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Diabetic cardiomyopathy entails a serious cardiac dysfunction induced by alterations in structure and contractility of the
myocardium. This pathology is initiated by changes in energy substrates and occurs in the absence of atherothrombosis,
hypertension, or other cardiomyopathies. Inflammation, hypertrophy, fibrosis, steatosis, and apoptosis in the myocardium have
been studied in numerous diabetic experimental models in animals, mostly rodents. Type I and type II diabetes were induced by
genetic manipulation, pancreatic toxins, and fat and sweet diets, and animals recapitulate the main features of human diabetes and
related cardiomyopathy. In this review we update and discuss the main experimental models of diabetic cardiomyopathy, analysing
the associated metabolic, structural, and functional abnormalities, and including current tools for detection of these responses.
Also, novel experimental models based on genetic modifications of specific related genes have been discussed.The study of specific
pathways or factors responsible for cardiac failures may be useful to design new pharmacological strategies for diabetic patients.

1. Main Models of Diabetic
Cardiomyopathy (DCM)

Experimental models of both type I and type II diabetes
(T1DM and T2DM) consistently exhibit alterations in the
circulating levels of glucose and in the lipid profile (Table 1).
Main T1DM and T2DM animals show both hyperglycemia
(early after pancreas-toxin or fat/sweet-diet administration,
resp., and later after genetic mutations) and hyperlipidemia,
represented by elevated levels of TAG, cholesterol, and
lipoproteins. More interestingly, these models also exhibit
functional, structural, andmetabolic abnormalities that reca-
pitulate the human DCM pathology.

Dysfunction in Cardiac Mechanics. In patients, early stages
of DCM are marked by a deterioration of longitudinal sys-
tolic function, a compensative elevated radial function, and
diastolic dysfunction [1]. DCM progression is characterized
by reduced ejection fraction (EF) and ventricular dilatation
and, later, mimicking dilative cardiomyopathy. Experimental

T1DM and T2DM animals are prone to develop diastolic
and/or systolic dysfunction, as demonstrated in numerous
in vivo studies using echocardiography, magnetic resonance
imaging (MRI), and hemodynamic measurements [2, 3].
Diastolic dysfunction usually precedes the alteration of car-
diac contractility. As recently updated [4], a broad analysis
of diastolic performance should include several Doppler
indexes: ratio of peak velocity of early to late filling of mitral
inflow (E/A) and deceleration time of early filling of mitral
inflow, as well as the isovolumetric relaxation/contraction
time. Given the subjectivity of visual echocardiographic
estimations and the frequent coexistence of different Doppler
severity patterns, measurement of left ventricular (LV) dias-
tolic pressures by catheterization is also highly valuable. The
main systolic parameters include LV septum thicknesses,
LV internal dimensions, posterior wall (PW) thicknesses at
diastole and systole, LV mass, LVEF, LV fractional short-
ening (FS), and ventricular contractility assessment (dP/dt).
Regardless of rather inconstant particularities mainly dis-
played by Akita mice, all T1DM models have been reported
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to meet most of these criteria (Table 1). Cardiac performance
has also been extensively studied in T2DM experimental
models. Genetically obese mice displayed severe diastolic
dysfunction, as evidenced by diminished E/A velocities in
ob/ob and db/db mice [5, 6]. Contractile properties are yet
marginally affected in ob/obmice [5]. On the contrary, db/db
mice exhibited a reduced FS and velocity of circumferential
fibre shortening at age 12 weeks [6]. Van den Bergh et al.
also reported in db/db a decreased preload recruitable stroke
work, end-systolic elastance, and dP/dt from age 24 weeks
onwards but found preserved cardiac output, EF, and dP/dt
[7] (Table 1). Other T2DM models presented heterogeneous
data regarding cardiac performance. In ZDF rats, impaired
diastolic function has been extensively described [8–10].
However, Zhou’s work initially reported a decrease of FS
at age 20 weeks [8], and we and others found no evidence
of systolic dysfunction by both echocardiographic and MRI
determinations at ages 16 and 44 weeks, respectively [9, 10].
Similarly, OLETF and GK rats preserved contractile function
while displaying abnormalities of ventricular relaxation, as
suggested by a prolonged deceleration time, decreased peak
velocity, and reduced LV diameters associated with increased
LVPW thickness and LV mass [11, 12]. In contrast, diet-
induced obesity appears to invariably associate both diastolic
and systolic dysfunctions. High-fat diet increased LV mass
and reduced dP/dt and FS after 6 weeks [13]. Alike, sucrose
fed rats exhibited early abnormalities in LV fillings, as
demonstrated by reduced E/A ratios, together with depressed
FS and EF after 10 weeks [14]. Consistently, echocardio-
graphic findings in other high-fat and high-sucrose fed mice
revealed decreased FS, EF, and velocity of circumferential
fibre shortening, as well as dramatically impaired parameters
of diastolic function after 16 weeks [15].

Thus, cardiac dysfunction in T1DM patients could be
roughly reproduced in all conventional models (induced by
toxins and genetic alterations). In T2DM, diet-induced mod-
els may represent the human pathology more appropriately,
at least in the advanced states of the disease.

(1) Alterations of Cardiac Structure. Maladaptive structural
modifications underlie both the diastolic and systolic impair-
ments that eventually lead to heart failure. Although the
progression of these events has not been fully established,
the hallmark of changes includes cell hypertrophy, local
inflammation, and interstitial fibrosis promoted by steatosis
and cell-death processes in the injured myocardium.

(a) Hypertrophy. Undiagnosed cardiac hypertrophy is preva-
lent in asymptomatic T2DM patients, reaching up to 56%
in recent reports [16]. Myocyte hypertrophy is common in
biopsy of diabetic hearts and is induced by long-standing
metabolic imbalances andmicrocirculation anomalies. How-
ever, the contribution of cardiomyocyte hypertrophy to
the development of ventricular hypertrophy is still unclear
[17]. Most models of DCM display progressive concentric
or eccentric hypertrophy, which is directly associated with
diastolic and systolic derangement, respectively. Indicative
parameters include LV mass and heart-to-body weight (or
femur length) ratio, LVPW and septum thicknesses, LV

internal diameters, and cardiomyocyte size. In addition,
complementary plasma levels of brain natriuretic peptide
(BNP), atrial natriuretic peptide (ANP), and 𝛽-myosin heavy
chain (𝛽-MHC) have traditionally been considered support-
ive [18].However, a recent systematic analysis of hypertrophic
biomarkers in diabetic rodents revealed that most commonly
measured genes are confounded by diabetogenic methods
and do not correlate with cardiac hypertrophy [19]. In STZ-
induced models, reduced wall thicknesses and increased LV
internal diameters are prominent features, accounting for
extensive ventricular dilatational remodeling [20] (Table 1).
We observed cardiomyocyte size enlargement in long-term
T1DM (22 weeks), reproduced to a lesser extent in short-term
counterparts (6weeks) [21]. Similar histological findings have
been reported in OVE26mice together with the upregulation
of ANP and 𝛽-MHC [22, 23]. Conversely, no evidence
of myocardial hypertrophy has been found in Akita mice
[24]. In T2DM mice models, though systolic dysfunction
is developed as a late event, myocardial mass may increase
earlier. A higher heart weight has been reported in ob/ob and
db/db mice at ages 12 and 9 weeks, respectively [25, 26]. A
comprehensive MRI analysis of db/db hearts by Yue et al.
revealed a significant increase in LV mass and LVPW, and
septum thicknesses, as soon as age 13 weeks [26]. However,
early architectural changes are subtle and not consistently
identified. In this line, echocardiographic and cell dimension
assessments did not find hypertrophy in 15-week-old db/db
mice, despite evidence of systolic compromise [27]. In con-
trast, ZDF andGK rats usually exhibited a significant increase
of the septum and LVPW thicknesses, reduced LV diastolic
and systolic diameters, enlarged cardiomyocyte volume, and
higher expression rates of ANP, in spite of the fact that
contractile function was frequently preserved [10, 12, 28–
31]. Finally, the limited body of evidence on diet-induced
T2DM rather pointed hypertrophy as the onlymorphological
alteration constantly present, independently of its high-fat of
high-sugar diet origin [13, 32–34]. However, a recent work
reportednodifference in heartweight and cardiomyocyte size
but overexpression ofANP, BNP, and𝛽-MHCafter a 16-week-
long high-fat diet [35].

(b) Inflammation. Chronic low-grade inflammation has been
recently added to the features of DCM in human patients
[36]. Inflammatory signaling in cardiomyocytes usually
occurs as an early response to myocardial injury and entails
an activation of the proinflammatory nuclear transcription
factor-𝜅B (NF-𝜅B) and the related expression of cytokines
(i.e., tumour necrosis factor-𝛼 (TNF𝛼), interleukins (IL-
1𝛽, IL-6), and chemokines (i.e., MCP-1)), and adhesion
molecules (i.e., intracellular and vascular cell adhesion
molecule-1 (ICAM-1, VCAM-1, resp.)) [37, 38]. Toll-like
receptors and inflammasome signalling platforms may also
be key participants in DCM-associated inflammation [39].
In STZ-treated hearts, both macrophage and lymphocyte
infiltration and increased expression of proinflammatory
cytokines and adhesion molecules were detected at 22 weeks,
but not 6 weeks, after injection [21] (Table 1). Likewise, Li’s
paper reported an augmented NF-𝜅B activity in OVE26mice
[22]. A comprehensive approach tomyocardial inflammation
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in Akita mice was recently available, indicating the upregula-
tion of TNF𝛼 and the attenuation of anti-inflammatory IL-
10 [40]. However, data from T2DM models is more variable.
Ob/ob and db/dbmice displayed inflammation and increased
myocardial proinflammatory factors [41], whereas we are not
aware of any work addressing inflammation in the heart of
GK and OLETF rats or KK Ay mice. ZDF myocardia showed
either absence of inflammatory cell infiltrates at ages 9 and 13
months or higher levels of proinflammatory cytokines at age
22 weeks [42]. Inflammation is also present in diet-induced
models of obesity and diabetes. Several studies on high-fat
fed mice showed upregulation of proinflammatory factors,
together with lower measurements of anti-inflammatory
adiponectin and IFN𝛾 [35, 43, 44]. In turn, high-sucrose fed
mice did not present inflammation [32].

(c) Fibrosis. Interstitial fibrosis is the histologic hallmark of
humanDCMas a result of both replacement of focal myocyte
death and response to inflammatory infiltrate. Accelerated
extracellular matrix (ECM) deposition leads to ventricular
stiffness in the diabetic heart, which also stimulates a local
increase of cytokines and NF-𝜅B [45]. Collagen type I and
type III fibres accumulate in the epicardial and perivas-
cular domains, whereas type IV is mostly found in the
endocardium. Collagen can further undergo glycation by
advanced glycation end-products (AGEs) and impair its
degradation, leading to fibrosis, myocardial stiffness, and
decreased cardiac relaxation. Quantification of interstitial
fibrosis may be evaluated by histological staining (Masson’s
trichrome, Azan, and Sirius red) and gene/protein expression
of ECM components. Valuable insight into the molecular
substrate of ECM deposition is provided by the analysis
of TGF𝛽-Smad-AP1 axis, poly(ADP-ribose) polymerase-1
(PARP-1), and matrix metalloproteinases (MMP) activity
(MMP/TIMP (tissue inhibitor metalloproteinase) ratio). We
reported that the myocardium of both short-term and long-
term STZ-treated rats undergoes intense fibrotic remodeling,
mainly at the expense of interstitial and perivascular ECM
deposits and TGF𝛽 axis [21] (Table 1). OVE26 mice and
BB rats also displayed myocardial fibrosis, as determined
by increases in collagen accumulation and reduced MMP
activity [22, 46]. As with hypertrophy, histological study of
Akita mice showed no evidence of fibrosis and elevated levels
of ECM proteins [24]. In T2DM, most models exhibited
extensive myocardial collagen deposits. In ZDF rats, we
and others described an enlarged interstitial space mostly
confined to the subendocardial domain [10, 29]. Similarly, we
recently reported increased ECMdeposition and upregulated
expression profibrotic factors in the GK myocardium [12].
Other models in which fibrosis has been clearly detected
include db/db and ob/obmice andOLETF rats [18, 26, 47]. On
the contrary, several groups pointed the absence of increased
collagen deposition and ventricular stiffness in ob/ob despite
strong evidence of other DCM traits such as hypertrophy and
apoptosis [5, 25]. Much less has been done so far to assess
fibrosis in diet-induced obesity models, in which a complete
histological examination is lacked. High-fat fed mice pre-
sented overexpression of TGF𝛽 axis and downregulation of
antifibrotic p-Smad1/5 and bone morphogenetic protein-2

(BMP-2) [34, 43]. However, Nunes et al. found no differences
in perivascular and interstitial fibrosis in high-sucrose fed
mice compared to controls [32].

(d) Steatosis. Accumulation of fat in nonadipose tissues in
human diabetes may be a protective response to provide a
store of fuel for subsequent oxidation and to prevent exposure
to toxic lipid metabolites such as ceramides [48]. However,
a chronic imbalance of lipid storage versus lipid oxidation
may lead to mechanical dysfunction. Insulin resistance and
high levels of intramyocardial triacylglycerol (TAG), long-
chain fatty acid (FA), TAG derivatives (i.e., diacylglycerols
(DAG) and phospholipids), and ceramides are main triggers
of heart disease in obesity and T2DM [49]. Also, ceramide
and DAG can reduce insulin-stimulated signalling through
the activation of PKC and NF-𝜅B. Surprisingly, myocardial
steatosis is a common feature among T1DMmodels (Table 1).
STZ-treated mice showed a 50% increase in cardiac content
of FA [50], and both FA and ceramide deposits have been
reported in NOD and Akita mice already at age 3 months
[24, 51]. An association between increased myocardial lipid
content and cardiac dysfunction has also been observed in
rodent models of obesity and T2DM. Interestingly, Zhou’s lab
described that cardiac steatosis was evident in ZDF at 6 weeks
even before the reduction of FS [8]. Also, ob/ob and db/db
showed significantly elevated contents of phospholipids,
whereas ceramides, cardiolipin, and unesterified cholesterol
remained unaltered [5, 41, 52]. As expected, both high-fat
and high-fructose-induced obesity models also displayed
extensive myocardial steatosis [15, 53].

(e) Apoptosis. Myocardial cell death is recognized as a major
event in the progression of DCM. Biopsies from diabetic
patients revealed that cardiomyocytes are more suscepti-
ble to diabetes-induced apoptosis than endothelial cells or
fibroblasts [54]. Standardmethods to study apoptosis include
TUNEL staining, phosphatidylserine exposure in cell mem-
brane, and analysis of caspase-3 and other components of the
extrinsic (i.e., Fas, FasL) and intrinsic (i.e., Bax/Bcl-2 ratio,
cytochrome-C) apoptotic pathways. Of note, theDNA repair-
ing enzyme PARP-1, which is also recognized as an apoptotic
marker, has been recently shown to be central in a genuine
type of cell death termed parthanatos [55], and its potential
role in DCM has already been stated [56]. STZ-treated hearts
displayed a significant increase in cardiomyocyte apoptosis
already at 3 days after injection. A progressive decrease
of apoptosis was reported from 4 to 24 weeks after the
induction of diabetes [57] (Table 1). In this line, we showed
that apoptosis is more severe in long-standing STZ-treated
hearts than in short-term ones [21]. Similarly, apoptosis was
stimulated inOVE26 [58]. T2DMhearts also augmented rates
of cell death. Comprehensive studies on ob/ob and db/dbmice
reported marked pro-apoptotic molecules and apoptosis [59,
60]. Moreover, cell death became more accentuated with
aging [46, 61–63]. Likewise, we and others have described
spread apoptosis in ZDF and GK myocardia [10, 12, 64].
Finally, most of the works on high-fat and high-sugar fed
mice reported increased myocardial apoptosis [13, 43, 61, 65].
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Figure 1: The diabetic milieu at the myocardium. Thickened lines represent activated pathways, and dotted lines denote reduced pathways.
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However, no change in apoptosis markers was identified in a
more recent contribution in high-sucrose fed mice [66].

In summary, inflammation in human DCM usually
occurs in early stages of the disease. Main established
T1DM and T2DMmodels could emulate this response when
analysed soon after the onset of the pathology. Also, most
of them (but Akita) can exhibit myocardial hypertrophy,
fibrosis, steatosis and apoptosis, preferentially at late stages
of the disease. Thus, these models may be used to reproduce
specific human responses toDCM, in particularwhen obesity
coexists in the patients.

(2) Alterations in Cardiac Metabolism and Calcium Handling.
The structural alterations in DCM may be originated by dis-
ruptions in energetic metabolism, which almost completely
relies on FA and requires higher rates of O

2
consumption.

This scenario induces a progressive loss of cardiac efficiency
by mitochondrial uncoupling and endoplasmic reticulum
stress, and subsequent apoptosis and cardiac dysfunction [67]
(Figure 1).

(a) Energetic Imbalance. In human DCM, FA constitute
principally the unique energy source of fuel due to the insulin

inefficiency and reduction of glucose transporters and glu-
cose oxidation enzymes [68]. As a consequence, PPAR(𝛼,
𝛽, and 𝛾) transcription factors are stimulated to increase
gene expression of those proteins involved in FA-uptake, -
transport, and -oxidation (FAO) and ceramide production,
in both peroxisomes and mitochondria [69]. Main models
of T1DM [62, 70, 71] exhibited a reduced expression of
GLUT1 and GLUT4, and higher levels of the glucose oxi-
dation inhibitor pyruvate dehydrogenase kinase 4 (PDK4)
(Table 1). Upregulation of PPAR𝛼 and FAO proteins has also
been extensively described [62]. Likewise, Akita mice hearts
showed lower glucose degradation and greater palmitate oxi-
dation and expression of FA-transporters [24]. Nevertheless,
most of the experimental data regardingmetabolic abnormal-
ities of the diabetic heart derive from T2DMmodels. Insulin
resistance and higher FA utilization have been observed in
ob/ob mice. As a result, myocardial O

2
consumption rose,

and cardiac performance substantially declined [64]. In the
samemodel, a consistent decrease of key regulators of glucose
metabolism such as phosphofructokinase (PFK) and GLUT-
4 and increased expression of a set of PPAR𝛼 and PPAR𝛾
independent genes involved in FA metabolism was reported
[5]. In like fashion, db/db mice displayed a 40% decrease
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in glucose uptake, together with a considerable reduction in
carbohydrate oxidation from age 10 weeks onwards. At this
age, palmitate oxidation was shown to contribute over 90% to
the cardiac FA production [26, 63]. In addition, we and others
demonstrated the abnormal lipid metabolism of ZDF hearts,
which include upregulation of genes involved in FA uptake,
lipid reesterification, and𝛽-oxidation [8, 10, 72]. Several stud-
ies ranging from gene expression assessment to quantitative
positron emission tomography imaging have recently uncov-
ered similar alterations in OLETF and GK rats [11, 31]. Diet-
induced models have also disclosed similar disturbances. A
recent work described an excessive FA metabolism in high-
fat fed mice, supported also by upregulated PPAR𝛼 [15]. In
the same model, Cole et al. found increased FAO rates [73],
though Ussher’s group observed no association between lipid
accumulation and insulin sensitivity [74].

(b) Mitochondrial Dysfunction and Oxidative Stress. Ener-
getic imbalance triggers defects of mitochondrial respira-
tion and ROS overload in human diabetes. In both T1DM
and T2DM, metabolic maladaptation contributes to ROS
imbalance by affecting multiple enzymatic systems includ-
ing NADH oxidase (NOX), endothelial NO synthase, and,
mainly, the mitochondrial respiratory chain [68, 75]. In STZ-
treated rats, mitochondrial damage was evidenced by loss
of membrane potential, increases in ROS production, and
reduction in antioxidant glutathione [76] (Table 1). Further
proteomic analysis revealedmarked alterations in the expres-
sion of 24 different cardiac proteins implicated in metabolic
derangement and ROS excess, half of them located in the
mitochondria [77]. Likewise, OVE26 mice showed altered
mitochondrial function, reduced glutathione, and increased
mitochondrial biogenesis [62, 78, 79]. A comprehensive study
pointed that mitochondria of Akita mice also displayed
respiratory defects, reduced cristae density, and increased
volume at themitochondria. However, despitemorphological
aberrations, mitochondrial number and antioxidant defences
remained unchanged, and the absence of mitochondrial
uncoupling was evidenced by unaffected ATP-to-O

2
ratio

[71]. In T2DM, db/dbmice exhibited increased O
2
consump-

tion, mitochondrial ROS generation, and lipid peroxidation.
Mitochondrial uncoupling was associated with upregulated
FAO genes and electron transfer flavoproteins [80]. Ob/ob
mice and OLETF maintain unchanged levels of uncoupled
proteins despite signal of mitochondrial dysfunction [81, 82].
Higher mitochondrial ROS production and lipid peroxida-
tion rates have been also described in ZDF, OLETF, and GK
rats [10, 83–85]. In addition, an elevation in antioxidant levels
was demonstrated in ZDF rats [86]. Interestingly, ZDF rats
neither displayed increased myocardial O

2
consumption nor

showed a significant reduction of mitochondrial biogenesis-
related factors [10, 87]. Finally, mitochondrial uncoupling
appears to be invariably present in cardiomyocytes from diet-
induced obese mice. High-fat intake is associated with an
increased burden of oxidized proteins, NOX and uncoupling-
related factors, and antioxidant responses [43, 65, 73].

(c) Altered Ca2+ Mobilization. A progressive dysregulation of
Ca2+ handling underlies the relaxation-contraction defects

in human DCM. Impaired Ca2+ signaling may be the
consequence of altered sarcolemmal or sarcoplasmic Ca2+
pumps and channels and ryanodine receptors [88]. Cardiac
mitochondria from STZ-treated rats decreased the capacity
to stimulate ATP synthesis via stimulation of Ca2+ pumps,
and, consequently, it abridged the relaxation during work
load [89] (Table 1). Impaired contractility and reuptake of
Ca2+ in cardiomyocytes from OVE26 mice were associ-
ated with reduced Ca2+ ATPase-60A (SERCA2a) levels and
cytoplasmic Ca2+ clearance [90]. BB rats and Akita mice
reported altered cardiac excitation-contraction coupling as
well [24, 91]. In experimental T2DMmodels, themechanisms
explaining decreased Ca2+ uptake are not yet fully resolved.
In ob/ob, Li et al. noted that SERCA2awasmarkedlymodified
by oxidation [92], whereas Van Den Bergh et al. showed
increased SERCA2a levels with less affinity for Ca2+, which
reduced contractile capacity [25]. In db/db mice, Belke’s lab
did not report significant variance in ryanodine receptor
levels but lessened SERCA2a [93]. However, unchanged
expression of SERCA2a has been described in ZDF [72] and
intracellular Ca2+ transient was unaltered in GK cardiomy-
ocytes [94]. In addition, cardiomyocytes from high-fat fed
mice displayed a significantly elevated baseline intracellular
Ca2+ and reduced Ca2+ decay rate, together with a marked
decrease in SERCA2a expression [13, 65]. Further, sucrose fed
rats showed reduced Ca2+ uptake [14], and fructose fed mice
exhibited an attenuation of diastolic Ca2+ and Ca2+ transient
amplitude, as well as SERCA2a expression [95].

Thus, the main T1DM and T2DM experimental models
could replicate the metabolic alterations occurring in human
hearts, including the energetic imbalance and mitochondrial
and Ca2+ defects.

2. Cardiac Responses of DCM-Like Models
Induced by Genetic Modification

Specific target genes have been modulated to create DCM-
like models in rodents (Table 2). As detected in T1DM
patients, cardiac dysfunction, hypertrophy, and fibrosis were
demonstrated by upregulation of PKC𝛽 [96] or by down-
regulation of GLUT4 [97–99], phosphoinositide dependent
kinase-1 (PDK1) [100], phosphoinositide-3 kinase (PI3K)
[101], or glucokinase (GCK) [102] genes (Table 2). Apoptosis
and inflammation were less common (only in PKC𝛽 and/or
PI3K), and somemetabolic controversies were described. For
example, the lack of GLUT4 or the cardiac-specific insulin
receptor (CIRKO) [103, 104] decreased both FA and glucose
metabolisms, but it intriguingly elevated oxidative stress
without reducingmitochondrial function.On the other hand,
as observed in T2DM patients, a decline of cardiac function
and increased myocardial hypertrophy, fibrosis, and steatosis
were predominantly found in PPAR𝛼 [105, 106], PPAR𝛾 [107,
108], long-chain acyl-CoA synthetase-1 (LCACS1) [109, 110],
lipoprotein lipase (LPL) [111, 112], and fatty acid transport
protein-1 (FATP1) [113, 114] overexpressed mice. Apoptosis
was also presented in PPAR𝛾, LCACS1, and, perhaps, LPL
null mice. Interestingly, all these responses were exhibited by
adipose triglyceride lipase (ATGL) deletion [115, 116]. Also,
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by ablation of the brown adipose tissue in the transgenic
model of uncoupling protein-diphtheria toxin A (UCPDTA)
[117, 118], mice exhibited a T2DM-like phenotype though
a potential rise of related cardiac steatosis and apoptosis
was not assessed. However, metabolic changes in all these
models were principally represented by an increase of FA
oxidation. The glucose metabolism, mitochondrial function,
and Ca2+ mobilization were unpredictably changed or were
not analysed.

3. Major Animal Models Recapitulating
the Human DCM Pathology

3.1. T1DM Associated DCM-Like Models. The STZ-adminis-
tration could recapitulate the most human DCM features
associated with T1DM (Table 1). The injection of this 𝛽-cell
killer can induce cardiac dysfunction in parallel with typical
myocardial alterations in the structure and metabolism.
However, STZ may also injure nonpancreatic tissues such
as brain, and the rapid and accentuated onset of T1DM
(i.e., robust hyperglycemia, lipotoxicity, and cardiac apoptosis
after only 2-3 days of injection) can diverge from the human
nature. In this regard, an upregulation of calmodulin in
OVE26 mice may develop a slower and more humanized
T1DM-associated DCM, though the energetic imbalance
should be further examined. However, this point mutation
disagrees with the patient aetiology, in which an autoimmune
response is usually the origin of the disease. In addition, the
lack of insulin production in Akita leads to some uncom-
mon responses in the myocardium such as the absence of
hypertrophy andfibrosis andunchanged levels of oxidation in
spite of mitochondrial dysfunction. Nonconventional T1DM
modelsmay also emulate the human disorder (Table 2). Aside
CIRKO and GLUT4 metabolic controversies, the absence
of other mediators for glucose assimilation as GCK may
mirror the T1DM phenotype in patients. Also, the lack of
PDK1might reduce the activation of PI3K-dependent insulin
signaling [119], leading to a useful T1DM-associated DCM
model.

3.2. T2DMAssociated DCM-LikeModels. Traditionalmodels
of T2DM are those with an abolished leptin-system activity
(Table 1). Considering leptin activities other than satiety
control, these models develop obesity and an average onset
of T2DM pathology, with increased hyperglycemia, insulin
resistance, and hyperlipidemia, in parallel with cardiac dys-
function. They mostly show expected structural alterations
as in the human disorder. However, a polygenic model
could be more representative. In this regard, GK rats trigger
similar responses but the lack of obesity and steatosis is not
usually observed in clinic. More valid models of T2DM-
associated DCM can be the DIO. In particular, high-fat diet
emulates responses of the leptin-system defect, including
obesity and steatosis, but not as a consequence of a single
mutation. These effects can be additionally enhanced by
coadministration of STZ [120], though tissue toxicity may
be increased. Other nonconventional approaches may mimic
humanDCM inT2DM (Table 2).The upregulation of PPAR𝛼

or PPAR𝛾 unexpectedly leads to similar actions to the lack
of leptin stimulation. In spite of increased FA-transporters
and FAO enzymes, the myocardium accumulates lipids
and ROS. Likely, the level of other PPAR-regulated genes
such as reesterification enzymes, glucose transporters, and
proinflammatory cytokines could also explain those actions
[121]. Moreover, ATGL, LPL, and FATP1 are involved in
FA uptake and accumulation in the cardiomyocytes, and
LCACS1 catalyses the first step of lipid biosynthesis. In this
regard, an excess of FA and lipid content could increase
lipotoxicity and subsequent cardiac failure, as occurs in
T2DM patients.

4. Conclusions and Future Remarks

Since human trials focused on identifying the cardiovascular
outcomes of tight glycemic control failed to show significant
benefit [122], the prevention and treatment of DCMmay not
be limited to the restoration of systemic parameters. It should
also include the preservation of cardiac structure and func-
tion along with the local metabolic balances (Figure 1). Thus,
the knowledge andmanipulation of specific key pathways and
mediators in appropriate experimental models may be useful
for studying new approaches for diabetic patients. Although
the experimental milieu (genetic background, diets, and
animal location) must be obviously considered, we may have
valuable armamentarium to investigate key factors for DCM
pathology. In relation with current data, themost appropriate
T1DM-model induced by pancreas toxicity is achieved by
STZ. However, unique (nontoxic) mutations on glucose-
related genes (not on insulin) have demonstrated aDCM-like
T1DM phenotype, as occurs with GCK. In addition, due to
its possible origin as an autoimmune failure, T1DM could be
ideally produced by triggers of specific autoimmune reactions
or 𝛽-cell death (i.e., virus, modified genes). For T2DM-linked
DCM, we may have more working options, including both
T2DM-obesity and T2DM aetiologies. Since human T2DM is
usually acquired with an unhealthy lifestyle and/or unknown
polygenic mutations, high-fat fed models can be closer to
that point mutations on leptin system or in lipid storage.
Polygenetic mutations of obesity, such as KK Ay, and OLETF,
should be further characterized, and nonobese polygenetic
mutated GK rats could facilitate the study of T2DM per
se. However, we probably need diet-conditioned models of
polygenetic mutations of T2DM to exemplify a bona fide
approach to a related DCM.
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