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RNA ligases play essential roles in many cellular processes in eukaryotes, archaea and
bacteria including RNA repairl2 and stress-induced splicing of mMRNAS3. In archaea and
eukaryotes, RNA ligases also feature in tRNA (transfer RNA) splicing to generate functional
tRNAs required for protein synthesis*’. We recently identified the human tRNA splicing
ligase, a multimeric protein complex having RTCB (also known as HSPC117, C220rf28,
FAAP or D10Wsu52e) as the essential subunit8. The functions of the additional complex
components ASW, CGI-99, FAM98B and the DEAD box helicase DDX1 in the context of
RNA ligation have remained unclear. Taking advantage of clusters of eukaryotic
orthologous groups (KOGs), we found that Archease, a protein of unknown function, is
required for full activity of the human tRNA ligase complex and, in cooperation with
DDX1, facilitates the formation of an RTCB-guanylate intermediate central to mammalian
RNA ligation. Our findings define a role for DDX1 in the context of the human tRNA ligase
complex and suggest that the widespread co-occurrence of Archease and RtcB proteins
implies evolutionary conservation of their functional interplay.

A kinetic assay using FLAG-RTCB affinity-purified from stably transfected HEK293 cells
(Extended Data Figure 1a and b) and tRNA exon halves (Fig. 1a) or isolated linear intron as
a minimal substrate (Fig. 1 b and c) (see materials and methods) revealed that product
formation virtually ceased to occur before consumption of the substrate (Fig. 1a, b and c).
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The maximum amount of ligation product formed was proportional to the initial amount of
enzyme (Fig. 1c and Extended Data Figure 1c-€) suggesting that affinity-purified FLAG-
RTCB requires an additional, stimulatory component for unlimited enzymatic turnover. We
reasoned that the distinctive phyletic distribution of RtcB proteins in eukaryotes (i.e. their
absence in plants and fungi® which rely on different ligase proteins and mechanisms10-12,
see Extended Data Figure 2a) could be used to discover proteins functionally associated with
human RTCB. We therefore focused our attention on seven clusters of eukaryotic
orthologous groups (KOGs) conserved in the same model organisms as RtcB (KOG3833)
(Extended Data Figure 2b)13:14, One of these, KOG4528, encompasses Archease, a protein
of unknown function predicted to act in combination with nucleic acid processing factors1>,
In Pyrococcus abyssi Archease improves the substrate specificity of a tRNA
methyltransferase encoded downstream in a bicistronic operon®, however, this function
does not appear to be conserved in mammals®’.

We therefore added recombinant Archease (Extended Data Figure 3a) to ligase assays
containing affinity-purified human FLAG-RTCB which made ligase reactions proceed to
near complete consumption of substrate (Fig. 1d). Addition of recombinant Archease to
stalled ligase reactions allowed the formation of product to resume (Fig. 1le, Extended Data
Figure 3b and c). Two mutant versions of Archease, D39A (Asp3® — Ala3%) and K144A
(Lys#* — Alal#%) (Extended Data Figure 4), had no effect on the ligase activity of human
FLAG-RTCB (Fig. 1f).

Affinity purification of FLAG-Archease or FLAG-RTCB from HEK?293 cells did not reveal
a detectable association of Archease with the human tRNA ligase complex (Fig. 2a) or RNA
ligase activity (Fig. 2b). However, addition of the cell permeable crosslinking reagent
dithiobis[succinimidylpropionate] (DSP), to HEK?293 cells prior to affinity purification,
enabled us to detect a specific association of FLAG-Archease with endogenous RTCB and
FAMO98B (Fig. 2c and Extended Data Figure 5a and b). Failure to detect an association with
FLAG- TSEN218 which is not stimulated by Archease (Extended Data Figure 5¢ and d),
further attests to the specificity of the crosslink (Fig. 2d). Thus, Archease is a component of
the human tRNA ligase complex. Characterization of the interaction between Archease and
the tRNA ligase complex by surface plasmon resonance (SPR) yielded a dissociation
constant (Kp) of 1.8 + 0.9 nM (Extended Data Figure 5e-g). The inactive D39A mutant
displayed similar interaction parameters as the wild type (WT) protein indicating that this
residue directly mediates chemical reaction steps or conformational rearrangements required
for RNA ligation rather than facilitating the interaction of Archease with RTCB.

To test whether Archease stimulates the activity of human RTCB complexes at the stage of
product release, we established a gel shift assay to detect RTCB-RNA adducts forming at
reaction conditions. These adducts (termed C1, C2 and C2a) appeared only transiently in
presence of WT Archease (Fig 3a, lanes 1-4) but persisted upon mutagenesis of conserved
residues (Fig. 3a, lanes 5-8 and Extended Figure 6a). All adducts—irrespective of whether
they had formed in the presence or absence of functional Archease—exclusively contained
substrate RNA species S and Pcgncat (Fig. 3b, lanes 1-4 and Extended Data Figure 6b) and
FLAG-RTCB (Extended Data Figure 6c). Taken together, these data argue against the
release of RNA products as a rate-limiting step accelerated by Archease.
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The ligase activity of RtcB from Escherichia coli depends on the formation of a covalent
RtcB-guanylate intermediate and the subsequent transfer of GMP to the 3’-end of RNA
molecules with 2/,3'- or 3’-phosphate termini1®20, In contrast to prokaryotic RtcB, addition
of [a-32P]GTP to RNA ligase assays did not lead to the formation of a radiolabeled human
RTCB-guanylate adduct (Fig. 3c, upper panel, lane 1). Formation of a radiolabeled band
corresponding to guanylated human FLAG-RTCB required the addition of WT Archease,
whereas inactive Archease point mutants did not support guanylation (Fig. 3c, upper panel,
lanes 2-4). In agreement with this finding, Archease stimulated the activity of the human
tRNA ligase complex with high efficiency only in the presence of GTP (Fig. 3d and
Extended Data Figure 7a). The co-purification of GTP or isolation of a guanylated form of
RTCB during affinity purification820 may account for the detection of activity
corresponding to incomplete turnover cycles during the initial and apparently Archease-
independent phase of the reaction (Extended Data Figure 7a). Although ATP could not serve
as a nucleotidyl donor for human RTCB (Fig. 3c, lanes 5 and 6), we observed a marked
stimulation of guanylation by ATP in the presence of Archease (Fig. 3e, compare lanes 1
and 2) and therefore tested whether guanylation of RTCB depends on the ATP binding
DEAD box helicase DDX1 (Extended Data Figure 7b-f). Both, substitution of ATP by its
non-hydrolysable ATP analogue AMPPcP and mutagenesis of two conserved motifs of
DDX1 implicated in ATP binding and hydrolysis2! (Extended Data Figure 7b, d and e)
affected Archease-dependent guanylation (Fig. 3e, compare lanes 2 with lane 3 and lane 4
with lanes 5 and 6) indicating that ATP hydrolysis by DDX1 is required for maximal
stimulation of the human RNA ligase by Archease. RTCB guanylation was most
compromised for DDX1 K52N, the mutant displaying the lowest affinity for ATP and RNA
(Fig. 3e, lane 5, Extended Data Figure 7e and f and Extended Data Figure 8a). In agreement
with these results, RTCB complexes with mutagenized DDX1 exhibited diminished RNA
ligase activity (Fig. 3f, Extended Data Figure 8b-e and Extended Data Figure 9) thus
providing a molecular basis for the dual cofactor requirement of human RNA ligase.

Depletion of Archease by RNA interference (RNAI) impaired maturation of intron
containing pre-tRNAs in vitro, to a comparable extent as observed upon the depletion of
RTCB (Fig. 4a and Extended Data Figure 10a and b). Simultaneous depletion of Archease
and RTCB suppressed pre-tRNA maturation even more (Fig. 4a). Splicing activity was
restored by expressing exogenous WT but not mutant Archease (Fig. 4b and c). In
agreement with the dependence of the activity of the human tRNA ligase complex on
DDX1, tRNA maturation under multiple turnover conditions—i.e. in the presence of
recombinant Archease—was recognizably impaired upon its depletion. A similar effect was
observed upon the depletion of CGI-99, presumably due to the concomitant depletion of
DDX18 (Fig. 4d compare panels 1 and 2 with panels 4 and 5 and Extended Data Figure 10c).
Induction of transcription of tagged pre-tRNAs® revealed that the formation of mature tRNA
was impaired to comparable levels in cells depleted of Archease or RTCB (Fig. 4e and
Extended Data Figure 10d).

We have revealed that Archease facilitates the DDX1-dependent formation of an RTCB-
guanylate intermediate central to mammalian RNA ligation and provide evidence for the
role of ATP hydrolysis by the human tRNA ligase®22 (Extended Data Figure 7a). In human
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cell lines, a significant fraction of DDX1 associates with the tRNA ligase complex, which is
supported by affinity purification (Extended Data Figure 7¢) and siRNA-mediated co-
depletion experiments (Extended Data Figure 10c). These findings suggest that RTCB-and
possibly Archease—may also be involved in the established functions of DDX1 in the context
of retinoblastoma?3, cytoplasmic ribonucleoprotein particles?4, viral replication25:26 and
induction of anti-viral responses in dendritic cells2’. Our implication of Archease in
mammalian tRNA splicing has already stimulated experiments demonstrating functional
cooperation of Archease and RtcB proteins in at least one archaeon?® which may be
widespread as many prokaryotic genomes harbor homologues of both proteins in
operons29:30,

Cloning of expression constructs for FLAG-Archease and FLAG-RTCB

The coding sequence of Archease was amplified from HeLa cDNA with the primers
12attB1_HSARCH_F (5’-AAA AAG CAG GCT CCa tgG CGC AGG AAG AGG AAG
ATG TTA-3, start codon lower case) and 12attB2_HSARCH_R (5-AGA AAG CTG GGT
CCT ACT ATT AAATGT CAA TGA TCA CAA AAA CTT CC-3), and cloned into
pDONR201 (Invitrogen Cat. No. 11798-014) by Gateway recombination. Archease and
human RTCB1 were shuttled from the pDONR201 constructs into a Gateway compatible
derivative of pIM.RAG1.CMV.Neo (Cellectis Bioresearch Cat. No. IM-HS1-1) introducing
an N-terminal FLAG epitope tag.

Generation of stably transfected HEK293 cell lines

HEK293 cell lines were co-transfected with pIM.RAG1.CMV.Neo containing the FLAG-
tagged gene of interest and the hsRAG1 meganuclease plasmid (Cellectis Bioresearch Cat.
No. EM-HS1-1-05) according to the manufacturer’s recommendations. After selection with
geneticin sulphate, single cell clones were tested for expression of tagged genes by Western
blot.

Affinity purification of FLAG-Archease and FLAG-RTCB from HEK293 cells

HEK?293 cells stably expressing FLAG-tagged proteins were disrupted by sonication in lysis
buffer (30 mM Tris-HCI pH 7.5, 150 or 500 mM NaCl, 2 mM MgCl,, 5 % [w/v] glycerol,
0.1 % [w/v] Triton® X-100, 0.1 mM PMSF, 4 mM [B-mercaptoethanol, supplemented with
Phosphatase Inhibitor Cocktail Set 11 (Merck Cat. No. C524625)). Tagged proteins were
captured with FLAG-M2 agarose (Sigma Cat. No. A2220) and the affinity matrix washed
five times with lysis buffer and three times with buffer P100 (30 mM Tris-HCI pH 7.5, 100
mM NaCl, 2 mM MgCl,, 5 % [w/Vv] glycerol, 0.1 % [w/v] Triton® X-100, 4 mM f-
mercaptoethanol). Bound proteins were eluted by addition of 3XFLAG peptide at a final
concentration of 1 mg/mL (Sigma Cat. No. F4799).

RNA ligase assays

Cleaved pre-tRNA transcripts or linear RNA fragment (50 nM-1 pM, typically 100 nM)
were incubated with varying amounts of affinity-purified FLAG-RTCB (typically 1-5 uL of
eluate per 10 L reaction) as described previously8. Where indicated, recombinant,
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hexahistidine tagged Archease (40 nM-10.25 uM) or a corresponding volume of buffer (10
mM Tris-HCI pH 8.0, 100 mM NaCl, 1 mM DTT, 10 % [w/v] glycerol) was added to the
reaction. For dose-response experiments recombinant Archease (40 nM-10.2 puM) was added
to FLAG-RTCB (30 nM) pre-incubated with an excess of linear RNA fragment (300 nM)
for 90 min. The rates of formation of P.ycot Were plotted versus the respective concentration
of Archease.

RNA mobility shift assays

Reactions (5 uL FLAG-RTCB eluate, 1.5 uM linear RNA substrate, 20 uM recombinant
Archease, 30 uL total volume) were incubated at 37 °C and aliquots of 5 uL quenched by
transfer to ice. Samples were resolved by 6 % PAGE (170 mm x 240 mm x 1 mm) in 0.5 x
TBE run at 5 W, 4 °C for 3 h. For analysis of the RNA content of shifted complexes, gels
were visualized by phosphorimaging, bands excised and passively eluted in 200 mM Tris-
HCI pH 7.5, 25 mM EDTA pH 8.0, 300 mM NacCl, 2 % SDS. RNA was recovered by
ethanol precipitation and analyzed on 12.5 % denaturing PAGE gels.

Preparation of the linear RNA fragment used for ligation assays

Hybrid pre-tRNA was transcribed as described previously® using the AmpliScribe® T7-
Flash® kit (Epicentre Cat. No. ASF3507) as recommended by the manufacturer. The
recovered transcripts were cleaved with recombinant tRNA endonuclease from

Methanocal dococcus jannaschii as previously described® and the cleavage products resolved
on preparative denaturing polyacrylamide gels. The linear intron was recovered by passive
elution and dissolved at an appropriate concentration in 10 mM Tris-HCI pH 7.5, 100 mM
KOAc, 6 mM Mg(OAc), and 150 pM spermine-HCI pH 7.5.

Quantitative evaluation of RNA ligation assays

The intensities of bands corresponding to substrate (S), concatemerized (Pgoncat),
circularized concatemer (Pconcat circ) @nd circularized (Pgjrc) product were determined by
phosphorimaging and the evaluation software ImageQuant (GE Lifesciences). All intensities
were corrected by subtraction of appropriate background values. Concentrations of Pconcat
were calculated by dividing the sum of counts corresponding to Pgoncat and Peoncat circ DYy the
total signal in the respective lane and multiplication of the resulting fraction with the
appropriate substrate concentration.

Preparation of recombinant hexahistidine tagged human Archease

pET28a-Archease was created by amplification of the coding sequence of Archease from
HelLa cDNA using the primers Ndel_ARCH_F (5-AAG CGT CAT ATG ATG AAG GGC
GGA AGT AG-3') and Xhol ARCH_R (5-ATT CGA CTC GAG TTA TTA AAT GTC
AAT GAT CAC-3) and ligation into pET28a using the restriction enzymes Ndel and Xhol.
Hexahistidine tagged Archease was expressed in E. coli BL21-CodonPlus® (DE3)-RIL and
purified by Ni-NTA affinity chromatography. After a subsequent gel filtration in 50 mM
Tris-HCI pH 8.0, 100 mM NaCl, 1 mM DTT, 10 % [w/v] glycerol, protein fractions were
flash-frozen in liquid nitrogen and kept at —80 °C for long-term storage.
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Bioinformatic analysis of Archease

For the alignment of Archease proteins the family was collected with an NCBI-BLASTp
search3! within the NCBI non-redundant protein database applying default parameters and
highly significant expectation values (< 1073). The proteins were aligned using MAFFT
(version 6, L-INS-I method)32 and graphically processed with ClustalX33. The NMR
structure of Archease from Methanobacterium thermoautotr ophicum* was colored by the
degree of conservation using Pymol (http://www.pymol.org). The normalized conservation
score was calculated with al2co, with an independent-count based sequencing weighting
scheme, the sum-of-pairs measure conservation calculation method and the BLOSUMG62
scoring matrix3® and plotted using a continuous color scale with yellow indicating the
highest- and blue indicating the lowest degree of conservation.

Cloning of mutant versions of human Archease

Aspartate (D) 39, Threonine (T) 147 and Lysine (K) 144 were converted into Alanine
residues by overlap extension PCR and sub-cloned into the vectors pPDONR201,
gcDNA3.1_myc and pET28a.

Surface plasmon resonance (SPR)

SPR measurements were performed on a Biacore 3000 instrument (GE Healthcare Europe).
Hexahistidine tagged Archease and the Archease mutant D39A were covalently
immobilized on the surface of a CM5 optical sensor chip at densities of 1239 and 1679 RU,
respectively, using the Biacore amine coupling protocol. Amine activated flow cell 1 was
used as a reference to allow generation of background-subtracted binding sensorgrams.
FLAG-RTCB complexes were passed over the flow cells at 30 pL/min in HBS-P buffer (10
mM HEPES-KOH pH 7.4, 150 mM NaCl, 6 mM MgCl,, 0.005 % v/v Surfactant P2)
supplemented with 0.5 mM ATP or AMPPcP and 0.5 mM GTP. Sensorgrams were
generated with 193 s association and 500 s dissociation phases and are shown as subtractive
curves against an amine-activated reference surface. After each run the chip was regenerated
using 10 mM glycine-HCI pH 1.5. For determination of binding kinetics, sensorgrams were
analyzed by mathematical curve fitting aimed at Chi2 < 1, based on a Langmuir 1:1
interaction model using the BiaEvaluation 4.1 software.

In vitro nucleotidylation of FLAG-RTCB complexes

2.5 uL FLAG-RTCB were mixed with 0.5 pL hexahistidine tagged WT or mutant Archease
(10 uM final concentration), 3.25 L nucleotidylation buffer (20 mM Tris-HCI pH 7.5, 200
mM KOAc, 12 mM Mg(OAc),, 300 uM spermine-HCI pH 7.5, 1 mM DTT, 1 uM ATP, 1
UM GTP, 1 % (w/v) Triton® X-100, 30 % (w/v) glycerol) and 0.25 pL (92.5 kBq)
[a-32P]adenosine-5’-triphosphate (111 TBg/mmol, Perkin Elmer) or [a-32P]guanosine-5’-
triphosphate (111 TBg/mmol, Perkin Elmer). Reactions were incubated at 37 °C and
analyzed by SDS-PAGE.

ATPase assays

Reaction mixes (10 uL) containing 5 uL of WT, K52N or E371Q mutant FLAG-DDX1, 50
mM Tris-HCI pH 8.0, 2.5 mM MgCI2, 37 kBq [y-32P]ATP (111 TBg/mmol, Perkin Elmer)
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and 1 pg poly(A*) RNA were incubated for 60 min at 37 °C and stopped by adding EDTA
to a final concentration of 25 mM. 1 L aliquots were spotted onto TLC plates (PEI
Cellulose F, Merck) and developed in 0.375 M KoHPO,4 pH 3.5. Intensities of non-
hydrolyzed ATP and P; were determined by phosphorimaging using the evaluation software
ImageQuant.

ATP cross-linking assays

Reaction mixes containing 5 uL of WT, K52N or E371Q mutant FLAG-DDX1, 50 mM
Tris-HCL pH 8.0, 2.5 mM MgCl,, and 74 kBq [a-32P]JATP (111 TBg/mmol, Perkin Elmer)
were incubated at 37 °C, UV-crosslinked on ice for 15 min at 254 nm using a Herolab
UVT-14S Transilluminator and analyzed by SDS-PAGE. After electrophoresis the gels were
stained with Coomassie Blue, dried and visualized by phosphorimaging.

RNA binding assays

[57-32P]cytidine-3’,5’-bisphosphate labeling of RNA has been described previously®. 2.5 pL
of WT, mutant (K52N, E371Q) FLAG-DDX1 were incubated with 2 puL of binding buffer
(250 uM EDTA pH 8.0, 100 mM KCI, 3 mM MgCly, 12.5 mM DTT, 7.5 mM ATP, 0.5 mM
GTP, 10 U/mL RNasin® (Promega Cat. No. N2611), 65 % (w/v) glycerol) and 1 uL labeled
RNA oligonucleotide (5’-UCG AAG UAU UCC GCG UAC GU-3’) (200 nM) on ice for 20
min. Membranes were pre-soaked in 20 mM HEPES pH 7.3 and assembled from top to
bottom as follows in a slot-blot apparatus: nitrocellulose (Schleicher & Schuell) to trap
soluble protein-RNA complexes, and Hybond-N nylon (Amersham Biosciences) to bind free
RNA molecules. After assembly, reaction mixtures were applied to each slot and filtered
through the membranes. Each slot was washed twice with 0.3 mL of 20 mM HEPES pH 7.3.
Membranes were air dried and visualized by phsphorimaging. Intensities of bound and
unbound RNAs were determined using the evaluation software ImageQuant.

Cell culture and transfection of sSiRNAs

HelLa and HEK 293 cells were cultured and propagated using standard procedures. siRNAs
and DNA plasmids were transfected using Lipofectamine 2000® reagent (Invitrogen Cat.
No. 11668) according to the manufacturer’s instructions. Archease (Dharmacon Cat. No.
L-017915-01) and human RTCB (Dharmacon Cat. No. L-017647-00) were depleted by
transfection of ON-TARGETplus® siRNA reagents. In addition, a custom RNA duplex (5'-
TGA CAT TTA AGA CAC CAA A[dT][dT]-3" annealed to 5’-TTT GGT GTC TTA AAT
GTC A[dT][dT]-3’, deoxythimidine at the 3’ end is indicated by [dT]) targeting Archease in
its 3’ untranslated region was designed using the program RNAXxs 4 and obtained
commercially from Dharmacon.

Pre-tRNA maturation and cleavage assays

Pre-tRNA maturation and cleavage assays were carried out as previously described®.

Construction of pSUPER.retro.neo+GFP-ScPhe

The sequence coding for Saccharomyces cerevisiae pre-tRNA3-PheGAA, Chr. 131,5 was
fused to a Tet-inducible H1 promoter3® and introduced into pSUPER.retro.neo+GFP
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(OligoEngine Cat. No. VEC-PRT-0005/0006) using the restriction enzymes EcoRI, Hindlll
and Bglll. The resulting construct was introduced into HeLa T-Rex® cells (Invitrogen Cat.
No. R714-07) by retroviral infection following standard procedures. GFP-positive single
cells were seeded into 96-well plates, expanded and tested for inducible expression of the
reporter tRNA by Northern blot analysis. Expression of the reporter tRNA transcripts was
induced by addition of 1 pg/mL of doxycycline hyclate (Sigma Cat. No. D9891) to cell
culture media for the indicated time.

Northern blotting

Northern blot analysis of RNA was carried out essentially as previously described®. Blots
were hybridized with 10 pmol of a [5/-32P]-labeled LNA probe detecting the 3’-exon of
ScPhe-tRNA (probe 5.6, 5-TG[G] TG[G] GA[A] TT[C] TG[T] GG[A] TC[G]-3, LNA
nucleotides are symbolized as [N]). Equal loading was confirmed by hybridizing the blots
with a [5/-32P]-labeled DNA probe detecting U6 SnRNA (5-GCA GGG GCC ATG CTA
ATC TTC TCT GTA TCG-3').

Western blotting

Proteins were transferred onto Immobilon® P PVDF membranes (Millipore Cat. No.
IPVH00010) and blots were developed using ECL reagent (GE Lifesciences Cat. No.
RPN2109) as recommended by the manufacturer. The polyclonal antibody against RTCB
used in this study has been described before®. Antibodies recognizing p-actin (Abcam Cat.
No. ab8227), FAM98B (Sigma Cat. No. HPA008320), DDX1 (Bethyl Cat. No. A300-521A)
and the c-myc (Sigma Cat. No. M4439) and FLAG (Sigma Cat. No. F3165) epitope tags
were obtained from the mentioned commercial sources.

Quantitative reverse transcriptase PCR

RNA was prepared using Trizol® reagent (Invitrogen Cat. No. 15596) and reverse
transcribed using the High Capacity cDNA Reverse Transcription Kit (Applied Biosystems
Cat. No. 4368813) according to the manufacturer’s instructions. Quantitative PCR was
performed using GoTagq® gPCR Master Mix (Promega Cat. No. A6002). Relative
expression levels were normalized relative to human cyclophylin B using the primers
HsCYCB_F (5’-GTA ATC AAG GAC TTC ATG ATC CAG GG-3") and HsCYCB_R (5'-
AAC TTT GCC AAA CAC CAC ATG CTT GC-3’). Archease was detected using the
primers ARCH_QPCR_F (5-GCA TGG GGA GAT ACT CTG GA-3) and
ARCH_QPCR_R (5-CTT CCC GGG GTA TGA AGA AT-3). The primers used for
detection of RTCB have been described previously8. All primers were designed using the
Primer3 software (v.0.4.0).
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Extended Data
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Extended Data Figure 1. Kinetic char acterization of FLAG-RTCB

a, SDS-PAGE (Coomassie blue) of FLAG-RTCB affinity-purified from HEK293 cells. b,
SDS-PAGE of a 10 pL aliquot of FLAG-RTCB and comparison with a dilution series of
bovine serum albumin (BSA). FLAG-RTCB concentrations were between 40 and 80 ng per
10 pL corresponding to an approximate concentration of 100 nM. c, Fit of time course data
depicted in Fig. 1c to an exponential one phase association model restricting the bottom
value to zero using the software GraphPad®. Obtained plateau values were plotted against
the concentration of FLAG-RTCB. The linear relation of plateau product concentrations
with the amount of FLAG-RTCB suggests that human RNA ligase catalyses a limited
number of substrate turnovers. (mean + standard error of the mean, SEM, N = 3) d,
Estimation of initial rates of ligation from time course data in Fig. 1c. (mean £ SD, N=23) ¢,
Reaction rates derived by linear regression from the data depicted Fig. 1c were plotted
against the concentration of FLAG-RTCB. (mean + SD, N = 3)
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Extended Data Figure 2. Archease and RTCB proteins sharetheir phyletic distribution in
eukaryotic model genomes

a, Whereas most organisms appear to rely on both 5’-3’- and 3’-5” RNA ligase mechanisms,
the genomes of the vast majority of plants and fungi (as exemplified by the model organisms
Saccharomyces cerevisiae, Schizosaccharomyces pombe and Arabidopsis thaliana) do not
encode for RtcB proteins known to catalyze 3’-5" RNA ligation. b, The table lists protein
families exhibiting the same phyletic pattern as RtcB proteins (ftp://
ftp.ncbi.nih.gov/pub/COG/KOG/kog). Archease is the only protein of unknown function
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represented in this group of KOGs. + indicates presence of a protein assigned to a KOG in a
given model organism, whereas - indicates its apparent absence.
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Extended Data Figure 3. Dose-response curve of stimulation of FLAG-RTCB by recombinant

Archease

a, SDS-PAGE analysis of purified recombinant WT and mutant (D39A, K144A)
hexahistidine tagged human Archease. b, Dose-response curve of stimulation of the ligase
activity (225 nM substrate) of FLAG-RTCB (22.5 nM) by Archease (40 nM to 10.2 uM).
The rates of formation of Pggncqt (Mean = SD, N = 3) were plotted versus the respective
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concentration of Archease. Affinity-purified FLAG-RTCB required relatively high
concentrations of recombinant Archease (approximately 1 uM) for half maximal activation
of its RNA ligase activity. ¢, A master reaction was assembled as described in the methods
section (30 nM FLAG-RTCB, 300 nM substrate), incubated at 37 °C for 90 min (to reach
the plateau phase) and transferred to ice. 4.5 UL aliquots of this pre-incubation were mixed
with 1.5 puL of recombinant Archease solution to final concentrations of 40 nM - 10.25 uM
and equilibrated for 4 min at 37 °C. The concentrations of all cofactors present in the
reaction mixture were adjusted accordingly. Aliquots of the reaction were quenched at 4,
5.5, 7 and 8.5 min and analyzed by denaturing electrophoresis. Pilot experiments were
carried out before to ensure near linear behavior of the reactions at the chosen conditions.
Reaction rates were determined by linear regression and are stated as slopes [nM/s] +
standard error of the mean (N = 3).
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Extended Data Figure 4. Archeaseis highly conserved from bacteria and ar chaea to metazoa
a, Alignment of Archease proteins from various prokaryotic and eukaryotic organisms.

Positions of residues examined in this study are indicated above. Residues marked by an
asterisk have recently been implicated in metal binding in a structure of Archease from
Pyrococcus horikoshii28. b, Archease residues examined by mutagenesis (D39, K144 and
T147) are highly conserved and positioned in close proximity on the surface of the protein
as suggested by an NMR structure of Archease from Methanobacterium
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thermoautotrophicum. Colors indicate conservation (yellow: highest-, blue: lowest degree of
conservation).
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Extended Data Figure 5. Affinity-purified FL AG-Archease associateswith RTCB
a, Reducing (2 M B-mercaptoethanol) and non-reducing Western blot of FLAG-Archease

purified from HEK293 cells in presence or absence of DSP. b, Western blot of FLAG
control eluates prepared from non-transfected HEK293 cells treated with DSP or DMSO. c,
tRNA cleavage assay (100 nM substrate) of FLAG-TSEN2 (~10 nM) affinity-purified from
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HEK?293 cells in presence or absence of Archease (7.5 pM). d, Quantification of data shown
in ¢ by phosphorimaging. e, SPR sensorgram overlay demonstrating concentration
dependent binding of Archease to RTCB. f, Mathematical sensorgram fitting to a Langmuir
1:1 interaction model (using FLAG-RTCB as analyte) at the indicated concentrations. Data
are displayed as subtractive curves against an amine-activated reference surface. g, Kinetic
constants (kq, kg, Kp) for Archease and FLAG-RTCB complexes of hexahistidine tagged
WT and mutant (D39A) Archease in the absence of nucleotide triphosphate cofactors, the
presence of GTP and ATP or GTP and the non-hydrolysable ATP analogue AMPPcP.
Neither inactivating mutagenesis of Archease nor substitution or omission of cofactors
affected the obtained binding constants to a significant extent. Unchanged affinity for
Archease in presence of non-hydrolysable AMPPcP indicates that ATP hydrolysis is not
required for recruitment of Archease to the ligase complex.
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Extended Data Figure 6. M echanistic aspects of the stimulation of RTCB by Archease
a, Native PAGE of FLAG-RTCB-RNA adducts formed in presence of WT or mutant

(D39A, K144A, T147A) Archease at 5 min (upper panel). Denaturing PAGE of the same
reactions (lower panel). b, Denaturing PAGE of FLAG-RTCB-RNA adducts isolated from
the gel shown in a. (Note that part of Extended Data Figure 6b is identical to Fig 3b where
the results for the two further mutants were not shown for clarity). ¢, Antibody supershift
assays (a-FLAG retards FLAG-RTCB, a-His6 retards recombinant Archease, a-Ctrl.) of
FLAG-RTCB-RNA adducts assembled in presence of mutant (D39A) Archease (30 min).
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Incubation with WT Archease demonstrates that antibody incubation does not inhibit
ligation. Arrowheads indicate the position of supershifted complexes. A marked supershift
in the presence of anti-FLAG antibodies indicates that the visualized complexes contain
FLAG-RTCB.
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Extended Data Figure 7. Mechanistic aspects of RTCB-catalyzed RNA ligation and
characterization of mutant versions of DDX1

a, Tentative model illustrating the mode of action of human Archease (indicated by the
green shaded area) in the RTCB reaction cycle. Prior to activating RNA 2/,3’ cyclic
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phosphate termini for ligation, RTCB undergoes guanylation resulting in a guanylated form
of the enzyme (i). GMP is then transferred to the 3’ end of the RNA substrate (ii). After
ligation the active site of RTCB is occupied by the products of the reaction (iii). Another
round of catalysis requires guanylation of the RTCB active site which depends on Archease
and is extensively stimulated by ATP hydrolysis by DDX1. b, Domain structure of DDX1
(DEAD helicase domain in dark red, SPRY domain in grey and c-terminal helicase domain
in blue). DDX1 was mutagenized in the ATPase A motif (K52N, predicted to interfere with
ATP binding), in the ATPase B motif (E371Q, predicted to interfere with ATP hydrolysis),
or in the C-terminal helicase domain (R557K and H601Q, predicted to interfere with
helicase activity)?L. ¢, SDS-PAGE- of a 10 pL aliquot of FLAG-DDX1 purified from
HEK?293 cells. d, ATPase assay of WT and mutant (K52N, E371Q) FLAG-DDX1 (upper
panel), quantified signals are displayed in the lower panel (mean + SEM, N = 4). e, SDS-
PAGE analysis of FLAG-DDX1 (WT, K52N and E371Q) crosslinked to [a-32P]JATP. The
upper panel (autoradiography) reveals affected ATP crosslinking for the two mutants K52N
and E371Q while the lower panel (Coomassie blue) confirms equal loading of the purified
complexes. f, RNA filter binding assay of WT and mutant (K52N, E371Q) FLAG-DDX1
(left panel). Quantified signals obtained for WT FLAG-DDX1 in the presence of ATP were
set to 100 % (right panel, mean = SEM, N =9).
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Extended Data Figure 8. Effect of mutagenesis of DDX1 on the activity of the human RNA ligase

complex

a, SDS-PAGE of WT or mutant (K52N, E271Q, R577K, H601Q) FLAG-DDX1 incubated
with Archease and [a-32P]GTP. b, Ligase assays (100 nM substrate) of 20 nM WT or
mutant (K52N, E271Q, R577K, H601Q) FLAG-DDX1 in the presence of Archease (10 uM)
and 0.5 mM ATP (upper panel) or AMPPnP (lower panel). ¢, Michaelis Menten kinetics of
WT or mutant (K52N, E271Q, R577K, H601Q) DDX1 (20 nM RNA ligase complex, 10 uM
Archease). Reaction rates were estimated as indicated in Extended Data Figure 9. d,
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Michaelis Menten parameters (mean £ SEM) were obtained by nonlinear regression using
GraphPad. k¢t values were obtained by multiplication of V.« Values by the concentration
of ligase complex. e, Michaelis Menten parameters of WT and mutant FLAG-DDX1 (mean
+ SEM). Comparisons between WT and mutant FLAG-DDX1 were performed by z-test.
The z-statistics were computed as (KWT> - <mutant>)/(sqrt(SEM(<WT>)"2 + SEM(<
mutant>)"2). From these z-values we obtained Bonferoni-corrected two sided p-values (n.s.
p > 0.05, *** p < 0.0004). The mutants K52N and E371Q exhibit a marked reduction of K.,
with only insignificant changes of Ky, indicating that ATP binding and hydrolysis contribute
to catalytic steps (such as guanyl transfer) of human RNA ligase rather than substrate
binding.
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Extended Data Figure 9. Determination of RNA ligase reaction ratesfor estimation of Michaelis
Menten parameters of FLAG-DDX1 complexes

The progress of reactions (20 nM RNA ligase complex, 100 nM — 4 uM substrate, 10 pM
Archease) was recorded for 15 min assuming near-linear behaviour of the reaction in this
time frame (mean + SEM, N = 2). Reaction rates were determined by linear regression,
reaction rates (considering both concatemerized and circular product species) for each
preparation (WT, K52N, E371Q, R577K, H601Q) are stated below each graph ([nM/s],

mean + SEM).
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Extended Data Figure 10. Depletion of Archease does not indirectly impair tRNA processing by
concomitant depletion of RTCB

a, Quantitative reverse transcriptase PCR (QRT-PCR) of RTCB and Archease messenger
RNAs in the cells used to prepare the extracts for the experiments shown in Fig. 4a.
Expression levels are plotted as relative amounts of transcripts with respect to control-
treated cells (mean = SD, N = 3 technical replicates). b, Western blot of RTCB in extracts
used for the experiments shown in Fig. 4a. ¢, Western blot of tRNA ligase complex
members in extracts used for the experiments shown in Fig. 4d. d, qRT-PCR of RTCB and
Archease messenger RNA in cells analyzed in Fig. 4b. Expression levels are plotted as
relative amounts of transcripts with respect to control treated cells (mean + SD, N=3
technical replicates).
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Figure 1. Archease facilitates multiple enzymatic turnover of RTCB
a, FLAG-RTCB (5 or 30 nM) was incubated with cleaved pre-tRNA transcripts. Numbers

below lanes indicate amounts of mature tRNA and intron (arbitrary numbers relative to 5
nM FLAG-RTCB at 90 min, set to 1.0). b, FLAG-RTCB converts linear RNA fragments (S,
100 nM) into concatemerized- (Pconcat), Circularized concatemer- (Poncat circ) and
circularized (Pgjrc) products. ¢, The endpoint of ligation reactions (1 uM linear RNA
substrate) depends on FLAG-RTCB concentration. Values represent mean and standard
deviation (SD) of technical replicates (N = 3). d, RNA ligase assays (100 nM substrate) in
presence or absence of recombinant Archease (10 uM). e, Addition of Archease (10 uM,
arrow) re-starts stalled ligase reactions (500 nM substrate). (mean + SD, N = 3) f, Ligase
reactions in presence of buffer, recombinant WT, D39A or K144A mutant Archease (10
uUM) with linear substrate (1 pM).
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a, SDS-PAGE analysis (Coomassie blue) of FLAG-Archease and FLAG-RTCB affinity-
purified from HEK293 cells (150 mM NacCl). b, RNA ligase assay (cleaved pre-tRNA
transcripts) of FLAG-Archease and FLAG-RTCB preparations analyzed in a. ¢, Western
blot of FLAG-Archease affinity-purified from HEK293 cells treated with 1 mM DSP or
DMSO. d, Western blot of FLAG-TSEN2 affinity-purified from HEK293 cells treated with

1 mM DSP or DMSO.
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Figure 3. Archease co-operates with DDX1 to guanylate RTCB in vitro
a, Time-course native PAGE of FLAG-RTCB-RNA adducts in presence of WT or D39A

mutant Archease. b, Denaturing PAGE of the RNA content of FLAG-RTCB-RNA adducts
at 5 min in presence of WT or mutant Archease. ¢, SDS-PAGE of FLAG-RTCB incubated
with buffer, WT or mutant (D39A, K144A) Archease and [a-32P]GTP or [a-32P]ATP. d,
Ligation reactions (20 nM FLAG-RTCB, 500 nM substrate) in presence of buffer or
Archease (10 pM) omitting (triangles) or including GTP (0.5 mM, squares). (mean £ SD, N
= 3) e, SDS-PAGE of FLAG-RTCB, WT or mutant FLAG-DDX1 (K52N, E371Q)
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incubated with 0.1 mM EDTA, ATP or AMPPcP, [a-32P]GTP and Archease. The asterisk
indicates an unrelated band.f, Ligase assays (1 M substrate) of 20 nM WT or mutant
(K52N, E371Q) FLAG-DDX1 in the presence (red triangles and crosses) or absence (green
triangles) of Archease (10 pM) and 0.5 mM ATP (red and green triangles) or AMPPcP (red
crosses). (mean = SD, N = 3)
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Figure 4. tRNA maturation relieson RTCB, Archease and DDX1 in vitro and in living cells
a, Invitro tRNA maturation assay of HelLa extracts RNAi-depleted of Archease, RTCB or

both. b, In vitro tRNA maturation assay of HeLa extracts RNAi-depleted of Archease and
simultaneously transfected with vector (EV), c-myc—tagged WT or mutant (D39A, K144A)
Archease. ¢, Western blot of extracts assayed in b. d, In vitro tRNA maturation assay of
HelL a extracts RNAI-depleted of the indicated tRNA ligase complex subunits supplemented
with Archease (10 pM). e, Northern blot of RNA isolated from HeLa cells RNAi-depleted of
Archease or RTCB. Samples were isolated at the indicated time points after induction of
tagged pre-tRNA.
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