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Abstract

In multi-regional trials, the underlying overall and region-specific accrual rates often do not hold 

constant over time and different regions could have different start-up times, which combined with 

initial jump in accrual within each region often leads to a discontinuous overall accrual rate, and 

these issues associated with multi-regional trials have not been adequately investigated. In this 

paper, we clarify the implication of the multi-regional nature on modeling and prediction of 

accrual in clinical trials and investigate a Bayesian approach for accrual modeling and prediction, 

which models region-specific accrual using a nonhomogeneous Poisson process (NHPP) and 

allows the underlying Poisson rate in each region to vary over time. The proposed approach can 

accommodate staggered start-up times and different initial accrual rates across regions/centers. 

Our numerical studies show that the proposed method improves accuracy and precision of accrual 

prediction compared to existing methods including the NHPP model that does not model region-

specific accrual.
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1 Introduction

With advances in medical research, fairly effective treatments have been developed and have 

become the standard of care for many diseases in recent years, including some life-

threatening conditions. As a result, the clinical research on new investigational treatments 

generally needs to aim at demonstrating a meaningful improvement in the therapeutic effect 

over an active control treatment, rather than a placebo. As the bar for drug development 

rises, it presents a challenge to the industry in that the clinically meaningful improvement in 

therapeutic efficacy of a promising investigational treatment over an existing treatment is 

likely to be moderate in scale. This usually translates into substantial sample sizes in phase 

III clinical trials, noting that, unlike phase I/II trials1-3, adequate power is essential for phase 
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III trials. In practice, these phase III trials easily require thousands of patients, if not more. 

Consequently, it is hardly practical or even possible to enroll all patients from one region 

within an acceptable timeframe that is suitable for the drug development strategy.

In addition, differences in regulatory requirements exist between different countries, in spite 

of regular as well as ad hoc conversations between health agencies across different countries 

(such as the Food and Drug Administration in the United States, the European Medicines 

Agency, the Japanese Ministry of Health and Welfare, and the States Food and Drug 

Administration in China). Among many factors that contribute to the differences, an 

important one is the concern on differential treatment effects across different racial 

designations. When such concern is warranted, it may become a mandate to recruit patients 

from different regions or racial groups. Generally speaking, few sponsors are adequately 

resourced to conduct a separate registrational trial for each region, nor is it an efficient or 

ethical way of drug development; usually, one large trial with multiple participating regions 

that accommodates most of the regulatory requirements is employed.

Multi-regional trials require substantial investment of resources and present some unique 

challenges, which have drawn considerable interest in recent years; most notably, a recent 

special issue in Pharmaceutical Statistics4 explored some of these challenges. In practice, 

slower than expected accrual is common in clinical trials5, which can be costly to the 

industry, in particular, in multi-regional trials; as a result, proper monitoring and prediction 

of patient accrual is very important in multi-regional trials. Although patient enrollment by 

region is routinely tracked by the operational team, its inherent randomness is rarely 

accounted for. A proper monotoring/prediction tool of region-specific accrual may provide 

informative and reliable guidance on the quantity of drug supply, distribution of laboratory 

kits, and allocation of clinical staff, etc. In addition, the regions usually vary not only in their 

enrollment capacity but also in their accrual pattern over time. Moreover, the regions are 

subject to their respective Institutional Review Board (IRB) and regulatory agency for the 

approval of the protocol, which may cause delay in the kick-off of enrollment in the 

respective region and hence additional complexity when monitoring the overall recruitment 

of the trial.

Researchers have investigated modeling patient accrual in clinical trials with a goal of better 

prediction of future accrual and better allocation of resources; Barnard et al.6 provided a nice 

review of models for predicting accrual in multicenter clinical trials with a focus on the 

utility of the existing methods in practice. Senn7 investigated modeling the accrual process 

in multicenter trials as a homogeneous Poisson process (HPP) with a fixed accrual rate 

across all centers. Similarly, Gajewski8 developed a Bayesian model for accrual assuming 

the waiting time between two consecutive recruits are independently and identically 

distributed (i.i.d.) exponential random variables, which is equivalent to an HPP model. 

Anisimov and Fedorov9 investigated a Gamma-Poisson model for accrual in multicenter 

trials, and Mijoule et al.10 extended this model to a Pareto-Poisson model and discussed a 

sensitivity analysis; in both papers, the enrollment at each center is assumed to follow an 

HPP. However, accrual in real trials often does not follow an HPP11,12. To address this issue, 

Tang et al.12 proposed an accrual model for multicenter trials in which the overall accrual 

rate was modeled as piecewise linear or constant with pre-specified or estimated change-
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points; their model for the overall accrual rate was specifically tailored to and worked well 

for their data example and, though, is still rather restrictive for general use. Alternatively, 

Zhang and Long11 proposed to use the non-homogeneous Poisson process (NHPP) to model 

patient accrual, where a smooth nonparametric function was adopted for the underlying true 

accrual rate; for brevity, we refer to this NHPP model as NHPPS throughout. With the 

flexibility of a nonparametric fit, the NHPPS model implicitly accommodates different 

region start-up times and non-constant accrual pattern within each region. It was shown11 

that the NHPP approach outperformed the HPP approach substantially when the assumption 

underlying HPP was not met; their subsequent investigation also revealed that the 

performance of these two approaches was comparable when the underlying accrual rate was 

constant over time. Both the HPP model and the model proposed by Tang et al.12 can be 

considered a special case of this NHPPS model.

When used in multi-regional trials, the NHPPS approach11, however, has some limitations. It 

does not take advantage of the region-specific accrual information. Furthermore, when a 

region first clears the IRB/regulatory hurdles and is ready for recruitment, this usually brings 

a “boost” to the overall enrollment, i.e., a sudden increase in the overall accrual rate; this 

sudden increase then translates into a discontinuity in the underlying overall accrual rate, 

noting that the NHPPS approach assumes that the overall accrual rate is continuous and 

smooth over time and hence cannot accommodate discontinuity. In other words, when the 

staggered region start-up times are combined with initial jump in accrual within each region, 

the overall accrual rate is not only non-constant but also discontinuous, whereas the accrual 

rate within each region can be still considered continuous though often not constant over 

time. In such settings, statistical methods based on constant accrual rates are inadequate; in 

addition, while a smooth nonparametric function may be adequate for modeling the accrual 

rate within each region, it is often not adequate for modeling the overall accrual rate.

In this article, we clarify the impact and implication of the multi-regional nature on 

monitoring and prediction of patient accrual in clinical trials, investigate flexible modeling 

of patient accrual in multi-regional trials, and contrast the proposed approach with the 

NHPPS approach. The proposed approach borrows strength of the accrual profiles across 

regions and accommodates staggered and different regional start-up times and initial jump in 

accrual within each region, overcoming limitations of existing methods including those 

noted by Barnard et al.6. In this approach, the accrual rate within each region is assumed to 

be continuous over time, but no continuity is assumed for the overall accrual rate over time, 

a more realistic assumption compared to existing methods. In addition, the proposed 

approach will provide region-specific prediction of accrual, which is not available from the 

NHPPS approach, and improve accuracy and precision of the prediction of overall accrual. 

Consequently, the proposed method will allow for better resource allocation, e.g., drug 

supply, distribution of laboratory kits, and regional staff assignment.

We note that the term “region” in multi-regional clinical trials is used loosely throughout this 

article; it can represent a geographic region, a collection of sites that are believed to share 

some commonalities in their enrollment profiles. In particular, our proposed approach can be 

readily applied to multi-center clinical trials with each center considered as a “region”. The 

remainder of the article is organized as follows. In Section 2, we describe the proposed 
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approach, which models multi-regional trial enrollment with a region-specific non-

homogeneous Poisson process. In Section 3, we conduct simulation studies to investigate the 

performance of the proposed approach and compare it with the NHPPS approach. In Section 

4, we illustrate the proposed approach using a real clinical trial for colon cancer. We 

conclude this manuscript with some discussion remarks in Section 5.

2 Methodology

Suppose a multi-regional clinical trial plans to enroll a total of n patients in J participating 

regions. Let j (1 ≤ j ≤ J) index the regions; without loss of generality, let t (t = 1, 2, ⋯) index 

the time in days with the date of the study start as the reference point (i.e., t = 1). We write 

the number of patients enrolled in region j on day t as Njt, which is subject to the 

randomness of the enrollment process; by definition, Njt is a random variable. We denote its 

realization in the current trial, or the observed value, by njt. Suppose an interim look of 

accrual occurs at time T, we write the observed enrollment from all J regions by that time as 

n = {njt : j = 1, ⋯, J, t = 1, ⋯, T}. The total number of patients enrolled across all regions on 

day t can be written as a random variable , with its realization 

(njt = 0 for regions that have not started enrollment by time t). We are interested in 

predicting the time when at least a total of n patients are enrolled across all regions, namely, 

.

Since the patients are independent individuals, the number of patients enrolled each day in 

any given region can be modeled as a random variable following a Poisson distribution. We 

denote the underlying Poisson rate of region j at time t by λjt, and write the vector of the 

underlying accrual rate for all regions by time T as λ = {λjt : j = 1, ⋯, J, t = 1 ⋯, T}. The 

distribution of the observed data then follows, i.e.,

(1)

2.1 Modeling Region-Specific Accrual Rate Using Nonparametric Method

To model region-specific accrual, we assume that the underlying accrual rate within each 

region is continuous over time, or close to continuous, which can be approximated with a 

cubic B-spline13. We define the B-spline basis at time t as ϕ(t) = (ϕ1(t), ⋯, ϕq(t))T. Note that 

the dimension of the B-spline (i.e., the number of basis functions), q, is determined by the 

number of knots, p, i.e., q = p + 4. We denote the B-spline coefficients for region j by βj and 

write the coefficients for all regions as β = (β1, ⋯, βJ)T. It follows that the true accrual rate 

from region j at time t is .

In real life multi-regional trials, it is rare for enrollment to initialize in all regions at the same 

time. The kick-off of the enrollment usually depends on the regional IRB/regulatory 

schedules and processes. As a consequence, region start-up times usually stagger. It is not 

uncommon that some regions may lag behind for months, or even longer, in the trial 
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initialization activities compared to other regions. To address this, we introduce an offset 

time for each region, i.e.,  for region j, which represents the time when the specific region 

(j) starts enrollment (relative to the study start) and is fixed based on the observed data. This 

conceptually divides the underlying accrual rate of region j into two periods, one before 

and the other one afterwards. Clearly, patients can only be enrolled into the study during the 

latter period, i.e., . The underlying accrual rate of region j is then expressed as

(2)

where t+ = t when t ≥ 0 and t+ = 0 when t < 0. We note that the proposed model encompasses 

the NHPPS model as a special case when J = 1. The comparison of the two models will be 

elaborated in Section 2.4.

We assign a common prior distribution to govern the region-specific B-spline coefficients, 

βj. More specifically, we assume βj ~ MVNq(ν, Γ), for all j = 1, ⋯, J, that is,

where ν and Γ are pre-specified values. It follows that

(3)

2.2 Specification of ν and Γ

We now discuss how to determine the values of ν and Γ in the prior distribution of βj. In a 

general setting of Bayesian analysis, when there is no or limited prior knowledge on model 

parameters, a noninformative prior distribution may be preferred. However, this is usually 

not the case with accrual modeling. At the design stage, some information regarding the 

regional recruitment capacity should exist, for instance based on the recruitment history 

from earlier trials for a similar indication, from the investigators’ judgement, or a 

combination of the two. Those can then serve as a reasonable basis for the values of ν and Γ. 

Additionally, sensitivity analyses may be conducted to evaluate the choice of those 

parameter values.

Following Zhang and Long11, we use Amax to denote the anticipated maximum accrual rate 

across all regions. Assuming regions of equal enrollment capacity a priori, this suggests a 

maximum accrual rate of Aavg = Amax/J from each region. We thereby let ν = (Aavg, ⋯, 

Aavg)T. Next, we introduce a coefficient of variation (cv), ρ (0 ≤ ρ ≤ 1), to quantify the 

variability across the regions in their deviation from the average accrual rate. That is, Γ = 

diag(ρ2ν2), with larger value of ρ indicating larger variability in the enrollment profiles 

across the regions. On an empirical note, many multi-regional trials consist of a few high-
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enrollers (i.e., regions that each contribute a large number of patients) and many poor-

enrollers (i.e., regions that each contribute a small number of patients). If this is expected to 

be the case, it is desirable to use a relatively large value of ρ or pool multiple poor-enrollers 

to form a more robust entity.

2.3 Estimation and Prediction

Given Equations (1), (2), and (3), the joint distribution of the model parameters and the data 

is

The value of βj for each region can then be updated from the following conditional posterior 

distribution using the Adaptive Rejection Metropolis Sampling algorithm implemented in 

the arms function in the R package HI14,

where f(βj ∣ ·) denotes the conditional posterior distribution of βj given all the other 

parameters and the observed enrollment by time T.

We are interested in the posterior predictive distribution of τ, the time when the enrollment 

target n is reached, f(τ ∣ n), which follows from the posterior predictive distribution of the 

future region-specific enrollment, f(ñ ∣ n) where ñ = {ñjt, J = 1 ⋯, J, t > T}. By definition, 

f(ñ | n) = ∫ f(ñ | λ̃)f(λ̃ | n)dλ̃. The future accrual can then be generated from n̄jt ~ 

Poisson(λ̃
jt) for t > T. We write λ̃ = {λ̃

jt, j = 1, ⋯, J, t > T} as the future region-specific 

accrual rate. It is known that spline models can be unstable when used to make 

extrapolation, i.e., λ̃
jt for t > T. Therefore, we propose to set λ̃jt = λjT for t > T, where λjT 

comes from the posterior distribution of f(λ | n), i.e., assuming the underlying accrual rate 

within each region remains constant beyond the day of the interim look, T. This approach is 

generally conservative, i.e., it tends to underestimate the future accrual rate, as the patient 

enrollment within a region usually increases before reaching a plateau (i.e., the maximum 

enrollment capacity), and consequently this approach tends to overestimate the time to reach 

the overall enrollment goal. Compared to a naive approach of projecting the observed 

accrual at time T as the future accrual rate, i.e., n̄jt = njT for all j and t > T, the proposed 

approach properly models the randomness in the observed daily enrollment and avoids 

projecting random highs or lows as the future accrual rate for t > T.

We comment that, in the above, we illustrate as an example how to make prediction for τ 
using the proposed model. If quantities other than τ are of interest, such as the number of 

subjects enrolled by a given time in the future, they can be derived from the posterior 
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predictive distribution of f(λ̃ | n) following the similar lines. Furthermore, as we noted in 

Section 2.2, sensitivity analyses can be performed based on different prior assumptions on 

the maximum accrual capacity, Amax, and/or the variability across regions, ρ.

2.4 Comparison with the NHPPS Model

We compare the proposed model (denoted by NHPPM) with the original NHPP model11 that 

does not model individual accrual rate within each region (denoted by NHPPS). Following 

the notation in Section 2, it can be readily shown from the properties of Poisson distributions 

that the overall enrollment on day t, N.t, also follows a Poisson distribution, i.e., N.t ~ 

Poisson(λ.t) with , where λjt’s are defined in Equation (2). It follows that {N.t, 
t = 1, 2,⋯} can be modeled using a NHPP with a time-dependent accrual rate, λ.t. Again, we 

emphasize that the NHPPS model has some limitations in the case of multi-regional trials. 

Specifically, if there is delay in the enrollment initiation (namely, ) in some regions, then 

the overall accrual rate across all regions, λ.t, may not be smooth; if, in addition, the accrual 

rate at the enrollment initiation (namely, ) is greater than 0, then λ.t is not even 

continuous. As a j result, a key assumption underlying the NHPPS model, namely, that the 

overall accrual rate λ.t is smooth and can be modeled using splines, may not hold in multi-

regional clinical trials. While one could still use the NHPPS model, the performance may 

suffer as a result of these complications. On the other hand, the region-specific accrual rate 

in the current model, λjt, is assumed to be continuous over time within each region, but the 

proposed model does not require continuity in the overall accrual rate, λ.t; hence, it allows 

for extra flexibility compared to the NHPPS approach. The comparisons between these two 

types of models will be further evaluated in our simulation studies.

3 Simulation Studies

As noted in Introduction, it has been shown11,12 that accrual in real trials often does not 

follow an HPP, in particular in the initial and final stages12, in which case an NHPP model 

outperforms an HPP model. In addition, the model proposed by Tang et al.12 can be 

considered as a special case of the NHPPS model11. As a result, we first focus on the 

comparisons of the proposed method (NHPPM) and the NHPPS model11 in our simulations.

Suppose that we are interested in a multi-regional trial with a targeted sample size of 3000 

and a targeted maximum daily accrual of 12 patients across all regions, i.e., n = 3000 and 

Amax = 12. The true accrual rate over time within each region follows the shape of the 

cumulative distribution function (c.d.f.) of a Gamma random variable. This choice of the 

true accrual function over time is flexible with five parameters for each region j, including 

two parameters of the Gamma c.d.f. (aj > 0 and bj > 0), two parameters to scale the c.d.f. (cj 

> 0 and 0 ≤ dj ≤ 1), and one parameter to denote the region start-up time ( ), i.e.,
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where t+ is defined as in Section 2.1. In other words, cj is the maximum true accrual capacity 

of region j and dj represents the ratio of the accrual rate at the start of the enrollment relative 

to the maximum enrollment capacity. Within each region, aj, bj, and cj are drawn from the 

following distributions, aj ~ Unif(0.04, 0.12), bj ~ Unif(2, 6), and cj ~ Unif(8/J, 16/J). These 

parameters allow for a considerable heterogeneity in the simulated true accrual rate across 

the regions. When all J regions have reached the maximum capacity (i.e., the respective cj), 

the overall accrual capacity is in the neighborhood of Amax = 12. dj is set to either 0 (i.e., the 

underlying overall accrual rate (λ.t) is continuous over time throughout) or 0.5 (i.e., there is 

discontinuity in the underlying overall accrual rate whenever a region first starts enrollment). 

We conducted three sets of simulations. In the first set of simulations, the regions have 

different, staggered start-up times. Without loss of generality, we set the start-up time of one 

region as the study start, or Day 1 (  for region j′) and drew the start-up times for the 

rest regions from  for j ≠ j′. In the second set of simulations, all regions 

start accrual at the same time, i.e.,  for all j. In the first two settings of simulations, we 

conducted two interim analyses of the accrual, one at 40% of the total targeted enrollment 

and the other one at 70%. In the third set of simulations, start-up times are drawn from two 

uniform distributions in two intervals: the first interval is (0.5, 100.5) and the second interval 

is (150.5,250.5), (250.5,350.5), or (350.5,450.5), corresponding to interval settings 1-3, 

respectively; the time for the interim look is fixed at 470 days. This setting mimics situations 

where some centers start accrual right before the interim look time, likely presenting 

challenges to the proposed method. Settings with J = 2, 5, or 30 regions are included in the 

first two sets of simulations and settings with J = 20 or 50 regions are included in the third 

set of simulations. Figure 1 present representative true accrual rates used to generate 

observed accrual data in all three settings.

We denote the observed time to reach a total of n patients in the simulated dataset by τtrue. 

We set the prior parameters at ν = (Amax/J, ⋯, Amax/J)T and ρ = 0.1 or ρ = 0.3. Both the 

proposed model (NHPPM) and the NHPPS model were fitted using a cubic B-spline with 

three equally spaced internal knots, i.e., T/4, T/2, and 3T/4. For each simulated dataset, we 

ran 5000 iterations for both models after discarding 1000 iterations of burn-in. We present 

the median of the posterior draws of τ as the predicted time of full accrual (sub-sampled to 

every fifth draw for a total of 1000 posterior draws), Texp. The posterior credible interval of 

τ is then computed as the 2.5th and 97.5th percentile of the posterior draws of τ within each 

dataset, denoted by TL and TU. We denote the width of the 95% posterior credible interval 

(CI) by w = TU − TL.

We ran a total of 1000 simulated trials under each setting and compared the proposed 

NHPPM approach with the NHPPS approach11 using the following summary statistics: root 

mean squared prediction errors, calculated as rMSPE = {E(Texp − τtrue)2}1/2, mean coverage 

rate of the 95% posterior CI, calculated as CR = E(I(TL ≤ τtrue ≤ TU)), where I(A) is the 

index function with value 1 when A is true. In addition, we present the mean width of the 

posterior CI of each method across the 1000 simulated datasets, namely w, as well as the 

percentage of simulated trials in which NHPPM produces tighter posterior CI than NHPPS.
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Table 1 presents the results for NHPPS and NHPP when the initiation of accrual is staggered 

among regions. We first focus on the settings where there are two regions (J = 2). In all 

cases, the proposed approach (NHPPM) leads to smaller rMSPE, e.g., rMSPE2 = 7.72 for 

the proposed method when dj = 0 and ρ = 0.1 at the first interim look, compared to rMSPE1 

= 8.71 for NHPPS. In addition, the proposed method produces tighter posterior CIs, on 

average, than the NHPPS method, e.g., w̄2 = 29.15 compared to w̄1 = 49.44 when dj = 0 and 

ρ = 0.1 at the first interim look. The proposed method almost always yields tighter CI, i.e., 

Pr(w1 > w2) = 1.00, under the same dj = 0 and ρ = 0.1 at both the first and the second looks. 

At the same time, the proposed method provides comparable, if not better, CR as the NHPPS 

method despite its tighter posterior CIs, e.g., 98.9% versus 99.3% at the second look when dj 
= 0 and ρ = 0.1. When a more diffused prior distribution is utilized, i.e., ρ = 0.3 instead of ρ 
= 0.1, the results from both methods become more variable with higher rMSPE and w̄; 
nevertheless, the impact on the proposed method is more modest compared to the NHPPS 

method. For example, the rMSPE of the NHPPS method increases from 8.71 to 17.97, which 

is more than doubled, when ρ increases from 0.1 to 0.3 with dj = 0 at the first look, 

compared to a moderate increase from 7.72 to 11.69 with the proposed method. We also note 

that the performance of both methods improves as information accumulates for the 

prediction, i.e., from the first look with 40% observed enrollment to the second one with 

70%. The performance of both methods is generally similar when dj = 0.5 compared to the 

respective ones under dj = 0.

In the simulation settings with five regions (J = 5), the above observations still hold. 

Moreover, the proposed method provides even smaller rMSPE and tighter posterior CI 

compared to the respective results with two regions. For instance, the rMSPE reduces to 5.02 

(J = 5) from 7.72 (J = 2) when dj = 0 and ρ = 0.1 at the first look, whereas the average width 

of the posterior CI also reduces to 22.27 (J = 5) from 29.15 (J = 2). Nevertheless, the 

performance of the NHPPS method remains similar. This further demonstrates the 

improvement in efficiency of the proposed method by properly utilizing the regional accrual 

information. Similar patterns are also observed as J increases to 30.

Tables 2 and 3 present the results for the second set of simulations where all regions start 

accrual at the same time, i.e.,  for all j, and for the third set of simulations where some 

regions start accrual very close to the interim analysis. The main findings in Table 1 also 

hold for Tables 2 and 3.

We conducted additional simulation studies comparing NHPPM, NHPPS, HPPM and HPPS 

as well as another NHPPM approach denoted by NHPPM-bspline which uses direct 

extrapolation from the B-spline fit for prediction. The order, from the best to the worst, of 

the prediction performance is NHPPM, NHPPS, HPPM and HPPS, lending further support 

to the notion that the use of non-homogeneous Poisson process and modeling accrual in 

individual regions improves prediction; prediction from NHPPM-bspline is substantially 

worse than the other methods, confirming that direct extrapolation using NHPPM is unstable 

and unsuitable for prediction. In addition, we also show in simulation studies that NHPPM 

outperforms HPPM in terms of estimation of λjt.
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In summary, the proposed method not only provides region-specific accrual prediction, but 

also produces smaller rMSPE and tighter posterior CI of τtrue. The advantage of the 

proposed approach compared to the NHPPS method can impact multiple aspects of trial 

operations, such as regional drug supply and distribution of laboratory kits, as well as proper 

allocation of clinical staff within each region, all attributable to the granularity of regional 

accrual adjusted for in the proposed model. More importantly, the tighter CIs produced by 

the proposed method translate into less uncertainty regarding the projected accrual, and 

hence better confidence when addressing issues such as slow accrual.

4 Data Example: a Cancer Trial

In this section we retrospectively apply the proposed method to a real oncology trial15 and, 

again, focus on comparisons with the NHPPS method11. In this randomized Phase III study 

of adjuvant treatments of colorectal cancer, a total of 1794 Stage III patients were planned to 

be enrolled from 32 countries. Although Stage II patients satisfying certain criteria were 

later on also enrolled per a protocol amendment, they were not included in the primary 

analysis, and the enrollment goal was only tracked for Stage III patients. Therefore, for the 

purpose of illustration, we only focus on the Stage III patients in this analysis. Under a 

reasonable expectation of an enrollment duration of 24 months (523 workdays, excluding 

weekends), a daily enrollment of 3.45 patients is assumed. The accrual goal was met on Day 

570 with a total of 1801 patients, i.e., τobs = 570.

We illustrate a retrospective enrollment monitoring/prediction using the proposed method at 

two interim looks with 40% and 70% of patients enrolled, which should occur on Days 386 

and 474, respectively. We use an ad hoc determination of Amax based on the observed 

accrual in the past 20 workdays at the time of the interim look and consider different cv 

values. Among all countries participated in this study, one country contributed 30% of the 

patients. Therefore, we first consider grouping all countries into two regions, i.e., this one 

country contributing the most enrollment vs. the rest of the world. The results are shown in 

Table 4. The predicted Texp generally excludes the originally planned 523 days, indicating 

that it is highly unlikely to meet the original accrual goal given the observed data. In 

addition, the predictive CI from NHPPS does not include the observed truth (τobs = 570) 

whereas NHPPM does when ρ = 0.1, noting that the maximum overall daily accrual rate 

across all regions is much higher than the anticipated Amax = 3.45. When the prior 

distribution is more diffused, e.g., ρ = 0.3 or 0.5, both NHPPS and NHPPM cover τobs. In 

other words, one can still make a reasonable accrual projection based on the data despite a 

dubious yet diffused prior distribution. As in the simulation studies, we observe tighter 

posterior CIs using NHPPM compared to NHPPS.

Following the highest enrolling country, there were five countries each contributing between 

5% and 11% of the patients. The rest of the countries each contributed a maximum of 4% 

patients. Hence, based on the enrollment capacity, we conduct a second analysis after 

grouping all countries into three categories, i.e., high enrolling region (the one country with 

the most enrollment), medium enrolling region (the five countries with moderate 

enrollment), and low enrolling region (the rest of the countries). We also conduct a third 

analysis using all 32 regions without any grouping. As shown in Table 4, NHPPM with J = 3 
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or 32 produces even tighter CIs compared to NHPPM with j = 2, though in three settings the 

CIs barely miss τ. In addition, as cv increases the length of CI generally increases.

Overall, the proposed method performs well with tighter posterior CIs and smaller rMSPE 

compared to the NHPPS approach. In addition, the sensitivity analyses based on ρ (ρ = 0.1, 

0.3 and 0.5) as well as the number of regions (J = 2, 3, and 32) suggest the robustness of the 

proposed method. If an interim monitoring had been conducted during this trial, it would 

have allowed the study team to detect issues with accrual and identify potential enrollment 

problems with certain regions relatively early and alerted the study team, or the coordinating 

data center, for proper actions.

5 Discussion

In this paper, we propose a Bayesian approach for modeling and predicting patient accrual in 

multi-regional clinical trials, which models region-specific accrual using a nonhomogeneous 

Poisson process. Compared to the existing methods, the proposed approach accommodates 

different start-up times and different initial accrual rates across regions/centers and allows 

for discontinuity in the overall accrual rate. In numerical studies, the proposed method is 

shown to improve accuracy and precision of accrual monitoring and prediction compared to 

the NHPPS approach that does not model region-specific accrual rates11. In practice, this 

translates into improved accuracy and precision and hence improved decision making on 

resource allocation. The flexible B-spline model for region-specific accrual rates provides 

good prediction in the simulation studies as well as the real data example. The proposed 

method would allow a research team to identify potential enrollment problems with certain 

regions using prediction results from individual regions and enable the research team to use 

a more targeted approach, such as addressing detected deficiency in recruitment in certain 

regions or adding satellite regions to increase enrollment.

Along the lines of Zhang and Long11, Deviance Information Criterion (DIC) can be used to 

perform model selection to select optimal models for regions or region specific accrual rates 

and evaluate goodness of fit for the proposed model. In particular, a model assuming that the 

region specific accrual rate is constant, i.e., λjt = λj is a special case of the proposed model, 

which could be selected by DIC in cases where the constant accrual rate assumption is 

indeed met. In the numerical studies, we observe that the choice of the prior parameters 

(Amax and ρ) has an effect on the results to certain degree. Therefore, we recommend a 

possibly iterative approach to adjust the prior parameters. For instance, if the fitted profile of 

the underlying accrual rate deviates substantially from the initial guess, as in the real data 

example, one may want to adjust the values of Amax and/or ρ accordingly and refit the 

model. Alternatively, one may resort to an ad hoc determination of Amax as discussed in 

Section 4, e.g., taking Amax as the average of the recent observed accrual. The proposed 

approach can be readily extended to accommodate the cases where accruals in some regions/

centers may terminate at different times.

In clinical trials with time-to-event endpoints, the statistical power is primarily driven by the 

number of events observed. In such cases, monitoring and prediction of accrual is not 

enough and monitoring and prediction of event times is equally important, which has also 
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been investigated in the literature16-18. It is of future interest to extend the proposed 

approach to monitor and predict both patient accrual and event times in multi-regional 

clinical trials.
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Figure 1. 
Representative true accrual rates used to generate observed accrual data in the simulation 

studies. The dotted vertical line represents the interim look and the dashed vertical line 

represents the end of enrollment. The first row is for the set of simulations in which 

participating regions have different start-up times, with the left side for dj = 0 and the right 

side for dj = 0.5. The second row is for the second set of simulations in which all 

participating regions initialize accrual at the same time, with the left side for dj = 0 and the 

right side for dj = 0.5. The third row is for the third set of simulations (dj = 0.5), with the left 

side for interval setting 1 and the right side for interval setting 3. In addition, ρ = 0.3 and pct. 
= 70% for all.
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