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The cyanobacterium Geminocystis sp. strain NIES-3709 accumulates a larger amount of phycoerythrin than the related NIES-
3708 strain does. Here, we determined the complete genome sequence of the NIES-3709 strain. Our genome data suggest that the
different copy number of rod linker genes for phycoerythrin leads to the different phycoerythrin contents between the two
strains.
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Certain cyanobacteria species modulate the composition of
light-harvesting antenna proteins, phycoerythrin and phyco-

cyanin, within the phycobilisome. This phenomenon is called
complementary chromatic acclimation (CCA) (1, 2) and is con-
ventionally classified as two types (3): type II species that modu-
late phycoerythrin content only, and type III species that modu-
late both phycoerythrin and phycocyanin content. Recent studies
showed that type II species utilize the CcaS-CcaR photosensory
system for CCA (4, 5), whereas type III species utilize the RcaE-
RcaF-RcaC system (6–9). In the type II CCA, the CcaS-CcaR sys-
tem directly regulates the expression of the rod linker gene of
phycoerythrin and, in several species, the hydrophobic rod-core
linker of phycocyanin (10).

The cyanobacterium Geminocystis sp. strain NIES-3709 accu-
mulates a larger amount of phycoerythrin than the related NIES-
3708 strain does, although the two strains are isolated from the
same freshwater stream. We already reported the complete ge-
nome sequence of the NIES-3708 strain. To explore the molecular
basis of the different cellular phycoerythrin contents in the two
strains, we performed whole-genome sequencing of the NIES-
3709 strain using the MiSeq (Illumina) system. An 800-bp paired-
end library and an 8-kbp mate-pair library were prepared using
the TruSeq DNA PCR-free sample preparation kit (Illumina) and
Nextera mate-pair sample preparation kit (Illumina), respec-
tively. The libraries were sequenced on the MiSeq instrument with
the MiSeq reagent kit version 3 (600 cycles; Illumina). The reads
were filtered using ShortReadManager, based on a 17-mer fre-
quency (11). A total of eight million paired-end reads (209 Mbp)
and 10 million mate-pair reads (150 Mbp) were assembled using
Newbler version 2.8 (Roche), yielding 11 scaffolds and 156 large
contigs (�1 kbp). The sequence gaps between the contigs were

determined in silico using GenoFinisher and AceFileViewer (11).
We succeeded in determining the complete genome sequence of
Geminocystis sp. NIES-3709, which comprises one chromosome
and 12 plasmids (total, 4,426,059 bp). The G�C content of the
genome was calculated to be 33%. A total of 3,937 protein-coding
genes, 6 rRNA genes, and 44 tRNA genes were predicted using the
Rapid Annotations using Subsystems Technology (RAST) (12).

The CCA genes of the NIES-3709 strain consist of a CcaS-CcaR
photosensory system and a putative light-regulated cpeE-cpeR
operon, which is the same structure of the CCA genes of the NIES-
3708 strain. The NIES-3709 strain harbors single copies of genes of
the rod-core linker of phycocyanin (cpcG), core of phycocyanin
(cpcB and cpcA), and core of phycoerythrin (cpeB and cpeA),
whose copy numbers are also the same as those of the NIES-3708
strain. However, we found that the total copy number of rod
linker genes of phycoerythrin (cpeC and cpeE) of the NIES-3709
strain is four, whereas that of the NIES-3708 strain is three. This
difference may reflect the different rod structure of phycobilisome
in the two strains that leads the different cellular phycoerythrin
contents. Further biochemical analysis is required to explore this
hypothesis.

Nucleotide sequence accession numbers. The complete
genome sequence of Geminocystis sp. NIES-3709 has been depos-
ited in the DNA Data Bank of Japan under accession numbers
AP014821 through AP014832.
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