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ABSTRACT

Ebola virus (EBOV) is a key member of Filoviridae family
and causes severe human infectious diseases with high
morbidity and mortality. As a typical negative-sense
single-stranded RNA (-ssRNA) viruses, EBOV possess
a nucleocapsid protein (NP) to facilitate genomic RNA
encapsidation to form viral ribonucleoprotein complex
(RNP) together with genome RNA and polymerase,
which plays the most essential role in virus proliferation
cycle. However, the mechanism of EBOV RNP formation
remains unclear. In this work, we solved the high
resolution structure of core domain of EBOV NP. The
polypeptide of EBOV NP core domain (NP...) pos-
sesses an N-lobe and C-lobe to clamp a RNA binding
groove, presenting similarities with the structures of the
other reported viral NPs encoded by the members from
Mononegavirales order. Most strikingly, a hydrophobic
pocket at the surface of the C-lobe is occupied by an a-
helix of EBOV NP, itself, which is highly conserved
among filoviridae family. Combined with other bio-
chemical and biophysical evidences, our results pro-
vides great potential for understanding the mechanism
underlying EBOV RNP formation via the mobility of
EBOV NP element and enables the development of an-
tiviral therapies targeting EBOV RNP formation.

KEYWORDS Filoviridae, Ebola virus, nucleoprotein,
nucleocapsid, crystal structure, assembly mechanism

INTRODUCTION

The members of filovirus family, including Ebola virus
(EBOV) and Marburg virus (MARV) and Lloviu virus (LLOV)
(Kuhn et al., 2010), cause highly lethal hemorrhagic fever in
human beings with extremely high morbidity and mortality.
EBOV is typically found in Central Africa, but re-emerged in
Western Africa in 2014 to cause a worldwide-spreading
outbreak spreading. Till April 2015, 25,591 suspected cases
and 10,602 dead cases were reported (http://www.cdc.gov/
vhf/ebola/outbreaks/2014-west-africa/case-counts.html).
Although several chemical agents, antibodies and vaccines are
found to inhibit EBOV in animal or human, there is no therapeu-
tics with high efficacy can be provided for clinical usage.

EBOV is a typical non-segmented negative-sense single-
stranded RNA (-ssRNA) virus (Muhlberger et al., 1999). The
single-stranded RNA genome of EBOV encodes the surface
glycoprotein (GP), an RNA-dependent RNA polymerase
(RdRp), a nucleocapsid protein (NP), as well as viral protein
(VP)35, VP40, VP30 and VP24 (Muhlberger et al., 1999).
Similar to other —ssRNA viruses, the RNA genome of EBOV
cannot exist as a naked form, but must be encapsidated by
NP and further form a ribonucleoprotein (RNP) complex to-
gether with RdRp (Sun et al., 2012; Zhou et al., 2013). After
entry into the cytoplasm through membrane fusion mediated
by glycoproteins, the RNP is released from the virion and
serves as the template with which the copackaged RdRp
transcribes mRNAs from the viral genome in the RNP. In the
later stage of virus replication, complementary positive-
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strand RNA (cRNA) is produced in the form of an RNP. The
RNP serves as the template for replication that generates
viral genomic RNA in the form of an RNP ready to be pack-
aged in the virion. Throughout the entire virus replication
cycle of a —ssRNA virus, the genome length viral RNA (cRNA
or viral genomic RNA) is only present in the form of an RNP
that either serves as a template for RNA synthesis or is
packaged in the virion. Therefore, the formation and correct
function of RNP is essential for —ssRNA virus proliferation
(Sun et al., 2012; Zhou et al., 2013; Ruigrok et al., 2011).
Structural knowledge of —ssRNA virus RNPs was initiated
by studying non-segmented -ssRNA viruses, including
Borna disease virus (BDV) (Rudolph et al., 2003), rabies
virus (Albertini et al., 2006), vesicular stomatitis virus (VSV)
(Green et al., 2006), and respiratory syncytial virus (RSV)
(Tawar et al., 2009), and this knowledge has been greatly
enhanced by recent investigations of segmented —-ssRNA
viruses, including arenaviruses (Hastie et al., 2011a, b; Qi
et al., 2011), bunyaviruses (Dong et al., 2013; Ferron et al.,
2011; Guo et al., 2012; Jiao et al., 2013; Li et al., 2013; Niu
et al., 2013; Raymond et al., 2010), and influenza virus (Ng
et al., 2008; Ye et al., 2006; Arranz et al., 2013; Chenavas
et al., 2013; Moeller et al., 2013). Furthermore, advances in
the visualization of native or authentic RNP through electron
microscopy led to the understanding of the dynamic pro-
cesses of RNP formation at molecular level. In particular,
recent results have clearly demonstrated that viral NP could
be directly used as the target for antiviral development
(Gerritz et al., 2011; Kao et al., 2010), raising a great po-
tential to find new antiviral agents with novel mechanism
against drug resistance occurred in traditional antiviral drugs.
Recent work on cryo-electron microscopy and tomography
help us visualize Filoviridae virus particles and formation of
nucleocapsid (Bharat et al., 2012; Bharat et al., 2011).
However, the structural details of EBOV NP and the mole-
cular mechanism of EBOV RNP formation are largely un-
known. The exclusive structural information is that a recent
work identified the boundaries of N- and C-terminal domains
of EBOV NP and solve the crystal structure of the C-terminal
domain spanning residues 641-739 (Dziubanska et al.,
2014). However, the structure of C-terminal domain of EBOV
NP did not hint to the biological function of this region. All of
these promote us to initiate the biochemical and structural
analysis on EBOV NP to achieve the understanding of the
mechanism of EBOV RNP formation and explore the po-
tential drug target for the discovery of anti-EBOV agents.

RESULTS

Biochemical analysis of the recombinant core domain
of EBOV NP

Previous studies have demonstrated that N-terminal trun-
cation of EBOV NP resulted the loss-of-function in NP-NP
interaction and the first 450 amino-acid of EBOV NP, forming
the core domain, is sufficient for the formation of

nucleocapsid-like structures and viral genome replication
(Watanabe et al., 2006). However, most of previous ex-
pression and purification work aimed for structural investi-
gation failed because of the tendency to oligomerization and
precipitate. To screen the best construct suitable for the
crystallographic work on the core domain of EBOV NP, we
generate a series of truncation and mutation constructs. All
constructs containing the first 30 amino acids of EBOV NP
result to high tendency to oligomerize and precipitate, even
in ultra-high ion strength condition.

The best construct with the highest expression yield and
biochemical features covers the region of residue 36-351 of
EBOV NP (named NP hereafter). Moreover, this region is
highly conserved not only in different strains of EBOV, but
also in Marburg virus and Lloviu virus, another two repre-
sentative member in Filoviridae family. In particular, this re-
gion was revealed to exert the both the function of RNA
binding and further NP oligomerization to form high-order
RNP. We therefore performed further crystallographic and
biochemical investigation on this NP region.

Because binding RNA and oligomerization are two key
features for virally encoded NP, we further analyzed the
solution property of EOBV NPgy.. The EBOV NP, was
expressed in Escherichia coli and purified under phys-
iological conditions. The retention volume of the recombinant
EBOV NPy protein in size-exclusion chromatography
peaks at 16 mL (Fig. 1A), corresponding to a molecular
weight to 35 kDa. SDS-PAGE analysis indicated that the
major peaks contained a protein with expected size for
EBOV NP¢gre, While the Asgo/Assg UV absorption ratio of 1.6
demonstrated that there was no nucleic acid binding to
EBOV NPy (Fig. 1A). These results revealed that the re-
combinant EBOV NP, exists as a monomeric state in
solution and do not contain nucleic acids acquired from ex-
pression host cells.

Overall structure of EBOV NP

The EBOV NP, was successfully crystallized, and the
crystal structure was subsequently determined using the
single-wavelength anomalous dispersion (SAD) method and
refined to a high resolution of 1.8 A with a final Ryon Of
19.2% (Rfree = 22.3%) (Table 1).

In the structure of EBOV NP, one molecule is ob-
served in the crystallographic asymmetric unit. Further
analysis suggests that the intramolecular interactions are
associated with crystal packing and the monomer should be
the biological unit. All residues of EBOV NP polypeptide
were be built into the final model, except three short gaps
(residues A123-S126, E139-T143, K257-R263), and one
loop region covering A326-V334 cannot be traced due to the
lack of interpretable electron density, indicating their intrinsic
structural flexibility (Fig. 1B).

The structure of EBOV NPy presents a novel protein
folding within viral NP family and displays a compact archi-
tecture with dimensions approximately of 53 A x 40 A x 75 A,
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Figure 1. Purification and structure of EBOV NP.... (A) Size exclusion chromatography (SEC) of EBOV NP... The sample
containing EBOV NP, was injected into a Superdex-200 column. The molecular weights of standard protein markers are shown on
the top. Blue and red lines denote Asgg and Aygg, respectively. SDS-PAGE analysis of the peak fractions is shown inset. (B) Overall
structure of EBOV NPe. The polypeptide of EBOV NP, is shown as colored cartoon. The N-lobe and C-lobe are colored as blue
and red, respectively. Missing residues are linked by dotted lines. (C) Schematic diagram of the domain organization in the primary
sequence of EBOV NP. N-lobe, C-lobe, and C-tail are colored as slate blue, salmon red, and green, respectively. N-tail and non-
conservative region are colored as blank. (D) Topology diagram of EBOV NP, helices are presented as rectangulars and strands
are shown as arrows. The color scheme is the same as that in (B) and (C).

EBOV NP is featured by two relatively separate portions, a-helices, in which the N-lobe consisted of thirteen a-helices
an N-lobe (V36-R240), and a C-lobe (F241-E351) (Fig. 1B and two B-strands and the C-lobe consisted of seven a-he-
and 1C). Both two domains are predominantly composed of lices (Fig. 1B and 1D). Similar with most virus-encoded NPs,
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Table 1. Data collection and refinement statistics

Parameters Native SeMet

Data collection statistics

Cell parameters

a(A) 59.8 59.3

b (A) 162.9 162.9

c (A) 31.3 31.1

a, B,y (%) 90.0, 90.0, 90.0 90.0, 90.0, 90.0
Space group P2,2,2 P2,2,2
Wavelength used (A) 0.9785 0.9785

Resolution (A)

No. of all reflections

No. of unique reflections
Completeness (%)

Average /o (/)

Rerge (70)

Refinement statistics

No. of reflections used (o(F) > 0)
Reorc (%)

Rbee (%)

r.m.s.d. bond distance (A)
r.m.s.d. bond angle (°)

Average B-value (A?)

No. of protein atoms

No. of ligand atoms

No. of solvent atoms
Ramachandran plot

Res. in favored regions (%)
Res. in generously allowed regions (%)

Res. in disallowed regions (%)

40.7-1.79 (1.86-1.79)°
312,740 (14,770)
29,588 (1477)

99.16 (93.53)

20.04 (3.94)

8.4 (54.6)

29492
19.19
22.30
0.011
1.19
39.5
2512
0

293

98.23
1.77
0

40.1-2.4 (2.49-2.40)
158,723 (7888)
12,497 (580)

99.50 (96.14)

34.08 (8.9)

16.6 (45.1)

a Rmerge = ZnZi | n = <> |/ZnZ) <lr>, where <I,> is the mean of the observations /;, of reflection h.
® Ruork = Z(||Fp(0bs)| = |Fy(calc)||)Z|Fo(obs)|; Reee is an R factor for a pre-selected subset (5%) of reflections that was not included in

refinement.

¢ Numbers in parentheses are corresponding values for the highest resolution shell.

the N- and C-lobes clamp a highly positively charged groove
to encapsidate viral RNA.

The RNA binding groove of EBOV NP,

The Axgo/Asep ratio of EBOV NP, is approximate 1.6 and
indicates no RNA binding occurred during the expression
and purification of EBOV NP (Fig. 1A). In consistency, no
continuous nucleic acids electron density could be observed
on the surface of EBOV NP ge.

However, highly positively charged pockets on the mole-
cular surface of EBOV NP, coordinated the investigation

on the RNA binding site (Fig. 2). There are two positive-
charged regions located in the structure of EBOV NPy, a
major one and a minor one. The major positive-charged
crevice is located in the interface of N-lobe and C-lobe, in
which K160, K171, R174, and K248 contribute the most
essential positive charge. An additional minor positive-
charged region is adjacent to the major crevice and is con-
sisted by R205, K211, and R298. Positive-charged residues,
including lysine, arginine, and histidine residues, are known
to interact with the ribose and phosphate moieties of nucleic
acid and thus dominate the RNA encapsidation process of
viral NPs (Albertini et al., 2006; Green et al., 2006; Hastie
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Figure 2. Potential RNA binding region of EBOV NP_,.. (A) Cartoon representation of EBOV NP... The N-lobe and C-lobe are
colored as slate blue and salmon red, respectively. (B) Electrostatic surface potential of EBOV NP .. The electrostatic surface
potential of EBOV NP, was calculated using APBS tools, with limits +5 kbT/ec. Positive residues are highlighted by red circle on
EBOV NP, suggesting the presence of several positively charged grooves that may be involved in RNA binding.

et al., 2011; Guo et al., 2012; Li et al., 2013; Ariza et al.,
2013; Raymond et al., 2012; Reguera et al., 2013). To be
consistent with this structural observation in the major
groove in EBOV NP, previous works have demonstrated
that deletion of these basic residues or substitutions to ala-
nine residues significantly impaired the RNA binding affinity
of EBOV NP or EBOV replication (Muhlberger et al., 1999;
Watanabe et al., 2006; Noda et al., 2010; Huang et al., 2002;
Leung et al., 2015). Taken together, these structural and
biochemical evidences designated that the RNA binding
groove of EBOV NP is located in the interface of N- and
C-lobes and demonstrated the essential role of the key basic
residues for RNA binding and EBOV proliferation.

Structural comparison of EBOV NP, with other NPs
in Mononegavirales

DALI (Holm and Rosenstrom, 2010) and SSM (Krissinel and
Henrick, 2004) analysis revealed that EBOV NP presents
structural similarity with viral NPs encoded by the members
of Mononegavirales order, including RSV (Tawar et al.,

2009), parainfluenza virus 5 (PIV-5) (PDB code: 4XJN), and
Nipah virus (NiV) (Yabukarski et al., 2014), and etc. Align-
ment of EBOV NP, with RSV NP structures gives an
overall root-mean-square deviation (r.m.s.d.) of 4.4 A for all
Ca atoms of the 375 aligned residues, while the alignment
with PIV5 NP gives an r.m.s.d. of 4.2 A for 395 residues and
NiV NP gives an r.m.s.d. of 3.6 A for 330 residues (Fig. 3A).

Not only NPs of RSV, PIV-5, and NiV, the overall structure
of all Mononegavirales NPs shows similar topology, despite
of low primary sequence homology. All of these NPs include
an N-lobe and a C-lobe to clamp the RNA binding site on
interface. However, the formations of RNP achieved by viral
NPs are variable. The most striking difference is that the
continuous nucleic acid chains are found to be bound in the
inner side of NP-RNA particles of rabies virus (Albertini et al.,
2006) and VSV (Green et al., 2006), but the bound RNAs are
exposed to the outer side of NP-RNA particles of RSV
(Tawar et al., 2009) and PIV5 NP. According to the structure
homologies of EBOV NP with NPs encoded by RSV and
PIV5, we speculate the RNA binding position of EBOV NP
should adopt same pattern. Notably, besides the core
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Figure 3. Structural comparison of NPs from Mononegavirales viruses. (A) Structural comparison of EBOV NP with RSV,
PIV5, and NiV NP. NPs are displayed as cartoon. RSV (PDB code: 2WJ8), PIV5 (PDB code: 4XJN), and NiV (PDB code: 4CO6) NPs
are colored cyan, gray, and yellow, respectively. Alignment information is listed under each molecule. All molecules are aligned to the
structure of EBOV NP, and shown in the same orientation. (B) Electrostatic potential comparison of EBOV NP with RSV, PIV5,
and NiV NP. Positively charged pockets for RNA binding are indicated with orange arrows. RNA molecules in RSV and PIV5 NPs are

shown as colored sticks.

domain, EBOV NP accommodates an non-conservative re-
gion and a C-terminal tail, which is nearly 200 amino-acid
length, suggesting EBOV NP may have additional biological
functions beyond RNA binding and oligomerization to form
high-ordered RNP. Actually, a breakthrough in the under-
standing of virally encoded NP is that Lassa fever virus
(LASV) (Hastie et al., 2011; Qi et al., 2011) and Crimean-
Congo hemorrhagic fever (CCHFV) (Guo et al., 2012) NPs
do have an enzymatic activity. These indicate that the further
analysis on the extension parts of EBOV NP is necessary to
dissect its precise biological roles.

Helix-20 in EBOV NP, indicates an essential
hydrophobic pocket

A critical step for —ssRNA RNP function is that NP releases
the encapsidated RNAs and transfers RNAs to the catalytic
center of RdRp for polymerase reaction. Recent works on
VSV (Green and Luo, 2009), NiV (Yabukarski et al., 2014),

and arenavirus (Kranzusch and Whelan, 2011) have re-
vealed several key co-factors or chaperones to regulate this
key process. For example, a phosphoprotein (P) was shown
to be the key regulator to VSV RNP formation and the
C-terminal domain of P binds primarily to the C-lobe of VSV
NP within NP-RNA particles (Green and Luo, 2009). More-
over, in the structure of NiV NP-P complex, a peptide derived
from P was determined to locate at one hydrophobic crevice,
protecting host cells against viral replication by inhibiting viral
RNP formation (Yabukarski et al., 2014). Interestingly, the
superimposition of EBOV NPy with NiV NP-P complex
suggests a similar hydrophobic pocket (Fig. 4A). This hy-
drophobic pocket lies on the C-lobe of EBOV NP e, which
is adjacent to the RNA binding groove (Fig. 4A).

In EBOV NP, the hydrophobic pocket is comprised by
Helix-14, Helix-15, and Helix-19, a number of hydrophobic
residues contributed for the formation of this pocket, in-
cluding V247, V250, 1254, L255, L264, A268, V273, V277,
F280, L284, L287, and L316 (Figs. 1D and 4C). However,
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this hydrophobic pocket in occupied by P protein in NiV NP,
but is accommodated by Helix-20, which is consisted by
residues from N325 to E351, in EBOV NP.y.. Five hy-
drophobic residues, i.e. V336, Y340, L343, A346, and A347,
stabilize the interaction between Helix-20 with the hy-
drophobic pocket in C-lobe.

We next investigated the conservation of this hydrophobic
pocket among filoviridae family. Five strains of Ebola virus
(strain Zaire, UniProt O72142; Sudan, UniProt Q5XX08;
Bundibugyo, UniProt BEBXCM7; Tai forest, UniProt B8XCNG;
and Reston, UniProt Q8JPY1), five strains of Marburg virus
(strain Angola/2005, UniProt Q1PD53; Ozolin/1975, UniProt
Q6UY69; Popp/1967, UniProt P35263; Ravn/1987, UniProt
Q1PDDO0; and Musoke/1980, UniProt P27588) and one
strain of Lloviu cuevavirus (strain Asturias-Bat86/2003, Uni-
Prot G8EFI1) are aligned (Fig. 4D). All of the hydrophobic
residues consisting of the pocket are highly-conservative
among all the given strains, suggesting the conserved

4~ EBOV NPeoro &
Helix-20

structural architecture of RNP formation among different
genus of this family and the critical importance of the function
of this hydrophobic pocket.

DISCUSSION

Structural studies in the past ten years have led an under-
standing of —ssRNA virus-encoded NPs (Sun et al., 2012;
Zhou et al., 2013). Although these NPs possess large var-
iations, their structures can be divided into two topological
groups. The first group includes most —ssRNA viral NPs,
including BDV from the Bornaviridae family (Rudolph et al.,
2003), VSV and rabies virus from the Phabdoviridae family
(Albertini et al., 2006; Green et al., 2006), RSV from the
Paramyxoviridae family (Tawar et al., 2009), influenza virus
from the Orthomyxoviridae family (Ye et al., 2006), Rift Valley
fever virus (RVFV) (Phlebovirus genus) (Raymond et al.,
2010), and Bunyamwera virus (BUNV) (Orthobunyavirus
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Figure 4. Helix-20 in EBOV NP, indicates an essential hydrophobic pocket. (A) Comparison of EBOV NPy and NiV NP.
Both structures are shown as surface and colored gray. EBOV NP Helix-20 and NiV Psq are shown as cartoon, colored salmon red
and cyan, respectively. (B) Formation of the hydrophobic pocket. Main chain is shown in cartoon and hydrophobic residues are shown
in stick, colored in red by hydrophobicity. (C) Interaction of Helix-20 with hydrophobic pocket. Hydrophobic pocket are shown in
surface, Helix-20 are displayed in ribbon and stick, colored in red by hydrophobicity. (D) Primary sequence alignment of members of
the filoviridae family. Highly conserved residue in Helix-14, Helix-15, Helix-19, and Helix-20 are indicated by yellow arrow.
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genus) (Li et al., 2013) within the Bunyaviridae family.
Although their detailed structures are different, NPs in class |
possess a general N- and C-lobe that face each other to
form a positively charged crevice for RNA binding but use
diverse structural components for the inter-protomer inter-
action (Sun et al., 2012). NPs in class Il include LAFV
(Arenaviridae family) (Hastie et al., 2011a, b; Qi et al., 2011)
and CCHFV (Nairovirus genus, Bunyaviridae family) (Guo
et al., 2012). Although LAFV and CCHFV belong to different
virus families and their NPs were found to have additional
biological functions, the structural regions for genome en-
capsidation are highly similar. According to the structural
topology, the structure of EBOV NP, belongs to class |
viral NP. However, the extension from the core domain to the
end of EBOV NP, including a non-conservative region and
the C-terminal minor domain which is of about two hundred
amino-acid length, distinguishes EBOV NP with other class |
viral NPs. Actually, the primary sequence of Filoviridae
shares high similarity with Paramyxoviridae family in the first
450 amino acids, but shows its own specificity for the
C-terminal region. The precise biological function of this
extension part warrant further investigations.

Although NP is known to be the most, at least one of the
most, stable proteins encoded by —ssRNA virus during their
proliferation cycle, significant structural shift can be ob-
served in various stages among multiple virus species (Zhou
et al., 2013). The most essential results were acquired from
the structures of phlebovirus-encoded NPs. The first RVFV
NP purified through a denature/refolding method in
monomeric form shows a novel compact structure that lacks
a positively charged crevice for RNA binding and has no
protruding portions for NP oligomerization (Raymond et al.,
2010). However, Ferron et al. used a different purification
method in physiologically condition to solve the hexameric
structure of RVFV NP, which has a highly positively charged
inner perimeter as the RNA-binding site (Ferron et al., 2011).
Although the body regions of the two structures obtained
through different purification methods are identical, sig-
nificant conformational difference occurs at the N-terminal
arm (N-arm). The distinct positions of the N-arm reflect the
structural flexibility during RNP formation, in which the
monomeric structure may represent a “waiting” conforma-
tion before oligomerization and binding with RNA (Ferron
et al., 2011). Subsequently, Raymond et al. reported the
structures of the NP-RNA complexes of the RVFV and
Toscana viruses, other members of the Phlebovirus genus,
in tetrameric, pentameric, and hexameric forms (Fig. 3D)
(Raymond et al., 2012). These structures confirmed that the
highly flexible N-arm mediates the contacts between NP
protomers, which are responsible for RNP formation (Ray-
mond et al., 2012). This monomeric building block and the
flexibility of the NP-NP interaction in the oligomer formation
allow RVFV RNP to pack into viral particles with higher
structures and density (Raymond et al., 2012). All these re-
sults revealed that the component of viral NP could have
structural shift in the different stage of virus life cycle to

facilitate either RNA binding or further oligomerization to
form RNP. During the preparation of this manuscript, Daisy
W. Leung et al. reported an EBOV NP structure complex with
a peptide from VP35 at 3.7-A resolution. These two EBOV
NP structures may present another essential instance for
conformation change during virus life cycle (Fig. 5). In the
structure of EBOV NP, alone reported in this work, Helix-20
folds towards and interacts with the hydrophobic pocket on
the interface of the C-lobe of EBOV NP, to form a compact
structure. In contrast, in the structure of EBOV NPy in
complex with VP35 peptide, Helix-20, together with Helix-21,
transits to the opposite side of the C-lobe of EBOV NP g
(Leung et al., 2015) (Fig. 5B). Because EBOV VP35 peptide
(NPBP, residues 20-48) binds NP with high affinity and
specificity, inhibits NP oligomerization, and releases RNA
from NP-RNA complexes in vitro, this structure is likely to
represent a transition state immediately before the initiation
of viral RNA synthesis in RdRp. We would like to propose
that EBOV NP, structure reported in our work is the ori-
ginal state of EBOV NP after it can be translated from host
ribosome, which keeps in N° stage, ready for the binding
with nascent RNA and the formation of RNP.

Actually, the transition state is very similar to the function
of a phosphoprotein (P) in VSV replication (Green and Luo,
2009). P protein is an essential co-factor of VSV RNP. In the
structure of VSV RNP-like particle (NP-RNA complex) in
complex with C-terminal domain of P, P binds primarily to the
C-terminal lobe of two adjacent N proteins within nu-
cleocapsid, and the proximity to RNA cavity indicates that
the P protein binding impacts the RNA encapsidation of VSV
NP and orients the L protein to access the RNA template
without NP (Green and Luo, 2009). Although both P of VSV
and VP35-NPBP of EBOV can regulate RNA encapsidation
by NPs, significant variations still distinguish them. First,
VSV NP can still bind with RNA, even though P protein binds
to VSV RNP-like particle, indicating suggesting that the in-
teraction of P with NP cannot directly induce the releasing of
RNA in VSV. However, EBOV VP35-NPBP can directly and
competitively inhibit the binding of RNA to EBOV NP.
Moreover, there is no obvious structural shift of NP compo-
nent in VSV during P protein binding, but Helix-20 in EBOV
NP has significant remodeling with VP35-NPBP interaction.
All these differences suggest the potential existence of
several other architecture(s) from the original state of EBOV
NP to the transition state before RNA synthesis. This war-
rants further structural and biological validations, such as,
the complex structure of EBOV nucleoprotein bound with
RNA.

Because the correct RNP formation and function is a key
step for the replication, transcription, and assembly for
-ssRNA viruses, it is conceivable that blockage of this pro-
cess would provide great potential for antiviral development.
In the last few years, great progress has been achieved
based on this new antiviral strategy, particularly for the in-
fluenza virus. Through a chemical genetic method, Kao et al.
first identified that influenza virus NP is a druggable target
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Figure 5. Structural mobility of EBOV NP, within virus proliferation. (A) Structural comparison of EBOV NP and complex
with VP35 peptide. The molecule of EBOV NP, alone and in complex with VP35 peptide are shown in the left and right panels. The
N-lobe and C-lobe are colored as blue and red, respectively. Helices 20-21 are shown as cylinder, and the loop region (A326-V334)
are linked by dotted lines. Small peptide derived from VP35 is shown as yellow cylinders. (B) A proposed model of conformation
change during nucleocapsid assembly and transcription process. RNA binding groove and hydrophobic pocket are indicated by

arrow.

(Kao et al., 2010). They reported that nucleozin, a small
molecule compound that triggers aggregation and inhibits
the nuclear accumulation of NP, can inhibit the replication of
influenza virus at a nanomolar median effective concentra-
tion (ECso) (Kao et al., 2010). In a parallel effort, Gerritz et al.
discovered a series of influenza replication inhibitors and
showed that they interfere with NP-dependent processes via
the formation of higher-order NP oligomers with an ECsq up
to 60 nmol/L (Gerritz et al., 2011). Notably, the structure of
NP in complex with a representative compound of these
inhibitors revealed that two inhibitors in an antiparallel ori-
entation lock two adjacent NP protomers. This unexpected
quaternary complex explained viral inhibition via the ligand-
induced formation of stable NP oligomers (Gerritz et al.,
2011). These results cumulatively demonstrated that
targeting the formation of viral RNP is a valid goal for the
development of small-molecule therapies against viral
resistance to currently available drugs targeting surface
protein. Here we report a distinct hydrophobic pocket in this

work, which shows highly conservative among all viruses
within Filoviridae. Therefore, the structure of EBOV NP not
only aids in understanding the structural and functional dif-
ferences among NPs encoded by —ssRNA viruses, but also
benefits the development of antiviral therapies against
EBOV infection.

MATERIALS AND METHODS
Protein production

The gene of the Zaire ebolavirus nucleoprotein (residues 36-351)
was cloned into the pET-21d expression vector within Ncol and Xhol
site following a general protocol, The sequences of the primers are:
forward, 5-CCCATGGCTGTTCGGCAAAGAGTCATC-3', reverse,
5'-CCCTCGAGCTCAGCCTCAGTGGCAGCCTC-3'. The accuracy
of the inserts was verified by sequencing.

The recombinant plasmid of EBOV NP, was transformed into
E. coli strain BL21 (DE3) and overexpressed as a 6x His tag fused at
the C terminus fusion protein. The cells were cultured at 37°C in
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800 mL LB media containing 100 ug/mL ampicillin. Once ODggq
reached 0.6, the culture was transferred to 16°C, and protein was
induced by incubating with 0.25 mmol/L isopropyl-B-D-1-thiogalac-
topyranoside (IPTG) for an additional 18 h. Harvested cells were
resuspended in lysis buffer (20 mmol/L Tris-HCI, 500 mmol/L NaCl,
pH 8.5) and homogenized with a low-temperature ultra-high pres-
sure cell disrupter (JNBIO, China). The lysate was centrifuged at
25,000 xg for 30 min at 4°C to remove cell debris. The supernatant
was then loaded twice onto a Ni-NTA column pre-equilibrated with
lysis buffer. Resin was washed four times with 60 mL of wash buffer
(20 mmol/L Tris-HCI, 500 mmol/L NaCl, 25 mmol/L imidazole, pH
8.5) and eluted with 30 mL of wash buffer supplemented with 1 mol/L
imidazole. The protein was further purified on a Superdex-200 (GE
Healthcare) column equilibrated with the buffer containing 20 mmol/L
Tris-HCI, 200 mmol/L NaCl, 5 mmol/L DTT, pH 8.5. SDS-PAGE ana-
lysis revealed over 95% purity of the final purified recombinant protein.
Fractions from the single major peak were pooled and concentrated to
6 mg/mL for crystallization. The purified EBOV NP Was >95% pure
according to SDS-PAGE analysis and had an Age/Azs ratio of 1.6.
The purified protein was concentrated to 10 mg/mL and stored at 193
K.

Selenomethionine (SeMet) derivative of EBOV NP, was
produced in the methionine-auxotrophic E. coli strain B834 (DE3)
that was grown in minimal medium supplemented with 3% glucose,
30 mg/L L-selenomethionine, and 100 pg/mL ampicillin. When ODggq
reached 0.6, the culture was transferred to 16°C, another
30 mg/L L-selenomethionine was added in. Protein was induced by
incubating with 0.25 mmol/L IPTG for an additional 24 h. SeMet sub-
stituted EBOV NP, was purified following the same condition as wild
type protein.

Crystallization

Initial crystallization trials were performed in a 96-well format using a
1:1 ratio of well solution to protein at 5.5 mg/mL by screening
commercial crystal screening kits at 16°C, including the Index,
Crystal Screen, PEG/Ion, Salt/RX, Natrix, Crystal Screen Lite, and
Crystal Screen cryo from Hampton Research. Small crystals of
EBOV NP first appeared after one day in 200 mmol/L ammonium
citrate tribasic pH 7.0 and 20% (w/v) PEG3350.

Further optimization with additive and detergent screens
(Hampton Research) was performed, the final optimized crystal
condition was 200 mmol/L ammonium citrate tribasic pH 7.5 and
18% (w/v) PEG3350. Cubic-like crystals grew to a final size of 40 ym
x 40 pym x 60 um within three days at 16°C. Crystals were harvested
and protected in the well solution containing 30% (w/v) PEG3350
and cooled in dry nitrogen stream at 100 K for X-ray data collection.
SeMet EBOV NP, crystals were grown in the same condition.

X-ray data collection, processing, and structure determination

All crystals were gradually transferred into a harvesting solution
containing the respective precipitant solutions plus 5% (v/v) glycerol
before being flash frozen in liquid nitrogen for storage. Data were
collected under cryogenic conditions at 100 K. The selenomethion-
ine SAD data set of the EBOV NP was collected at 2.4 A using a
wavelength corresponding to the Se peak at the SSRF (Shanghai,

China) beamline BL19U, and another native data set was collected
at 1.8 A. All data sets were processed using the HKL-3000 package
(Minor et al., 2006). The crystals belonged to the space group
P2,2,2 with cell parameters a=59.8 A, b=162.9A, ¢=31.3 A and
a =B =y=90° Excluding the first selenium of each polypeptide, 6 of
7 selenium atoms in the asymmetric unit were located and refined,
and the SAD data phases were calculated and substantially im-
proved by solvent flattening using the PHENIX program (Adams
et al., 2002). A model was manually built into the modified ex-
perimental electron density using COOT (Emsley and Cowtan,
2004) and further refined in PHENIX. Model geometry was verified
using the program MolProbity (Lovell et al., 2003). The final refine-
ment statistics are summarized in Table 1. Structural figures were
drawn using the program PyMOL (DeLano, 2002).

Accession code

The coordinates and structure factors have been deposited with the
RCSB under accession codes: 4Z9P. The authors declare no com-
peting financial interest.
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