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Abstract

There are encouraging advances in prosthetic vision for the blind, including retinal and cortical 

implants, and other “sensory substitution devices” that use tactile or electrical stimulation. 

However, they all have low resolution, limited visual field, and can display only few gray levels 

(limited dynamic range), severely restricting their utility. To overcome these limitations, image 

processing or the imaging system could emphasize objects of interest and suppress the background 

clutter. We propose an active confocal imaging system based on light-field technology that will 

enable a blind user of any visual prosthesis to efficiently scan, focus on, and “see” only an object 

of interest while suppressing interference from background clutter. The system captures three-

dimensional scene information using a light-field sensor and displays only an in-focused plane 

with objects in it. After capturing a confocal image, a de-cluttering process removes the clutter 

based on blur difference. In preliminary experiments we verified the positive impact of confocal-

based background clutter removal on recognition of objects in low resolution and limited dynamic 

range simulated phosphene images. Using a custom-made multiple-camera system, we confirmed 

that the concept of a confocal de-cluttered image can be realized effectively using light field 

imaging.
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1. Introduction

An estimated 39 million people worldwide are blind (World Health Organization, 2013) and 

1.2 million people in the US are legally blind and about 10% of them are functionally blind 

(American Foundation for the Blind, 2011). Although blind people can access text through 

braille and text to speech, independent mobility indoors and outside is limited and largely 

relies on the long cane. Blindness limits numerous activities of daily living (Brown et al., 

2001; Kuyk et al., 2008), particularly tasks requiring visual search and object recognition. 

As a result, many pursuits (vocational and social) are limited, especially when blindness 

occurs in adulthood (Horowitz, 2004).

A number of implantable prosthetic vision systems have been developed (Margalit et al., 

2002; Ong & Cruz, 2012). Retinal implants, such as the Argus II (Second Sight Medical 

Products, Sylmar, CA) (Ahuja & Behrend, 2013) and Alpha IMS (Retinal Implant AG, 

Kusterdingen, Germany) (Stingl et al., 2013) recently received FDA approval in the US and 

the CE mark in Europe, respectively. Noninvasive sensory substitution devices (SSDs) have 

been developed, such as the tactile graphic display (Chouvardas, Miliou & Hatalis, 2008), 

BrainPort V100 (Wicab, Middleton, WI) tongue stimulation (Nau, Bach & Fisher, 2013), 

and vOICe (MetaModal, Pasadena, CA) auditory vision substitution (Ward & Meijer, 2010).

Most of these systems use a video camera and convert the high resolution scene captured 

into a format that can be conveyed by the system transducer to the sensory organ. Although 

partial restoration of vision through the prostheses is expected to help improve the daily life 

of blind people, the utility of current visual prostheses is limited by low spatial resolution, 

low dynamic range (the number of displayable or perceivable gray levels), and a narrow 

visual field. The physical limitations of electrodes in implants and other physiological 

stimulators in SSDs restrict the resolution and dynamic range that can be delivered to the 

user. The current electrode count of the Argus II retinal implant is 60 (10 × 6) electrodes 

(Ahuja & Behrend, 2013) and expected to be about 1,000 pixels in next versions (Singer et 

al., 2012), and Alpha IMS has 1,500 electrodes (Stingl et al., 2013). Similar limitations 

apply to most other SSDs. For example, the BrainPort V100 has only 400 (20 × 20) 

electrodes (Nau et al., 2013) to stimulate the user’s tongue. The dynamic range of most 

SSDs is limited to binary (on and off) or at most 3 or 4 levels (Chouvardas et al., 2008). 

While the Argus II is capable of generating 31 brightness levels (Second Sight Medical 

Products Inc., 2013), only 4 to 12 levels of dynamic range were successfully distinguished 

by patients in simple just-noticeable-difference experiments (Chen et al., 2009b). In 

addition, the dynamic range for different visual prostheses is usually limited to less than that 

(Rizzo et al., 2003b) and only binary dynamic range has been used for most test and 

calibration (Ahuja & Behrend, 2013; da Cruz et al., 2013; Second Sight Medical Products 

Inc., 2013).

The visual field of retinal prostheses is on the order of 10° (Ahuja & Behrend, 2013), half 

the field diameter that qualifies as legal blindness, and with a visual acuity of worse than 

20/1260 (Humayun et al., 2012). Mean acuity score with the BrainPort was reported as 

20/5000 (Nau et al., 2013). With these limitations, reading even a short word using the 
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Argus II requires minutes (Ahuja & Behrend, 2013) and interpreting a natural image or a 

scene while walking is enormously difficult (Weiland, Cho & Humayun, 2011).

Although the performance improvements of visual prostheses are often optimistically 

projected to be achieved by solving technical barriers for electrode construction that increase 

the stimulation density, a real hurdle lies within the biological limitations of the interactions 

between the sensing organ and the stimulator that bound the likely possible resolution 

(Rizzo et al., 2003a, b). Even if the electrode density is increased it is unlikely that visual 

perception will increase in proportion to the increase in density. Crosstalk between 

electrodes limits the improvement in effective resolution (Horsager, Greenberg & Fine, 

2010; Wilke et al., 2010), and that effect is expected to increase with higher density. The 

perceived dynamic range attained with each electrode varies. Even if the theoretical dynamic 

range from different levels of electrode stimulation exceeds 8 levels and each electrode is 

calibrated individually, the effective dynamic range does not increase proportionally 

(Palanker et al., 2005; Chen et al., 2009b; Second Sight Medical Products Inc., 2013). Until 

improved system interfaces are developed, improving image processing to deliver the most 

effective images to the stimulator is a practical and promising approach that will remain 

useful even when prostheses with higher effective resolution and dynamic range become 

available.

Visual clutter causes crowding and masking, thus reducing performance of tasks such as 

object segmentation, recognition, and search (Rosenholtz, Li & Nakano, 2007). Figure 1a 

illustrates typical real-world visual clutter caused by a complex background, where the near 

object (person) is cluttered by background objects (tree and building). While an observer can 

easily separate such objects for recognition in a high resolution and color image (Fig. 1b), 

with limited resolution and dynamic range (Figs. 1c and d) background clutter may mask 

bordering objects. The low resolution and dynamic range phosphene-like images created by 

current systems are difficult to interpret, even when the simulated images are examined with 

normal vision (Wang, Yang & Dagnelie, 2008; Chen et al., 2009a; Parikh et al., 2009). 

Although a few studies (Zrenner et al., 2011; Humayun et al., 2012; Nau et al., 2013) have 

shown that letters and objects can be recognized by visual prosthesis users, the patients’ 

performance was typically demonstrated under an ideal experimental condition, where the 

high contrast target object is presented in front of white or other uniform background. The 

reported success demonstrated in such clean laboratory settings without background clutter 

does not represent the visual prostheses’ practical utility under real-world conditions, where 

a visual prosthesis with an imaging system that can effectively suppress background clutter 

and show only the object of interest (OI) is needed, as illustrated in Fig. 1e.

Effective compression of the camera’s video to match the limited resolution and dynamic 

range of the prosthetic systems is crucial, but so far only basic image processing techniques 

have been applied (Chen et al., 2009a), such as binary thresholding (or coarse quantization 

in the spatial and dynamic range domains), edge detection, and image segmentation. Other 

higher-level analyses based on image saliency (Parikh, Itti & Weiland, 2010; Weiland et al., 

2012; Al-Atabany et al., 2013) or face detection (Li, 2013) were proposed for targeting 

(selecting a portion of the scene). These approaches are orthogonal to the problem we are 

addressing. For example, computer-vision tools may be used to segment the image into 
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regions or even distinct (identified) OIs (e.g., faces). The segmented image can be used to 

present a schematic or iconic illustration, instead of an image, making it potentially more 

suitable to the limited capability of the prostheses. This approach was suggested for 

optogenetic prostheses (Al-Atabany et al., 2013), and for retinal prostheses (McCarthy, 

Barnes & Lieby, 2011). In the latter case, a depth camera using structured light (Boyer & 

Kak, 1987) was used to help with the segmentation task. Segmenting an image is not 

sufficient, without some sort of additional recognition to isolate the OI and suppress the 

remainder.

Various types of depth cameras can be used to obtain 3D distance information that may be 

helpful in segmenting an OI, and such techniques have been applied to visual prostheses 

(Lieby et al., 2011; McCarthy et al., 2011; Hao, Ro & Zhigang, 2013; Li, 2013). A 

structured light camera (Kinect, Microsoft, Redmond, WA) or time of flight camera (Lange 

& Seitz, 2001) are on one end of the spectrum for acquiring 3D information, while stereo-

cameras or multiple-cameras (Lieby et al., 2011; Hao et al., 2013) are on the other. 

Although infrared (IR)-based technologies such as the structured light and time-of-flight 

cameras effectively measure the depth information, the utility of IR technology outdoors is 

limited by interference from the IR radiation of sunlight (Chéné et al., 2012; El-laithy, 

Jidong & Yeh, 2012). Stereo or multiple cameras are not limited by outdoor use. However, 

correctly calculating depth from disparity is difficult and requires high computational power 

and time. Object segmentation and recognition algorithms are not very accurate, not easy to 

implement, and require high computational power. Even if the depth map is accurately 

extracted using an IR-based depth camera, the need remains for additional depth 

segmentation and object recognition processes to isolate and display only the OI and remove 

the background. Computer-vision tools needed for that are prone to errors around the edges 

of objects, exactly where we want to suppress cluttering in visual prostheses.

Most importantly, an interactive approach, allowing the user to select OIs from a small 

subset of depth planes is much more effective than image processing designed for machine 

vision. We propose an improved imaging system for visual prostheses that captures a 

confocal image at a depth (focal) plane selected by the user, and presents only the OIs in-

focus at that depth plane. The system automatically suppresses background clutter from 

objects (out of focus) in other depths. The user’s intent, familiarity with the environment, 

and situational awareness will guide real-time selection of the depth plane while searching in 

the depth direction. Our system also limits the search for OIs by pre-selecting depth planes 

where objects are likely to appear by measuring the coherence of edges at each depth with 

the edges appearing in a wide depth of focus image of the scene. The user can also actively 

scan laterally and vertically, reducing the impact of the limited field-of-view, either through 

a manual interface or more naturally with head movements. Then the user can actively zoom 

in on detected/selected objects for better detail. We call this “active confocal de-cluttering”. 

In section 2, we first show how the confocal de-cluttering process can be implemented. 

Section 3 assesses the benefit of de-cluttering, and Section 4 describes and demonstrates 

implementation with light field technology.
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2. Active confocal de-cluttering

Our proposed system of active confocal imaging for visual prostheses is composed of three 

stages; confocal image generation, de-cluttering, and image compression into a format 

suitable for visual prostheses. Confocal images from depth-sliced information are widely 

used in tomographic medical imaging, microscopy, and inspection, based on technologies 

including X-ray, CT, and MRI, through to the confocal scanning laser ophthalmoscopy and 

optical coherence tomography used in retinal imaging. These methods scan and capture 

multiple narrow depth of field (DOF) or tomographic images with changing focal planes, 

which capture only objects in a focal plane, suppressing other depth planes by blur or 

blocking light. Similarly, a simple narrow DOF camera lens (low f-number) can capture a 

depth sliced image of OIs at a focal plane with blurred background in other depths, and 

generate confocal images at different depth planes. Recently, another confocal imaging 

method based on light-field was developed and commercialized (Ng et al., 2005; Harris, 

2012) which will be discussed in Section 4. In active confocal imaging for visual prostheses, 

as in other applications, the main purpose of any confocal image capture method is 

suppression of clutter from other depths.

Figure 2 illustrates the difference between compressed images obtained with conventional 

wide-DOF imaging and narrow–DOF confocal imaging. While a conventional camera image 

with wide DOF (Fig. 2a) focuses on both the OI and the background, the narrow-DOF 

confocal image (Fig. 2e) highlights only the OI (cup) at the selected depth plane against a 

blurred background (bookshelves). Even though when viewed with normal vision the 

confocal image naturally suppresses the background clutter and emphasizes only the OI at 

the selected depth plane, it is insufficiently effective when applied with the high level of 

compression common in visual prostheses.

With the limited resolution and dynamic range of current visual prostheses, additional 

processing is required to suppress or remove the background clutter that is only partially 

suppressed by blur in the confocal image. This can be achieved if the confocal image is 

high-pass filtered or analyzed by some other blur metric followed by thresholding set to 

more completely exclude the blurred background. We name this process “confocal de-

cluttering”.

Figure 3 shows versions of the conventional and confocal images of Fig. 2, processed via 

edge filtering. The edge images in Figs. 3a and c were obtained by Sobel edge detection 

(Sobel & Feldman, 1968) as an example, but any other edge detection methods, high-pass 

filter, or blur-metric algorithm (Lee et al., 2008; Park, Hong & Lee, 2009) with appropriate 

thresholding can be applied to de-clutter the blurred background effectively. The confocal 

de-cluttered image shows only an outline of the OI and the blurred background is removed 

by edge filtering, whereas edges of the background in the compressed conventional image 

clutter the OI. Although we chose a clear object (cup) to be recognized as an example in Fig. 

3, the handle of the cup in a conventional compressed edge image (Fig. 3b) is hardly 

recognizable. However, that detail in the compressed confocal de-cluttered image (Fig. 3d) 

is recognizable, with not only the shape of the cup but also the handle visible. In section 3, a 
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pilot study further demonstrates the positive impact of background clutter removal on 

recognition of compressed binary images.

3. Impact of background removal on object recognition

To determine the impact on object recognition of background de-cluttering using confocal 

imaging, and its interaction with resolution, we conducted a preliminary study using an 

image dataset of objects captured by both narrow and wide DOF lens settings.

3.1 Materials

We created a dataset of images of 20 objects photographed under two conditions. Household 

items and office equipment were photographed in front of complex backgrounds as shown in 

Fig. S1 in the online supplement. Each object was captured by both narrow and wide DOF 

settings controlled by the f-number of the camera lens to simulate the confocal and 

conventional images, respectively. The images were captured by a NEX-3N (Sony, Tokyo, 

Japan) mirror-less camera with 50 mm focal length, minimum f/1.7 lens (Minolta, Osaka, 

Japan). We captured the same scene once with f/1.7 for the narrow DOF confocal image and 

once at f/22 to represent a conventional camera with wide DOF, as in the micro cameras 

used in cell phones and likely to be used in prosthetic vision devices. Although f/22 is not a 

typical setting for the indoor scene, we used it to clearly show the effect of cluttering by the 

background. The horizontal visual angle of the camera lens was 25°. The dataset images 

were taken from about 80 cm in front of the objects to maintain an angular size of the 

objects of about 10°.

In framing the photos and focusing the camera, we assumed that the prosthetics user would 

aim the camera at the OI and select the depth plane of the object (In section 4.2, we describe 

a method for automatically pre-selecting a few depth planes to support efficient scanning in 

depth). The image viewpoint was selected to cover the whole object and emphasize the 

outline and distinct features of each object (the most recognizable viewpoint). We placed 

each object in front of a complex background such as bookshelves, wardrobe clothes, wires, 

and files and aimed the camera to have the OI in the bottom center of the frame and 

maximally overlap the OI and background, without including much floor or table surface. 

Although the images were staged purposely with high background complexity, we strove to 

create realistic scenes.

After capturing the images with blurred and focused backgrounds, we applied Sobel edge 

filtering (Sobel & Feldman, 1968) as the confocal de-cluttering process. Although numerous 

edge detection methods are available, we chose Sobel because it is widely used and easily 

implemented in real time. Object recognition of edge images has been shown to not be 

significantly related to the edge detection method (Dowling, Maeder & Boles, 2004). The 

edge detection process was performed on the images after scaling down to a moderate 

resolution (492 × 327) that is consistent with the resolution of current light-field cameras 

discussed in Section 4. Although automated methods for selecting an optimal threshold for 

edge detection are available (Yitzhaky & Peli, 2003), we adjusted the threshold of the edge 

filter manually for each confocal image, aiming to fully remove the suppressed background 
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clutter and leave only the OI in the edge filtered image. The same threshold was then applied 

to edge filtering for the paired conventional, wide DOF, image.

Following edge detection, the confocal de-cluttered image and the edge image (from the 

conventional image) of each object were compressed into 7 additional levels of resolution, 

using non-overlapping windows of: 2 × 2, 3 × 3, 5 × 5, 7 × 7, 13 × 13, 18 × 18, and 40 × 40 

pixels, resulting in compressed images of: 246 × 164 (40,344 pixels), 164 × 109 (17,876 

pixels), 98 × 65 (6,370 pixels), 70 × 47 (3,290 pixels), 38 × 25 (950 pixels), 27 × 18 (486 

pixels), and 12 × 8 (96 pixels), respectively. The compression was performed using the 

following procedure: The ratio of edge pixels to non-edge pixels for all non-confocal edge 

images of the dataset was averaged and found to be 1/13 (7.7%). The compressed images 

were adjusted to maintain the same ratio by setting this ratio as the threshold for the 

compression at each window. If the number of edge (white) pixels in a compression window 

exceeded this ratio, the compressed pixel was set to white. If it fell below this ratio, the pixel 

was set to black. The same compression procedure and threshold were applied to both the 

conventional edge and confocal de-cluttered images.

Figures 4 and 5 show the edge-filtered conventional and confocal de-cluttered images, 

respectively, compressed into 950 pixels. Although 950 pixels is higher resolution than most 

current visual prostheses, it is still difficult to recognize the OIs with background clutter 

(Fig. 4). However, the OIs in the compressed confocal de-cluttered images with the same 

resolution (Fig. 5) are more likely recognizable than the compressed non-confocal edge 

images despite some residual noise, though it is by no means a trivial task.

The interaction of background removal with visual prosthesis resolution is illustrated in 

Figs. 6 and 7, where compressed images at 8 different resolution levels are compared with 

and without background clutter, respectively. Even at a resolution over 3,000 pixels, 2 or 3 

times higher than the current or anticipated next-generation retinal implant, the complex 

background clutters the OI and makes the OI difficult to recognize (Fig. 6d). The 

compressed confocal de-cluttered image emphasizes the OI and enables recognition at a 

lower resolution level (Fig. 7). By increasing the resolution, the recognition of the OI and its 

details becomes easier. In Section 3.2, we measure the object recognition rate in background 

de-cluttered and cluttered conditions, using this created dataset.

3.2 Object recognition test

3.2.1 Methods—A preliminary object recognition test was performed with 6 normally 

sighted subjects (3 women), aged 24 to 42, using the image dataset (Sec. 3.1). The study was 

approved by the Human Studies Committee of Massachusetts Eye and Ear and written 

informed consent was obtained. The 20-object images were randomly ordered within blocks 

of the same compression level and same background condition (cluttered versus de-

cluttered). The presentation of a block of images always started from low resolution and 

proceeded to higher resolution. At each compression level, randomly ordered presentations 

of the background-cluttered images of 20 objects were followed by a block of background-

de-cluttered images. This sequence of 320 images was displayed on a 21” P1130 Trinitron 

CRT monitor (Dell Inc., Round Rock, TX) at 1,280 × 1,024 resolution and observed by 

subjects from 80 cm away. The size of all images was 14.6 cm by 9.7 cm, spanning a visual 
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angle of 10.4° × 6.9°. The image sequence was displayed at the center of the screen 

surrounded by a blue border so that subjects easily distinguished the area of the image.

We explained the task to subjects during a training session. First, at full resolution (160,884 

pixels, 492 × 327), conventional and confocal images were shown followed by the edge-

filtered and compressed (decreased resolution) images. The subjects were informed of the 

categories of objects presented (household items and office equipment), the average size of 

objects (all objects were smaller than the 21” monitor screen), and the position of objects in 

the images (bottom center). The viewpoint for image acquisition was disclosed to the 

subjects. The specific object recognition task was then performed with background cluttered 

and de-cluttered images with the 8 different levels of resolution as a training session, to 

familiarize the subjects with the interpretation needed by the low resolution edge images. 

We also discussed with the subjects the nature of the edge images and the cluttering at low 

resolution. Following a training session with 3 different objects, subjects commenced the 

main task. Subjects could guess the OI or pass on difficult scenes after 1 minute. If they 

could not name a recognized object, they were allowed to describe the use of the object, 

details of its shape, or specific features. The operator wrote down the subjects’ responses, 

but no feedback or correction was provided. In deciding the veracity of responses, 

describing the use of the OI had a higher value than a general description of the object 

shape. For example, although the shape of the helmet is much closer to an upside-down 

bowl than a hat or cap, we chose hat or cap as a correct response and rejected the upside-

down bowl as a mere description of the shape and incorrect recognition. Because these cases 

were very rare (11/1920 = 0.6%) in this experiment, these decisions did not affect the 

results.

We used binary logistic regression (Bender & Grouven, 1998) to estimate the impact of 

background removal on object recognition, to provide statistical inference of the differences 

among the 20 objects, and the impact of 8 resolution levels. Binary logistic regression is 

used to predict a categorical (usually dichotomous) variable from a set of predictor 

variables. With a categorical dependent variable, binary logistic regression is often chosen if 

the predictor variables are a mix of continuous and categorical variables and/or if they are 

not normally distributed. Binary logistic regression has been especially popular with medical 

research in which the dependent variable is whether or not a patient has a disease (Press & 

Wilson, 1978). In this study, we used binary logistic regression because the response of 

subjects is binary (recognized or not) and other variables were a mix of continuous (log of 

resolution) and categorical (object number) variables.

3.2.2 Results—Figure 8 shows the recognition rate over all 6 subjects’ responses. The 20-

object recognition rates of all 6 subjects (120 responses at each resolution level) are 

represented separately for the background cluttered and de-cluttered conditions, and are 

fitted with a Weibull psychometric function (Wichmann & Hill, 2001) using Psychtoolbox 

(Psychtoolbox-3; www.psychtoolbox.org) with MATLAB (MathWorks, Natick, MA). 

Because some subjects failed to recognize some objects, even at the highest resolution with 

background cluttered or de-cluttered conditions, the psychometric functions are not forced to 

reach 100 % recognition. The data and fitting for individual subjects are provided in the 

online supplement (Fig. S2).
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The recognition rate with the background cluttered condition improves from about 1,000 

pixels. It saturated at about 10,000 pixels. The fitted psychometric curve for the confocal de-

cluttered condition is to the left of the curve obtained with the background cluttered. The 

50% recognition threshold for the conventional compressed edge images required a 

resolution of 8,695 (about 114 × 76) pixels, while for the de-cluttered images the same 50% 

performance was achievable at a resolution of 3,532 pixels (about 73 × 48). Figure 9 shows 

the resolution required for a 50% recognition rate for each subject under background 

cluttered and de-cluttered conditions. When the compressed resolution was higher than 

31,000 (104.5) pixels, subjects could recognize most objects regardless of the background 

condition. For resolutions lower than 100 pixels, most objects could not be recognized by 

subjects regardless of background condition. With the 1,000 to 10,000 pixel resolutions 

targeted by foreseeable future retinal implants, the recognition rates were clearly improved 

by de-cluttering (see the full curves for all 6 subjects in Fig. S2 in the online supplement).

The binary logistic regression was performed with all 1,920 trials from the 6 subjects. The 

model and parameters were estimated in SPSS 11.5.0 (SPSS, Chicago, IL). Overall about 

half of the responses (1028/1920 = 53.5%) did not recognize and 46.5% (892/1920) 

responses correctly recognized the OI. The predictor variables were: the background, 19 

dummy variables coding the objects, and a continuous variable for resolution. The 

background-cluttered condition and the first object (Object 1) were set as the reference for 

dummy variable coding. The model correctly classified 90.3% of the correct OI recognition 

and 91.0% of incorrect recognitions (including no response/passes). Employing an α < 0.05 

criterion for statistical significance, the background condition, the resolution, and 14 of the 

object dataset dummy variables had significant partial effects.

In the binary logistic regression model from all subjects’ responses, the impact of each 

variable was predicted by the model as an odds ratio (OR).(Footnote) The model predicted 

odds ratio for recognition of images with the background cluttered condition to the 

background de-cluttered condition is 5.6 (α < 0.01), indicating that when holding all other 

variables constant, a confocal de-cluttered image is 5.6 times more likely to be recognized 

than a conventional background-cluttered image. If the recognition rate (p’) of background-

cluttered images is selected as reference, the recognition rate of background de-cluttered 

images (p) could be predicted by the odds ratio from the model as shown in Eq. 1.

(1)

For example, if the conventional compressed image (background cluttered) is the reference 

and its recognition rate is 50%, the recognition rate of confocal de-cluttered images 

(background de-cluttered) is expected to be 84.9% based on the odds ratio (5.6) from the 

model. On the other hand, the recognition rate of conventional compressed images is only 

15.1% if the recognition rate of confocal de-cluttered images is 50%. These results are 

consistent with the psychometric function fitting for each subject (Fig. S2) and responses 

cumulated over all subjects as shown in Fig. 8. The 95% confidence interval (CI) of the odds 
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ratio for background is from 3.9 to 8.1 verifying that background removal using confocal de-

cluttering improves the object recognition performance substantially and significantly.

Similarly, the odds ratio for resolution was analyzed using the binary logistic regression 

model. Because the resolution was increased logarithmically, the odds ratio was analyzed by 

the common logarithm of the resolution. The recognition rate increases exponentially with 

increased resolution. The model predicted odds ratio of the common logarithm of resolution 

is 74.5 (α < 0.01) and the 95% CI is from 48.9 to 113.5. This means that the recognition rate 

is increased 74.5 times by a resolution increment of 10 times. For example, if the 

recognition rate in most compressed images (96 pixels) is assumed as 1%, the recognition 

rates in each resolution log step are predicted by the model to be 10.3%, 23.8%, 66.6%, 

84.2%, 96.1%, 98.8%, and 99.8%.

We tried to adjust the difficulty of images in our dataset to be as uniform as possible using a 

similar camera viewpoint, object position, size, and background complexity. The overall 

difficulty of the task is highly dependent on the subject’s prior experience and abilities. The 

relative difficulty among objects in the dataset compared with object 1 as a reference 

(arbitrarily selected) was analyzed by the odds ratio from the model. The relative difficulty 

of object recognition was analyzed using the false recognition rate because the difficulty is 

based on the probability of failure to recognize. Although this analysis is limited by the 

small sample size and generating a final data set was not the main purpose of this 

experiment, at least the result of this analysis showed that recognition difficulties were 

moderately balanced a cross samples in the data set. The detailed results are provided in the 

online supplement (Fig. S3 in the online supplemental materials).

We verified the impact on object recognition of background de-cluttering using a 

conventional camera with narrow-DOF lens. In section 4, we present a confocal image 

generation method based on light-field imaging (Ng et al., 2005; Harris, 2012) and illustrate 

the blur-based de-cluttering process applied to the confocal image obtained from the light 

field image. Then, a zooming function is included to improve object detail.

4. Active confocal de-cluttering using a light-field camera

4.1 Confocal de-cluttering based on light field

The simplest way to acquire a confocal image without a complex optical setup is to use a 

low f-number camera lens, as we used in the preliminary object recognition test. However, 

the low f-number means the aperture size has to be wide and the focal length has to be short, 

which results in heavy weight and a bulky lens. The motorized mechanical and optical parts 

for changing focal distance also increase the volume and weight of the lens, making it 

inappropriate to use in a miniaturized head- or glasses-mounted camera for visual 

prostheses. If a scene has multiple OIs at different distances, a conventional camera lens has 

to change the focus for each OI and scan the whole depth range mechanically. Since this 

process requires mechanical adjusting of the focal distance, this method cannot be 

implemented for practical use, as image acquisition at high frame rates is required.
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We propose a confocal imaging system for visual prostheses based on a confocal technology 

called “light-field” imaging (Ng et al., 2005; Harris, 2012) to achieve confocal images 

effectively in a portable and cosmetically acceptable size. Confocal imaging based on light-

field technology was first proposed as a 3D display technology termed integral imaging 

(Lippmann, 1908; Jung et al., 2012; Kim et al., 2014). A light-field image (or elemental 

image) contains all angular and spatial information of light from a 3D scene, captured by a 

two-dimensional microlens array (or an array of multiple cameras), where each lenslet 

provides a slightly different viewpoint (Ng et al., 2005; Harris, 2012). Current commercial 

light-field cameras such as those from Lytro (Lytro Inc., Mountain View, CA) and Raytrix 

(Raytrix GmBH, Kiel, Germany) use a microlens array with relay optics, where each lenslet 

in the micro lens array and the corresponding subset of CCD sensor pixels under it acts like 

an individual camera system.

Figure 10 illustrates a simulated elemental image of the schematic 3D scene of Fig. 1. We 

simulated the three different plane images of the person, tree, and building to be respectively 

located at 1 m, 4 m, and 9 m and minified 40 times by relay optics in front of the lens array 

(1 mm pitch with 3 mm focal length). The angular and spatial information of the three plane 

images at different depths was computationally projected on the elemental image (Fig. 10 

left) at the focal plane of lens array by ray tracing through each lenslet (Min et al., 2001). 

Each subset image of the elemental image captured by each lenslet is the same as the image 

that would be captured by a camera in an array of multiple cameras, but it has a reduced 

two-dimensional resolution (10 by 10 in Fig. 10) because of the divided CCD resolution. 

The ensemble captures the depth information as a trade-off for the resolution loss (inset of 

Fig. 10). Luckily, losing some resolution in the image capture is a very low cost to pay in 

our application, as the image resolution needs to be compressed even further to be presented 

in a prosthetic vision device.

This over-informative data permits 3D visualization for display (Lippmann, 1908; Kim, 

Hong & Lee, 2010; Jung et al., 2012; Kim et al., 2014), reconstruction of objects (Jung et 

al., 2010; Kim et al., 2013c) or generation of a confocal image (Hong, Jang & Javidi, 2004; 

Stern & Javidi, 2006). A 3D point captured by each lens in the array which covers the 3D 

point within its viewing angle can be reconstructed by a similar setup of lens array and other 

relay optics (Lippmann, 1908; Kim et al., 2010; Kim et al., 2014). If a two-dimensional 

(2D) screen is placed at the depth of the reconstructed 3D point, the 3D point is projected in-

focus on the 2D screen. If the screen is moved away from the depth of the 3D point to 

another location, an out-of-focus blurred image of that 3D point will be cast on the screen 

(Hong et al., 2004; Stern & Javidi, 2006). Thus, only the 3D points located at the depth of 

the screen are focused and other points at each depth plane are blurred.

If the reconstruction and projection processes are performed computationally using ray 

tracing (Hong et al., 2004; Stern & Javidi, 2006) rather than the optical reconstruction with a 

lens array, each projected image on the screen at the different depths is a confocal image and 

the depth plane of the screen is the confocal distance. It doesn’t require additional depth map 

extraction process (Hong et al., 2004; Stern & Javidi, 2006) and can also generate all in-

focus image in addition to the confocal image (Ng et al., 2005; Harris, 2012). Because light-

field confocal imaging is based on the computational projection of a subset of the elemental 
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image through each lens in the array and the summation of their brightness, each simple 

projection calculation can be performed in parallel and the computational load needed to 

sum the projected elemental image pixels is low enough to be realized in real-time (Harris, 

2012; Kim et al., 2013a; Kim et al., 2013b). Figure 11 shows the computationally-generated 

confocal images in different depths from the simulated elemental image of Fig. 10.

Whereas optical confocal imaging as used in microscopy systems captures only one distance 

(confocal image) per frame, a light-field camera can capture the elemental image in one 

exposure/frame and generate multiple confocal images through rapid computation, without 

any mechanical movements. In addition, the light-field camera can generate the confocal 

image with a DOF narrower than a single narrow-DOF lens. Whereas the DOF in a single 

lens is limited by the designed f-number (focal length divided by aperture size), the f-

number of a light-field camera can be controlled by the synthesized aperture of the light-

field camera (Levoy et al., 2004; Ng et al., 2005) instead of the physical aperture of a single 

camera lens. With a multiple-camera array, the same lens can create a much smaller f-

number using a synthetic aperture (Levoy et al., 2004; Ng et al., 2005) determined by the 

distance between cameras.

Following generation of the confocal image an additional de-cluttering process is needed to 

remove/suppress blurred background clutter. Various methods may be implemented to 

suppress the low spatial frequency portion of blurred background clutter for light-field 

confocal imaging, such as edge detection (Aloni & Yitzhaky, 2014), and blur metric (Lee et 

al., 2008; Park et al., 2009). Figure 12 shows the confocal de-cluttered versions of the 

images in Fig. 11 using Sobel edge detection.

Figure 13 shows the final result of the confocal de-cluttered images, compressed into the 

low resolution (980 pixels) and dynamic range (binary) format of prosthetic vision devices 

and SSDs. Although object recognition from these compressed images is challenging, the 

user can gain some situational awareness by scanning through the depth planes shown. An 

automated technique that eliminates the non-object planes (e.g. Figs. 13b and d) is discussed 

in Section 4.2.

Once an OI is found in an object-containing plane, the user may want to zoom in on the 

detected/selected OI for more detail. The zooming can be manually controlled and used to 

fill the field of view of the prosthesis or even overfill the field of view, and be used in 

conjunction with horizontal and vertical scanning which is very natural and easy to conduct 

(Hwang & Peli, 2014). Zooming in this case may not necessarily involve any magnification, 

scaling, or mechanical/optical movement; instead the high-resolution confocal de-cluttered 

image can be cropped and then compressed to a lesser extent to fit the dimensions of the 

prosthesis. Because the confocal de-cluttered image has higher resolution than the resolution 

of visual prostheses, the compressed confocal de-cluttered image (Fig. 14c) of the cropped 

image (Fig. 14b) includes much more OI detail than the original fully-compressed image 

(Fig. 13a). The impact of the zooming by cropping is not coming from magnification per se 

but rather from the lower level of compression applied. Note that the zooming by cropping 

is also more economical computationally.
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4.2 Automatic detection of confocal distance of objects of interest

The user of this system can scan in depth and identify planes with a potential OI by 

changing the confocal depth plane. This requires scanning through the whole depth range, 

which may be inefficient. To reduce the scanning time, we employed a new method that 

isolates the focused regions from the reconstructed image planes, enabling automatic 

detection of planes that may contain OIs (Aloni & Yitzhaky, 2014). This algorithm is based 

on the assumption that the object details located at the depth of a reconstructed plane are 

fully focused, while objects at other depths are blurred. The focused regions in the 

reconstructed plane images consist of higher spatial frequencies compared to the blurry 

regions. We enhance the sharp edge regions using a gradient-like operation (in three 

directions) obtained using the first-scale Haar wavelet transform (Mallat, 1989). Then, with 

an adaptive threshold in each sub-band of the wavelet we detect the sharpest edge locations 

(Aloni & Yitzhaky, 2014). As the threshold applied to the wavelet sub-band is decreased, 

the number of detected edge pixels is increased. In the adaptive process, the threshold is 

adjusted to set the number of detected edge pixels to 0.5% of all pixels in the sub-band 

(Aloni & Yitzhaky, 2014).

To determine the depth of objects in the light-field image, first, the edge detection operation 

is repeated for reconstructed planes at many distances and also for a center view image 

(center subset of elemental image-wide depth of field). Then, for each distance, the number 

of edge pixels in each confocal plane that overlap (collocate) with edge pixels of the 

elemental image is counted. The rate of overlapping edge pixels is expected to achieve local 

maxima at depth planes that contain objects, because objects at these planes appear sharp in 

both the reconstructed planes and the center view image, thus producing edges at similar 

locations. Edge pixels at blurred planes are either suppressed or shifted slightly and thus do 

not overlap with the sharp edges in the elemental image, resulting in a smaller number of 

intersecting edge pixels for these planes. A graph showing the result of this process is 

presented in Fig. 15, as calculated for the image shown in Fig. 16. Two local maxima are 

seen; one very sharp at about 0.6 m and one less distinct but clear at about 3 m.

The image and the corresponding edges reconstructed from 0.6 m distance are presented in 

Fig. 16 d-f. The confocal image (Fig. 16d) shows two objects in focus (the mug and the 

camera) at about the location of the reconstructed plane at 0.6 m. The confocal de-cluttered 

image using edge detection is shown in Fig. 16e. In this image, only edges of these two 

objects are detected, while edges of objects at other depth are removed. The compressed 30 

× 26 pixels edge-image version is shown in Fig. 16f. Compared to the compressed 

background cluttered image shown in Fig. 16c, the features of the two objects in Fig. 16f 

better represent the objects, while in Fig. 16c these features are largely masked by the edges 

of the background.

Figures 16g–i presents results for a confocal image at 3 m distance from the camera, which 

is roughly the distance of most of the background objects. In the confocal image shown in 

Fig. 16g the two objects in the foreground appear blurred. These objects disappear in the 

edge image (Fig. 16h) and consequently in the compressed version (Fig. 16i). It can be seen 

that in this case the computer screens at the rear are somewhat more recognizable than in 

Fig. 16c where they are cluttered at the bottom by the foreground objects.
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5. Discussion

We propose confocal imaging to suppress the background clutter that impedes the 

recognition of OIs, especially when presented in the limited resolution and dynamic range 

typical of current or anticipated visual prostheses. These problems are evident in simulation 

images shown by others (e.g., Zhao et al., 2010). In a preliminary study, we found that a 

confocal de-cluttered image enabled better recognition than background cluttered image 

when compressed similarly. We illustrated the feasibility of obtaining confocal images via 

light-field cameras and the utility of the light-field data they generate. We also propose that 

the system could be active, where the user controls the parameters applied at various 

instances. The active nature of the proposed system is designed to benefit from the 

situational awareness of the user in general and particularly in selecting the confocal plane 

to be examined. The latter aspect has not been addressed in the current paper experimentally 

but is an important component of the proposed system.

For a variety of reasons, we used real objects in a recognition task, rather than the more 

commonly used multiple choice tasks, such as visual acuity, contrast sensitivity, or the 

discrimination between a few objects. First we argue that crowding and possibly masking by 

background clutter are applicable and relevant mostly to natural object recognition in a 

natural environment, though clearly letters can be crowded as can the direction of Gabor 

patches. However, the nature of visual acuity, contrast sensitivity, and object discrimination 

testing as performed with vision prostheses renders the stimuli free of the crowding effect 

(Zrenner et al., 2011; Humayun et al., 2012; Nau et al., 2013), which is the focus of our 

approach and proposed solution. Second, we argue that multiple choice testing, while a 

perfectly good method for measuring the threshold performance of the human or animal 

visual systems, is not sufficient to prove that prosthetic vision can deliver object recognition. 

Humans are excellent at pattern discrimination, and thus can learn to discriminate multiple 

choice targets without being able to recognize them. The ability to discriminate contrast or 

even orientation of Gabor patches with a prosthetic vision system does not assure an ability 

to transfer that capability to visual perception of objects. Observers can learn to use sounds 

to discriminate spatial patterns coded in some way. Yet there is little confidence that such 

performance will lead to auditory recognition of complex visual objects (not withstanding 

the claims for auditory prosthetics, Ward & Meijer, 2010). We argue that object recognition 

testing (not multiple choice testing of object discrimination) is crucial to evaluation of 

prosthetic vision. Many results demonstrated with prosthetic vision systems, especially 

mobility related tests, clearly show the user scanning the narrow camera field of view back 

and forth using head movements across high contrast markers (Cooke, 2006; Mcnamara, 

2007; Neve, 2011). This operational mode is similar to the operation of radar. Radar indeed 

functions very well in detecting small targets in empty non-cluttered scene, such as the sky 

or the sea, but is not useful in the terrestrial environment. Thus we believe that the problem 

of clutter will be significant impediment to the use of these devices for mobility. More 

relevant to our discussion, with the use of scanning, observers can learn to elicit specific 

response patterns in multiple choice situations that they can discriminate (Second Sight 

Europe, 2013; Bionic Vision Australia, 2014). However, such performance is not likely to 

be generalized to the recognition of patterns not previously learned.
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Our results may appear to suggest that the resolution needed for object recognition at the 

50% correct level, even with our proposed confocal imaging, is much higher than what is 

achievable with current prostheses, and even higher than the anticipated resolution of the 

next few generations of such systems. It seems that a resolution of 3,000 to 5,000 pixels may 

be needed. This estimate may be overly pessimistic, as we used static images in our testing. 

Most current and anticipated visual prosthetic devices use video motion imaging (although 

the frame rate is usually at 10 frames per second or lower). With live video, not only motion 

imaging is provided but performance can be much improved. The small variation in the 

input due to electronic noise and to slight jitter in camera position due to head tremor and 

bobbing result in slightly different images being acquired and processed at each frame, even 

when examining a static object while sitting (Peli & Garcia-Perez, 2003). At the low 

resolutions and dynamic ranges we deal with here, that effect may result in temporal 

averaging of the signal that filters away some of the noise and pulls out the consistent visual 

signal. This is an effect similar to stochastic resonance (Collins, Imhoff & Grigg, 1996). 

Improvement in resolution with image jitter was recently demonstrated for patients with 

AMD (Watson et al., 2012) and was simulated for bipolar (3 level) visual edge detection 

(Peli, 2002). Bipolar edges can be implemented if the dynamic range of visual prostheses is 

improved beyond the current 1 bit level. Super-resolution benefits were also suggested using 

dynamic halftones (Mulligan & Ahumada, 1992). Many years ago, when computer displays 

had only 2 bits of gray scale, we demonstrated that quartertone coding can provide a 

substantial resolution benefit over binary imaging (Goldstein, Peli & Wooledge, 1987). We 

noted during our object recognition trials that when subjects failed to recognize objects they 

frequently rotated and shifted their head as if trying to generate different viewpoints or 

motion parallax, intuitively attempting to separate object from background. This was 

unhelpful in our experimental setting but would likely improve performance if applied in a 

motion video system. Thus, with video imaging the performance could be improved, and 

may reach an acceptable level at a lower, more practical, prosthetic resolution.

It is interesting to consider our object recognition task results in the context of threshold 

performance. The lateral separation between the psychometric functions fitting the 

individual subjects’ data for both conditions (background cluttered and de-cluttered) (Fig. 

S2 in supplement), as well as the cumulative performance of all of the subjects (Fig. 8), 

diminishes as the threshold is increased. This may be considered a limitation of our 

approach, as one cares more about the impact of the confocal imaging at higher levels of 

performance, which are more desired than in lower levels of performance. However, it is 

important to realize that even performance in an object recognition task at a level of 50% 

correct would be highly desirable for any current visual prosthesis. If and when the 

performance level reaches as high as 90% correct, diminishing effects of our proposed 

confocal imaging may not be too much of a loss.

Although our preliminary experiment was sufficient to show the significance of the 

background clutter effect on object recognition at low resolution, further aspects should be 

considered in future work. Here we used simple objects, yet recognition varied between 

subjects, as some objects were difficult to recognize from just the basic shape. For example, 

the cylindrical shape of the desk lamp (object 11) was easily recognized by subjects, but 
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they could only identify the partial shape and not the whole item. In addition, linguistic 

analysis of subjects’ responses was required to decide correct answers. A more systematic 

methodology is required to create a dataset of images that can be used even more reliably in 

such studies. The use of light-field imaging may support use of such a dataset by numerous 

groups testing different prostheses, as it contains the full 3D information and thus may be 

used in video and in conjunction with head movement and other depth cues.

As shown in Figs. 6 and 7, and in Fig 16e and f, the diagonal edge from the ground plane 

(desk edge, in this case) clutters the OIs in both background cluttered and de-cluttered 

conditions. Even if the confocal image captures only narrow depth and the focal distance is 

set on the OI accurately, the ground plane around the focal distance is also captured in focus 

and it is not removed by the current de-cluttering method. Frequently, a shadow of the object 

projected on the ground plane may have enough contrast and sharpness to be maintained. A 

de-cluttering process that detects and removes the ground plane may further improve the 

performance of the system.

Light-field cameras are already on the market from Lytro and Raytrix. Pelican Imaging 

(Mountain View, CA) (Venkataraman, Jabbi & Mullis, 2011) and Toshiba (Tokyo, Japan) 

(Kamiguri, 2012) are developing modules for smart phones. These modules will be easily 

adaptable for visual prosthetic vision use and are expected to be inexpensive. In future work, 

a light-field camera will have to be used in video mode. An inexpensive commercial light-

field camera (Lytro) exists but is not suitable for visual prosthesis applications. The field of 

view in Lytro can be adjusted from 5° to 40°. However, the confocal performance (DOF) at 

the wide field of view setting is too broad to suppress background clutter (Min, Kim & Lee, 

2005). The optimal field of view of the Lytro camera is 8°, where it can generate a 

maximum of 7 confocal images at depth planes of 10, 25, 50, 100, 200, 600, and 1100 cm 

(Maiello, 2013), sufficient DOF ranges for our application but insufficient visual field. At 

wider field of view settings the confocal depth steps are too sparse to suppress clutter in 

other planes. The other commercial light-field camera (Raytrix) can be customized by 

optimizing lens array design for confocal imaging of the wide-field light-field, can operate 

at video rate and have a narrower DOF, but it is much more expensive with the 

customization option. Yet, it can support evaluation of the feasibility and the utility of such a 

system

An active confocal imaging system offers many possibilities for modes of operation in 

future prostheses. Obvious candidates include a free-search mode, which would be 

especially useful for orientation. A controller mounted on the handle of a long cane could be 

used to isolate and then zoom in on one of several objects selected automatically from the 

image obtained by the head-mounted camera. Another mode, confocal-extension mode (Fig. 

17a), may be useful for finding objects slightly beyond the reach of the arm or cane. The 

confocal depth would be set to a narrow band, and the presented de-cluttered view would be 

centered laterally based on the detected location of the user’s searching hand or the tip of the 

long cane. Further, in an obstacle-avoidance mode (Fig. 17b), objects in the oncoming path 

could be detected when reaching a preset distance from the user and presented visually, 

together with an audible or haptic alert, giving sufficient warning and providing for visually 

guided avoidance maneuvers. This mode may be especially useful for elevated obstacles that 
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the long cane cannot detect, and as an early warning of pedestrian traffic (Pundlik, Tomasi 

& Luo, 2014). Active vision, where the user selects the mode of operation and interacts with 

the environment through the prosthesis settings, is our preference, in contrast to other 

computer-vision based approaches. Our approach counts on the user’s knowledge of the 

environment and awareness of what he wishes to achieve, rather than on a need for the 

system to be able to guess it.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Clutter makes it difficult to recognize objects in current visual prostheses.

• Confocal imaging can be used to suppress clutter in visual prostheses imagery.

• The impact of de-cluttering in simulated phosphene vision was tested with 6 

subjects.

• The value of confocal de-cluttering based on light-field imaging is promising.
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Figure 1. 
Illustration of the proposed removal of background clutter for visual prostheses. (a) A blind 

person with visual prosthesis facing a schematic natural three-dimensional (3D) scene that 

includes a person in front of a tree and a building behind the tree. (b) The overlapping 

objects at different depths that clutter each other are captured by a head-mounted camera. In 

the color high resolution image, the overlapping objects of interest (OIs) can be easily 

separated perceptually. (c) Following image compression into low resolution (about 1,000 

pixels), even with 8-bit grayscale, recognition is severely impacted. (d) Compressed binary 

image (simulated phosphene vision) at the same low resolution makes it difficult if not 

impossible to recognize the objects. (e) If the background clutter is removed by using image 

processing or other imaging technology, only the OI (e.g., the nearest person) will remain, 

thus object recognition through the visual prostheses will be improved.
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Figure 2. 
Comparison of the effect of compression (low resolution and dynamic range) on a 

conventional (wide DOF, a-d) and confocal (narrow DOF, e-h) image; a cup in front of a 

complex background (bookshelves), as captured by conventional camera. When converted 

into low resolution (38 × 25, 950 pixels) and low dynamic range images such as (b) 8-level, 

(c) 4-level, and (d) binary, the background detail of the wide DOF image clutters the OI 

more as the dynamic range decreases. (e) With the scene captured by using confocal 

imaging (narrow DOF) at the selected depth plane, only the OI is in-focus and the 

background is naturally suppressed by blur. However, the background suppression in the 

compressed images (f–h) is not as appearent as in the original image. As dynamic range gets 

lower, the natural background suppresion effect of confocal imaging is diminished.
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Figure 3. 
Illustration of the impact of the confocal de-cluttering. The images in Figs. 2a and 2e were 

processed by edge detection and are shown here in (a) and in (c), respectively. Following 

compression of the image in (a) into the low resolution and dyanmic range of visual 

prostheses, much detail of the background remains and clutters the OI in (b) and makes 

recognition difficult. With the confocal de-cluttered image shown in (c), the edge filtering 

removes the background clutter and leaves only the OI at the selected depth visible, even 

with compression, as shown in (d). The latter is easier to recognize, especially with regard to 

the handle of the cup.
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Figure 4. 
The 20 dataset images in non-confocal conventional photography compressed into 950 

pixels (38 by 25) following the edge detection process. Compressing the edge images results 

in cluttering of objects and disruption of the borders between the OI and background. To 

recognize the OI with these imaging, higher resolution or dynamic range is required.
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Figure 5. 
The confocal de-cluttered versions of the images shown in Fig. 4 compressed in the same 

way. With the removal of background clutter using confocal de-cluttering, it is possible for 

at least a few objects to be recognized, even at this resolution.
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Figure 6. 
A background cluttered image compressed into different resolutions. (a) 96 pixels, (b) 486 

pixels, (c) 950 pixels, (d) 3,290 pixels, (e) 6,370 pixels, (f) 17,876 pixels, (g) 40,344 pixels, 

and (h) 160,884 pixels. As the resolution increases, the cluttering declines and overlapped 

outlines are separated. However, the recognition of the OI is still not easy at least until the 

level shown in (e).
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Figure 7. 
The background de-cluttered image compressed into the same resolution levels as in Fig. 6. 

Overall, the object is easier to locate and recognize in these images than in those shown in 

Fig. 6. Although the background clutter is removed at all level, details of this OI are not 

easily resolved below level (d). Note that zooming in on the object will improve the 

resolution and enable recognition at higher levels of compression.
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Figure 8. 
The recognition rates of the 20 objects by the 6 subjects as a function of resolution. The 

recognition rates started to increase rapidly at about 1,000 (103) and about 3,100 (103.5) 

pixels in background de-cluttered and cluttered conditions, respectively. The recognition 

rate with the background de-cluttered condition was higher than with the background 

cluttered condition. Weibull pyschometric funtions were fitted to the data.
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Figure 9. 
The number of pixels required for 50% recognition rate by each subject under background 

cluttered and de-cluttered conditions. Each marker is slightly off center to prevent 

overlapping of markers. The 50% threshold of recognition rate over all subjects’ responses 

is at a resolution of 8,695 pixels with cluttered background and 3,532 pixels with de-

cluttered background as illustrated in gray bars. The dashed line (at 1,500 pixels) indicates 

the resolution of current and next-generation visual prostheses.
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Figure 10. 
Details of a simulated elemental image (light-field information) shown in two magnified 

insets. The simulated scene of Fig. 1 was captured by a simulated (computed) light-field 

camera composed of a 1 mm pitch lens array behind relay optics and in front of a CCD 

sensor. Each inset shows a magnified 9 × 10 subset of the elemental image. Each subset 

represents a different perspective view (with low resolution of 10 × 10 in this simulation) 

captured by a lenslet in a different position. The total light-field image contains the full 3D 

information of the scene.
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Figure 11. 
Confocal images (308 × 385) in different depth planes generated from a simulated elemental 

image frame obtained computationally (Fig. 10) from the simulated 3 plane scene of Fig. 1. 

(a) The confocal images at the depth plane of the person (1 m), (b) between the person and 

the tree (2.5 m), (c) of the tree (4 m), (d) between the tree and the building (6.5 m), and (e) 

of the building (9 m). Animation 1 in the online supplement shows the confocal image 

sequence being scanned between near and far in depth.
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Figure 12. 
Confocal de-cluttered images (308 × 385) at the different depth planes shown in Fig. 11, 

achieved through Sobel edge detection. Note that although there are only 3 objects in 

different planes in the original simulated scene, additional depth planes between objects 

were selected (in b and d). These intermediate depth planes (b and d) do not provide as good 

a result as the confocal de-cluttered image at object planes (a, c, and e). Animation 2 in the 

supplement shows the confocal de-cluttered image depth sequence obtained from one 

elemental image frame.
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Figure 13. 
Confocal de-cluttered images of Fig 12 are compressed to fit the limited resolution of a 980 

pixel (28 × 35) visual prosthesis. Animation 3 in the supplement shows the compressed 

confocal de-cluttered images in sequence, obtained from one elemental image frame.
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Figure 14. 
Effect of zooming using cropping of the high resolution confocal image before confocal de-

cluttering and compression. (a) Zoomed OI in the high resolution confocal image of Fig. 11a 

using cropping and therefore requiring a lesser compression. (b) The confocal de-cluttered 

zoomed image has a higher level of details. (c) With zoom preceding compression, more 

detail can be preserved in the low resolution compressed image than the compressed result 

without zooming of Fig. 13a.
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Figure 15. 
Estimation of object depth planes. The fraction of overlapping (collocating) edge pixels 

between the edges of the center view image and the edges in 200 confocal images 

reconstructed at steps of 30 mm apart. The first maximum at 0.6 m distance from the camera 

indicates the location of the objects of interest in front (mainly the camera and the mug in 

Fig. 16a). The next maximum is around 3 m, which is the distance to the background.
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Figure 16. 
Results of automatic OI depth plane selection with confocal de-cluttering using a light-field 

setup. Top row (a–c) shows the center view image, together with the edge image and its 

resolution-compressed version. Middle row (d–f) shows the same images for the confocal 

image reconstructed at the 0.6 m distance identified by the detection algorithm. The bottom 

row (g–i) shows the same results for reconstruction at the other local peak distance of 3 m.
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Figure 17. 
Operating modes of active confocal imaging for visual prostheses (a) Confocal-extension 

mode. The user, trying to find an object, reaches and touches around the area where the 

object is expected to be. The system first detects the tip of the finger or cane and sets the 

focal distance to a predefined distance in front of it. In this mode, users can see farther than 

the arm or cane length, hence the designation confocal-extension, and we expect this 

extended search range to reduce the search time. (b) Obstacle avoidance mode, to be used 

mainly when walking. The system displays only objects that enter the pre-selected distance 

range and will alert the user when such an object is detected (moving from location A to B 

in the figure). The range included may be selected to be very narrow or wider. This mode 

calls attention to obstacles or hazards that are missed or not reachable by the cane. When an 

obstacle is detected the user may execute an avoidance maneuver based on the “visual” 

information displayed.
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