OA). Linear LGR also performed quite well (mean 

adjusted accuracy≥66%, with high mean accuracy ≥75%, high mean sensitivity ≥80% but 

moderate mean specificity ≥65–68%) with the same pair of predictors for both early OA and 

all OA: Min[STD]IRW and Mean[MEAN]IRW. LNR and NAB are the only other classifiers 

ranked in this table as all other classifiers generated a mean adjusted accuracy ⩽65%.

Tables with more detailed results are shown on Supplementary Material (Tables S1 to S6). 

Results from PCA are shown in Supplementary Material (Fig. S1 and S2, and Tables S7 and 

S8). We can observe in the 2D space of the two first principal components (biplot Fig. S2) 

that the variables from IRW are regrouped together (showing therefore moderate to strong 

correlation between them), and the variables from R3D are also regrouped together (also 

Madelin et al. Page 10

Magn Reson Med. Author manuscript; available in PMC 2016 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



showing therefore moderate to strong correlation between them). Variables from IRW and 

R3D show weak correlation (the angles between the lines are close to 90°). We can also 

detect that Min[STD]IRW and Mean[STD]IRW have the slightly longest lines in this 2D 

space (each line represents the approximate variance of the variable). Classifications were 

applied on the 4 first principal components calculated from PCA, which correspond 

altogether to 91% of the variance of the whole data initially represented by the 12 sodium 

variables. Results of the classifications are presented in Tables S7 and S8, but did not show 

any improvements compared to classifications with single variables (such as Min[STD]IRW 

and Mean[STD]IRW) or feature selection. Adjusted accuracies (and simple accuracies) from 

classification using principal components were all below the values obtained from data after 

feature selection, for both all OA and early OA data versus control data: <63% adjusted 

accuracy (<71% accuracy) for PCA, 65–73% adjusted accuracy (71–79% accuracy) for 

feature selection.

ROC analysis was also performed for all classifications of all OA vs. controls data with the 

Min[STD]IRW feature only (as it was found the more relevant feature in this study), with 

holdout cross-validation and 100 iterations. Mean ROC curves and mean AUCs over these 

100 iterations are presented in Fig. S3 and S4 of supplementary material. It was observed 

that the eight best classifiers, with AUC in the range 0.80–0.85, were the same as the eight 

best classifiers ranked from the (adjusted) accuracy viewpoint, as shown in Table 5, through 

not exactly in the same order.

DISCUSSION AND CONCLUSIONS

Results from the classification with data resubstitution and individual predictors confirm the 

results from our previous analysis [13] where Min[STD]IRW was found the best predictor for 

differentiating controls from both all OA and early OA patients, using logistic regression as 

a classifier. In the present analysis, surprisingly, weak learner classifiers such as KNN, 

DTR, and its extension TBG, generated the highest adjusted accuracies for classification, for 

both data including all OA and early OA, and with different predictors from IRW or R3D 

data. Other classifiers also generated reasonable adjusted accuracies that can still put them 

as good candidates for optimum classification with cross-validation and for multivariate 

analysis. When using the classifiers in the training/testing framework (cross-validation on 

individual predictors) however, the tendency was inverted and LGR, DIA, LNR and SVM 

performed better than DTR, KNN and TBG, all with the same predictor Min[STD]IRW. This 

shows that these latter classifiers are strong learners and present more robust and consistent 

results with our data. As previously found in Ref. [13], synovial fluid suppression (by IR in 

our case) was found primordial for allowing to differentiate healthy cartilage from cartilage 

of patient with a diagnosis of OA (both early OA KL1–2 or all OA late KL 1–4) when using 

sodium MRI. Fluid suppression reduces significantly partial volume effect in the images and 

allows to measure sodium (and GAG) content in cartilage more accurately.

After feature selection, two main classifiers were found to give some of the highest adjusted 

accuracies, in common for both early OA and all OA data: linear SVM and linear LGR, with 

only two predictors involved: Min[STD]IRW associated with either Mean[MEAN]IRW or 

Min[MEAN]IRW. As these two [MEAN]IRW predictors are strongly correlated (R2~0.82), 
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we can consider using either of them for future classifications. Mean[MEAN] (with or 

without fluid suppression) was usually used in previous sodium MRI studies as the main 

variable for detecting loss of GAG in cartilage (with generally a threshold of around 220 

mM such as Mean[MEAN]<220 mM ≡ OA, Mean[MEAN]>220 mM ≡ control) [1, 12, 13, 

43]. Due to their similar standard deviations over 100 iterations (~10%), we can consider 

that either linear LGR, quadratic DIA, linear DIA, and linear LNR with single predictor 

Min[STD]IRW, or linear SVM and linear LGR with two predictors Min[STD]IRW and 

Mean[MEAN]IRW (or Min[MEAN]IRW) give very similar results and can be useful 

classifiers from machine learning for classifying OA patients and controls with this kind of 

sodium MRI data. PCA did not improve the classification accuracies compared to feature 

selection. Moreover, PCA results can generally be difficult to interpret from a biological 

point-of-view. A biological interpretation would be more practical for understanding the 

disease and for comparing methods for its detection and/or grading assessment, or for 

understanding the effects of potential drugs or repair operation on the cartilage. In our study, 

we found that measuring the minimum variation of sodium concentration in cartilage 

Min[STD]IRW over different cartilage regions in the knee seems to be a good indicator of 

OA. One reason advanced in Ref. [13] was that the range of GAG (and sodium) 

concentrations within healthy cartilage is higher compared to OA cartilage, with high 

concentrations in the radial zone (next to the bone) and lower concentrations in the 

tangential zone (near the surface). Combining Min[STD]IRW with Mean[MEAN]IRW or 

Min[MEAN]IRW could therefore probably improve the performance of sodium MRI for 

assessing OA, as it will give information on both the mean and the variance of GAG content 

within articular cartilage. Further investigations are needed to assess this hypothesis, either 

on animal model of OA, or by comparing sodium MRI data with diffusion MRI [46] and 

dGEMRIC [5] data acquired on a larger population of controls and OA patients with 

different KL grades. This will be the next step of our study.

The difference of performance for the different classifiers used in this study can be due to 

their bias-variance trade-off characteristics, when applied to this kind of small size data (12 

variables of 47 data values). Bias can be defined as the tendency of the learning algorithm to 

“consistently learn the same wrong thing” [47], or the error introduced due to approximation 

of complex problems by a much simpler model [24]. The variance can be defined as the 

tendency of the learning algorithm to “consistently learn random things irrespective of the 

real signal” [47], or the error due to the amount of change of the learning algorithm if it is 

estimated using a different training dataset [24]. Basically, bias is a measure of how much 

far off is the model’s prediction from the correct value, while variance is a measure of how 

much different predictions from the model vary. Flexible (non-parametric) classifiers – such 

as DTR, KNN, NNE and TBG – have generally low bias/high variance and will have a 

tendency to overfit the data. These classifiers will therefore perform best when using 

resubsitution (train data = test data = all data), but will generate a higher error rate when 

applied with cross-validation, as they overfit the train dataset and thus misclassify the test 

dataset. This is what we observed with our data: DTR, KNN, NNE and TBG had the highest 

accuracies with resubstitution. On the other hand, these classifiers performed poorly with 

cross-validation, contrarily to less flexible parametric classifiers – such as LNR, LGR, DIA, 

SVM and NAB. These latter learning algorithms have generally high bias/low variance and 
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therefore don’t overfit the training data (they even probably underfit it) and generate lower 

misclassification of the testing data. As a consequence, when using a small train dataset as in 

our case, it is recommended to use such low variance methods for classification.

In addition to the bias-variance trade-off and overfitting characterictics of the different 

methods, failures in the classifications may come from many different factors (maximum 

adjusted accuracy obtained was~74% with holdout cross-validation): wrong diagnosis and 

grading of OA from radiographs, wrong classification due to the learning method (small size 

of training dataset), inaccurate sodium quantification due to noisy MRI data, inaccurate 

sodium calibration, subject movement, RF coil inefficiency. We expect that errors from 

sodium data acquisition (sequence, calibration, linear regression, relaxation corrections) are 

probably the main sources of failure of the classifications, and work to significantly improve 

the signal-to-noise ratio and the resolution of the sodium images is under progress (new 

sequences [48,49], new images reconstruction methods [50]).

A significant improvement of the classification would include a multiparametric approach 

from different MRI acquisitions as suggested in Ref. [18], including sodium MRI along 

proton MRI data such as such as apparent diffusion coefficient (ADC, linked to GAG 

content) and fractional anisotropy (FA, linked to collagen matrix) from DTI [46], T2 and 

T1ρ, dGEMRIC data, or magnetization transfer ratio, in the machine learning algorithm in 

order to increase the (adjusted) accuracy, sensitivity and specificity, and thus help the 

diagnosis of early OA or even help understand what is OA from an imaging point-of-view 

[51]. T1 and T2 (or T2*) sodium relaxation times measurements could also help improve the 

accuracy of sodium MRI for detecting early signs of OA. These relaxation times are highly 

correlated with the electric field gradients surrounding the sodium ions, through quadrupolar 

interaction, and therefore depend on the concentration of GAG molecules and also on 

collagen architecture of the extracellular matrix of cartilage.

This study was performed on a limited number of subjects (19 controls and 28 OA with 

different KL scores), but preliminary results show that machine learning could be a 

promising method for assessing diseases (OA in joint cartilage in our case) from MRI data 

in an automatic and objective manner. More controls and OA patients with different 

symptoms (and KL grade) must be scanned with sodium MRI alongside proton MRI (DTI, 

dGEMRIC, T2, T1ρ) for further validating the technique. As multiparametric MRI data 

might be long to acquire, we expect to improve the speed of acquisition for sodium MRI 

with compressed sensing reconstruction of undersampled data [50,52].

In conclusion, either Min[STD] alone or in combination with Mean[MEAN] or 

Min[MEAN], all from fluid suppressed data, were the best predictors with an accuracy 

>74%, mainly with linear LGR and linear SVM. Other good classifiers include DIA, LNR 

and NAB. A robust and accurate machine learning classification method based on sodium 

MRI data could therefore help detecting early signs of OA, assessing treatment follow-ups 

from cartilage repair procedures [53] or disease modifying osteoarthritis drug (DMOAD) 

[54] under test. On the long term, sodium MRI could be implemented as a complement to 

other imaging methods (radiography, proton MRI) associated with machine learning for 

increasing the objectivity of the decision making process by radiologists.
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
(A) Example of support vector machine (SVM) classification with 2 variables. In this 

example, the new data point (blue star) is classified as green category B. (B) Example of k-

nearest neighbors (KNN) classification with 2 variables and k=3 or 5. For k=3, new data is 

classified as red category A (2 red neighbors against 1 green), while for k=5, it is classified 

as green category B (3 green neighbors against 2 reds) (C) Example of naïve Bayes (NAB) 

classification for 2 variables. In this example, the numbers of samples in each category is 

Ngreen = 10 and Nred = 12, and therefore the prior probabilities for each category are 

Prior(A)=12/22=0.55 and Prior(B)=0.45. The posterior probabilities for a a data point to 

belong to category X (X=a or B) is Posterior(X)~Prior(X)×pdf(X,Variable 1)

×pdf(X,Variable 2). The new data point is then classified in the category with the highest 

posterior probability. (D) Example of discriminant analysis (DIA) classification for 2 

variables. The method is similar to NAB, but with a likelihood function = pdf from the 

discriminant function for each category.
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Figure 2. 
(A) Examples of linear regression (LNR) and logistic regression (LGR) classifications for 1 

variable, which are particular cases of generalized linear model (GLM). In this example, the 

cutoff probability for making a decision is 0.5, and therefore the new data sample (blue star) 

is classified as category A with both classifiers. (B) Schematics of feed-forward neural 

networks (NNE) binary classification for 3 input variables. Σ represents the weighted sum of 

all inputs arriving to a neuron, and f is the activation function (generally a step or a sigmoid 

function) that generates the output of each neuron. (C) Example of decision tree (DTR) 

classification with 3 types of variables (probability, categorical, numerical). (D) Example of 

tree bagging (TBG) for N trees.
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Figure 3. 
(A) Examples of sodium images of articular cartilage in the knee at 7 T (1st column) and 

proton images (2nd column). (B) Examples of sodium concentration maps in a control 

subject and a patient with OA, with and without fluid suppression (IRW and R3D 

respectively). R3D = Radial 3D, IRW = IR WURST. Figures from Madelin G. et al., 

Radiology 268(2), 481–491, 2013. Reproduced with permission from RSNA.
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