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Abstract

Misclassification is a long-standing statistical problem in epidemiology. In many real studies, 

either an exposure or a response variable or both may be misclassified. As such, potential threats 

to the validity of the analytic results (e.g., estimates of odds ratios) that stem from 

misclassification are widely discussed in the literature. Much of the discussion has been restricted 

to the nondifferential case, in which misclassification rates for a particular variable are assumed 

not to depend on other variables. However, complex differential misclassification patterns are 

common in practice, as we illustrate here using bacterial vaginosis (BV) and Trichomoniasis data 

from the HIV Epidemiology Research Study (HERS). Therefore, clear illustrations of valid and 

accessible methods that deal with complex misclassification are still in high demand. We 

formulate a maximum likelihood (ML) framework that allows flexible modeling of 

misclassification in both the response and a key binary exposure variable, while adjusting for other 

covariates via logistic regression. The approach emphasizes the use of internal validation data in 

order to evaluate the underlying misclassification mechanisms. Data-driven simulations show that 

the proposed ML analysis outperforms less flexible approaches that fail to appropriately account 

for complex misclassification patterns. The value and validity of the method is further 

demonstrated through a comprehensive analysis of the HERS example data.
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1. Introduction

For many epidemiologic studies, reliably estimating effects of exposures on a health 

outcome is of primary interest. It has been noted in a wide range of study contexts [1–8] that 

the problem of measurement error may arise due to fallibility in measurement tools, 
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hindering investigators in the effort to report valid estimates of effect. In addition to these 

references, many general discussions about the impact of measurement error on estimating 

health effects and approaches to combat it can be found in the literature [e.g., 9–14].

When referring to measurement error in binary or categorical variables, the term 

misclassification is commonly used, and it has been sometimes considered as a distinct 

concept. For example, to assess disease status, epidemiologic studies sometimes use 

convenient but error-prone diagnostic tests, which may lead to false positive and negative 

diagnoses. There is rich literature on methods dealing with misclassification in exposure or 

response variables, often focusing on nondifferential misclassification or invoking 

sensitivity analyses when errors may be differential [e.g., 15–18]. However, the value of 

internal validation data for elucidating and adjusting for exposure misclassification that is 

differential with respect to disease status has been made very clear [e.g., 11, 19–22]. While 

some publications advocate the use of internal validation data to evaluate a more complex 

misclassification process, relatively few emphasize practical guidance on how to implement 

the analysis. Our current work seeks to address aspects of the gap between theoretical 

considerations and real life applications when one encounters potentially complex patterns 

of binary variable misclassification.

Here we consider a motivating example arising in the HIV Epidemiology Research Study 

(HERS) [23], where both a binary exposure variable X (Trichomoniasis (Trich) status) and a 

binary response variable Y (bacterial vaginosis (BV) status) are subject to misclassification. 

The presence of outcome and/or exposure misclassification complicates regression analyses 

and can lead to distorted effect estimates (e.g., estimated odds ratios (ORs)). Moreover, the 

misclassification process with respect to BV in the HERS data has been found to be quite 

complex, making one doubt both the common assumption of nondifferentiality and typical 

differential mechanisms in which false positive and negative rates depend only on a single 

variable. Exploration into the misclassification of BV status further revealed that 

inappropriately assuming nondifferentiality can lead to corrected OR estimates as or more 

biased than those arising from “naïve” analyses that ignore the problem altogether [24].

In the following section, we first introduce the HERS data and discuss analytical questions 

arising with regard to logistic regression analysis of cross-sectional data involving Trich and 

BV status. When misclassification is present in both X and Y, prior discussions in the 

literature mainly target 2-by-2 tables or generalized tables [25, 26]. However, in practice it is 

very common to seek direct adjustment for covariates via regression modeling, as in our 

motivating example. Thus, we propose a unified likelihood framework to incorporate the 

main/internal validation design and assess complex misclassification mechanisms involving 

both binary variables. We present data-driven simulations mimicking the HERS example to 

demonstrate the benefits of the main/internal validation study design and corresponding 

likelihood-based methods, relative to a naïve analysis and an alternative approach that 

adjusts for misclassification based on overly simplistic assumed mechanisms. We also 

conduct extensive simulations under various settings to evaluate the performance of the 

proposed approach.
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2. Materials and methods

2.1 Motivation

We consider a cross-sectional analysis of data on bacterial vaginosis (BV) as the response Y 

and Trichomoniasis (TRICH) status as the exposure X for women in the HIV Epidemiology 

Research Study (HERS) at the 4th semi-annual visit (between 09/1994 and 10/1996), given 

misclassification of BV status previously documented at that visit [24]. The primary goal of 

the analysis is to model the association of BV with TRICH, controlling for other subject-

specific characteristics. Existing literature suggests a positive relationship between these two 

conditions [27], highlighting the motivation for assessing their prevalences and association. 

Unfortunately, in practice BV and TRICH may be diagnosed via error-prone tests. In HERS, 

these consist of a clinical method (hereafter referred to as “CLIN”) for BV assessment based 

on a modified version of Amsel’s criteria [28], and a wet mount testing procedure [29] for 

detecting TRICH. Although such clinically-based methods are convenient and cost-saving, 

they are subject to yielding false positives or negatives. In large-scale observational studies 

like HERS that seek insight about disease associations, the presence of misclassification in 

such diagnoses jeopardizes the validity of adjusted odds ratio estimates and corresponding 

statistical inferences.

A total of 904 women with complete data on BV, TRICH and other risk factors at the 4th 

visit were considered. Among them, 61.7% were black, 67.4% were HIV positive and 52% 

were intravenous drug users. The median age at enrollment was 37 years. Using culture 

testing (the arguable gold standard), 18% of women were diagnosed with TRICH. In 

contrast, only 7.6% were TRICH-positive based on wet mounts. Similarly, 40.3% of women 

were BV positive via a gold standard laboratory-based (“LAB”) method based on Nugent’s 

criteria [30], compared to 24.5% based on the CLIN method. Estimated crude sensitivities 

for the wet mount and CLIN methods were 37.8% and 51.7% respectively, while the 

specificities were 93.9% and 99.0%, indicating that both error-prone methods were highly 

specific but not sensitive.

We refer to the binary random variables corresponding to the gold standard TRICH and BV 

assessments as X and Y, respectively. The error-prone assessments are conversely labeled as 

X* and Y*. In HERS, all four assessments (X, X*, Y, Y*) were obtained for each participant 

at Visit 4. The complete data on X and Y provide an ideal data example to illustrate the 

performance of the proposed approach, since we can compare the results of a standard 

logistic regression applied to the gold standard data with those of a naïve analysis based on 

(X*, Y*) and with ML analyses incorporating only a portion of the (X, Y) data into an 

internal validation sample.

We first consider a multiple logistic model of interest on all subjects using Y and X as the 

response and predictor variables, referred to as the “Ideal Analysis”. Preliminary model 

selection suggested that TRICH status, age, race (black vs. others), HIV risk cohort 

(RISKCHRT: intravenous drug use (IDU) vs. sexual) and HIV status (HIVPOS: positive vs. 

negative) are important risk factors for BV, as represented in model (1):
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(1)

We then fit the same model replacing X and Y with X* and Y*, denoted as the “Naïve 

Analysis”. As seen in Table 1, the two analyses differ markedly in magnitudes of the 

estimated OR for TRICH (2.41 with 95% CI (1.66, 3.50) for ideal vs. 3.44 with 95% CI 

(2.03, 5.84) for naïve) and HIV risk cohort (1.37 with 95% CI (1.03, 1.83) for ideal vs. 2.45 

with 95% CI (1.74, 3.45) for naïve). The estimated ORs for HIV status differ in 

directionality (1.25 with 95% CI (0.93, 1.69) for ideal vs. 0.73 with 95% CI (0.52, 1.03) for 

naïve). These discrepancies clearly indicate that without appropriately taking 

misclassification into account, estimates of effect and corresponding inferences that rely 

only upon X* and/or Y* can be invalid.

2.2 Misclassification patterns and joint likelihood formulation

Consider a cross-sectional study with n subjects. In the absence of misclassification, assume 

that we seek to fit a standard logistic regression model as follows:

(2)

where Y is a potentially misclassified binary response variable, Cp (p=1,…P) denotes the 

pth covariate assumed to be measured accurately, and X stands for a binary predictor of 

interest that (like Y) is subject to misclassification. Henceforth, we divide the whole study 

sample into two parts. In the main study sample, instead of X and Y, mismeasured 

dichotomous exposure status X* and disease status Y* are observed. For the purpose of 

evaluating misclassification patterns, we assume that a completely random internal 

validation sample of size nv is selected and gold standard measures of the response and 

exposure (Y and X) are made on those subjects. It follows that the main study sample size is 

nm=n−nv. We note in passing that some authors refer to the whole study sample as the “main 

study”, which differs slightly from our use of the term. If we replace X and Y in eqn. (2) 

with the error-prone measures X* and Y*, estimates of the β’s will be potentially biased 

(even in large samples). The magnitudes of the biases impacting these estimates depend on 

the diagnostic properties of the methods used to classify both X* and Y*.

2.2.1 Independent nondifferential misclassification—The assumption of 

nondifferential misclassification implies the belief that the common diagnostic parameters 

known as sensitivity (SE) and specificity (SP) are constants that do not vary based upon any 

subject-specific variables [e.g., 7]. For example, regarding diagnostic properties relating Y* 

to Y in the nondifferential case, we define

(3)

Similarly, when characterizing the method classifying X*, nondifferentiality implies that
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(4)

The subscript notation used in (3) and (4) reflects the fact that SE and SP are viewed as 

constants independent of other information, such as disease status and prognostic factors. In 

other words, nondifferential misclassification for both variables corresponds to the following 

assumptions: Pr(Y* = 1|Y = 1) = Pr(Y* = 1|Y = 1), X. C), Pr(X* = 1|X = 1) = Pr(X* = 1|X = 1, 

Y, C). It follows that Pr(Y*, X*, Y, X|C) = Pr(Y*|Y, X*, X, C) Pr(X*|X, Y, C) Pr(Y|X, C) Pr(X|

C) = Pr(Y*|Y) Pr(X*|X) Pr(Y|X, C) Pr(X|C), indicating the misclassification processes in X 

and Y are independent. This type of misclassification pattern is hereafter termed 

“independent nondifferential misclassification”.

We set out to find expressions for the observed data likelihood under various 

misclassification assumptions. Let us first consider further the situation when both X and Y 

are assumed subject to independent nondifferential misclassification. By the rule of total 

probability, each independent observation in the main study contributes the following 

likelihood term:

(5)

The first and second terms in the last line of eqn. (5) represent the SE and SP of Y and X, 

while the third term reflects the primary model of interest defined in eqn. (2). The last term 

characterizes the association of X with other covariates C. To facilitate the likelihood 

specification, we designate a model for Pr(X|C). While other links can be applied, here we 

adopt the familiar logit link and assume that eqn. (6) is correctly specified:

(6)

The overall likelihood for the main study follows as:

(7)

where the subscripts of C in eqn.(7) indicate that the version of the C vector may differ 

across models as long as cix is a subset of ciy. The scenario just described assuming 

nondifferential misclassification of both X and Y is an extension of the classical 2×2 setting 

[2] to incorporate an arbitrary set of accurately measured covariates (C) into the model 

associating X with Y. In [2], Barron presented an identity, later termed the “matrix method”, 

to connect the correct and error-prone cell counts (or probabilities) via the bridge of the 

diagnostic parameters SEx, SEy, SPx and SPy. Unless one is to rely upon sensitivity 

analyses, these parameters are best estimated by supplemental sampling of subjects into an 

internal validation set. According to the strategy discussed following eqn. (2), we assume 

that (X, X*, Y, Y*) are observed on each subject in the internal validation sample (although 
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only minor adjustments to the likelihood contributions are required, e.g., if certain subjects 

have only one variable validated). The likelihood contribution for the internal validation 

subsample is:

(8)

and the overall joint likelihood to be maximized is the product of the expressions in (7) and 

(8).

2.2.2 Independent differential misclassification—In contrast to the nondifferential 

case, differential misclassification occurs when the misclassification probabilities of one 

variable depend on the value(s) of the other variable(s). More specifically, regarding 

classifying via Y*, we define

and

(9)

Note that the SE and SP of Y now can be functions of exposure (X) and other covariates (C). 

For clarification, as long as the SE/SP’s for X and Y depend only on the true values of other 

variables, we will term it “differential but independent misclassification”. Eqn. (9) is the 

most general representation of SEY and SPY under such an assumption, and implies the 

possibility of modeling SEY and SPY parametrically. Similarly, X may or may not be an 

important factor in characterizing the diagnostic properties for Y, and can be left out when 

deemed not to be. We may define the misclassification process for X analogously, as 

follows:

and

(10)

Each observation in the main study now contributes to the likelihood as follows:

(11)
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Note that eqn. (11) is a generalization of (7) to incorporate differential misclassification. The 

first two terms in the last line of (11), characterizing SE and SP for X and Y, need to be 

specified in order to write out the likelihood. Here again we favor logistic regressions for 

modeling the misclassification processes of X and Y. More specifically, define

(12)

and

(13)

Model (12) implies that

and

The corresponding definitions of SEXyc and SPXyc are determined analogously from model 

(13). The full likelihood follows as L=Lm×Lv, where

(14)

and

(15)

The major distinction of eqn.s. (14) and (15) from eqn.s. (7) and (8) is the incorporation of 

differential misclassification via the modeling of the SE and SP parameters based on (12) 

and (13). Nondifferential misclassification may be viewed as a special case, corresponding 

to the assumption that (θ1=…=θR=θR+2=0) in (12), or that (δ1=…=δS=δS+2=0) in (13). The 

Akaike information criterion (AIC) [31] approach based on the internal validation study 

design offers the distinct advantage of helping to assess whether nondifferentiality best 

describes the data, as well as aiding in model selection for screening out factors associated 

with SE and SP for both X and Y. The scenario considered in this section is a generalization 
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of that considered in [26], by allowing covariates in the main model and in the models for 

misclassification.

2.2.3 Dependent and differential misclassification—In the previous section, the 

diagnostic properties (SE and SP) of X and Y were allowed to be impacted by the true 

values of other variables, allowing flexible models for differential misclassification. With 

two binary variables subject to error, one must also recognize the potential for “dependent” 

misclassification (e.g., [10]), where the SE and SP for one variable may be conditionally 

dependent on the error-prone assessment of the other. To clarify this notion of dependence 

in our setting, consider the following main study likelihood contribution:

(16)

The expression in (16) reflects a model that generalizes (6) and (11) to encompass both 

dependence and differentiality. The first term in the last line of eqn. (16) reflects dependent 

misclassification by conditioning on X*, i.e., generalizing the SE and SP for Y* to depend 

on X* conditionally on (Y, X, and C). The full main/internal validation study likelihood 

under such a model remains L=Lm×Lv, where now the likelihood contribution for a main 

study subject is

Each internal validation subject now makes the following likelihood contribution:

As before, proper model selection may make it possible to reduce the model to a simpler 

form. For example, one can rely on AIC to assess the appropriateness of independent 

misclassification in (16), using the following generalized logistic regression model for the 

error-prone binary Y*:

(17)

The AIC can be used to address whether to include θR+3.

2.2.4 Other types of misclassification—It should be noted that there are other possible 

misclassification mechanisms besides those discussed in the previous sections, which may 

be regarded as special cases of the model presented in Section 2.2.3. For example, in 

practice, both exposure and disease status could be nondifferentially misclassified, yet 

misclassification could be dependent [31]. In such a case, one may make the appropriate 

simple adjustments to the form of the likelihood. Other mechanisms include the possibility 
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that disease and exposure status are independently misclassified, with misclassification 

differential for one and nondifferential for the other. All likelihood functions presented 

herein for the main/internal validation study design potentially permit convenient numerical 

maximization via general optimization facilities available in standard statistical software 

such as SAS NLMIXED. Details about the optimization techniques available in NLMIXED 

can be found in SAS documentation [32]. Standard errors for estimates of secondary 

parameters (e.g., SE and SP) can be estimated via the delta method, which is also part of the 

routine procedure in NLMIXED. Readily adaptable SAS code for this purpose is attached in 

the Appendix, using the HERS data in Section 3 as an example. In practice, thorough model 

selection should be performed for the SE/SP models for X and Y using the joint main/

validation sample, to assess whether dependence and/or differentiality is involved in the 

misclassification process.

2.3 Factorizing the general misclassification model

Note the following alternative factorization for the general likelihood contribution in (16):

The last two terms in the final expression above are identical to those in eqn. (16), although 

the misclassification models for X and Y are altered in the dependent and differential 

misclassification case. However, this alternative factorization has no effect on the 

specifications in Section 2.2, under less than fully general misclassification patterns. In 

practice, one can use AIC to select the best-fitting factorization for the misclassification 

mechanism in the general case.

2.4 Variable selection for X|C and misclassification models

In principle, the covariates in the X|C or misclassification models could differ from those in 

the primary response model of interest. However, caution should be applied in this regard. 

Consider a situation in which a variable, say V, is included in the X|C model, and Y is not 

independent on V conditional on X and all other covariates. In that case, failing to include V 

in the response model will generally induce bias in the estimation. A similar argument holds 

for variables involved in misclassification models. All variables in misclassification models 

should be accounted for in the response model, unless there is evidence suggesting that it is 

legitimate to assume they are independent of Y conditional on X and other covariates in the 

response model. In Sections 4.2, we have provided empirical evidence for the above 

argument. In practice, we make the following suggestion. First, the response model of 

interest can be selected based upon the scientific research question and preliminary model 

selection to screen out the maximal C vector for all models, including the X|C and 

misclassification models. In other words, only a subset of C will be considered in the X|C 
and misclassification models. Then an AIC-based model selection strategy can be conducted 

by fitting candidate models and choosing the one with the smallest AIC.
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3. HERS example analysis

According to eqn (1), age, race, risk cohort and HIV status are considered candidate C 
covariates for all models. In order to demonstrate the performance of the proposed approach, 

we randomly selected 1/4 of the total HERS sample size at visit 4 (nv=214) into an internal 

validation subsample. Model selection on all 214 participants suggested a version of the X|C 

model as follows:

(18)

where race is associated with Trichomoniasis status based on the gold standard culture 

method. Predictor selection based on those 214 women further suggested dependent and 

differential misclassification of the CLIN BV and WET TRICH methods. The selected 

SE/SP models for CLIN BV and WET TRICH are as follows:

(19)

(20)

Thus, the classification rates of CLIN BV are found to be dependent on the risk factors of 

HIV risk cohort and HIV status, implying differential misclassification. Conditionally on 

these variables, the misclassification process for BV depends on the error-prone wet mount 

version of the Trichomoniasis diagnosis along with the culture Trichomoniasis diagnosis, 

implying dependent misclassification. Similarly, model (20) indicates that HIV risk cohort 

significantly impacts the SE and SP of the wet mount method, a typical example of 

differential misclassification. As a practical matter, it is useful to perform model selection on 

the internal validation sample for eqns. (18)–(20) via a traditional likelihood ratio testing 

approach with a conservative significance threshold such as 0.10 or 0.15, to ensure 

important factors are not left out. As recommended in Section 2.4, AIC can then be applied 

to the joint model to compare candidate misclassification mechanisms.

The first model fitted in Table 2 reflects the joint modeling of eqns. (1) and (18)–(20) via the 

likelihood contributions given in (16) for dependent and differential misclassification. Note 

that this analysis incorporating gold standard test results (Y, X) for only a random 

subsample of women yields the same interpretation as the ideal analysis (Table 1), with all 

primary parameter estimates having similar magnitudes and the same directionalities. In 

contrast, results assuming independent differential or nondifferential misclassification are 

much more similar to the results of the naïve analysis. For instance, when assuming 

independence but allowing differential misclassification, the estimate for Trichomoniasis 

status increases, with a similar magnitude as observed in the naïve analysis. If assuming 

independent and nondifferential misclassification, a highly elevated estimate for HIV risk 

cohort and a negative estimated ln(OR) for HIV status are obtained, in addition to the 

elevated estimate for Trich status. Note that AIC favors the most general misclassification 

model, suggesting a need to account for both dependent and differential misclassification in 

the HERS example. This important observation clearly highlights the value of internal 
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validation sampling for evaluating and modeling potentially complex misclassification 

mechanisms. We also note that the alternative factorization (Section 2.7) of the dependent 

differential misclassification model was assessed, but was not selected due to an AIC value 

larger than that for the factorization in Table 2.

Tables 3–4 summarize the ML estimates for misclassification parameters charactering CLIN 

BV and wet mount Trichomoniasis in different strata, based on the selected models in (19) 

and (20). Note that Trich diagnosis, HIV risk cohort, and HIV status all significantly affect 

the diagnostic properties of CLIN BV. By holding other covariates constant, SE tends to be 

higher in wet mount or culture Trichomoniasis positive patients and intravenous drug users, 

while lower in HIV positive women. An opposite trend is observed for the SP estimates. For 

wet mount Trichomoniasis, intravenous drug users or culture Trichomoniasis positive 

participants appear to have a greater SE than those at risk via sexual contact, while the test is 

highly specific in both groups.

One might wonder whether fitting the full joint likelihood using the complete set of error-

prone and gold standard test results for BV and Trichomoniasis would yield different results 

than those based only on the gold standard data. The wide availability of the four variables 

(X, Y, X*, Y*) in the HERS permits this unique comparison, and we find unsurprisingly that 

the results are exactly the same as for the “Ideal Analysis” in Table 1. The reason is that 

with (X, Y, X*, Y*) available on all subjects, the likelihood factors into four separate models 

(eqns. (1) and (18)–(20)). In that case, estimates of the parameters in eqn. (1) do not rely on 

estimates from the other models.

4. Simulation studies

4.1 Data-driven simulations

The simulation experiment summarized in Table 5 demonstrates the empirical performance 

of estimation based on the joint main/internal validation likelihood, under dependent 

differential misclassification conditions mimicking those observed at HERS visit 4. 

Specifically, data were generated jointly under the primary model of interest (1) and the 

logistic models in (18)–(20), with true coefficients and covariate distributions similar to 

those estimated and observed in the HERS example. The ideal and naïve analyses (as in 

Table 1) were based on 500 simulated replicates of (X,Y) and (X*, Y*) respectively, while 

the complete analysis was conducted via joint ML using the main and internal validation 

data corresponding to each replication as described in Section 2. The internal validation 

subsample was randomly selected from 25%, 10% and 5% of the total sample, while the 

total sample size was 904, as in the HERS example.

Table 5 confirms that the naïve analysis yields markedly biased estimates, with 

correspondingly poor confidence interval (CI) coverage. The joint likelihood-based analysis 

assuming dependent and differential misclassification, however, produces reliable results 

with mean coefficient estimates very close to the true values and excellent 95% CI coverage, 

given a sufficient internal validation sample. Empirical evidence in this setting mimicking 

the HERS suggests that an internal validation sample of approximately 15% of the total 

sample size (i.e., 226), is sufficient to ensure valid parameter estimates corrected for 
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complex misclassification. As the internal sample size drops to 10% (around 90 subjects) or 

5% (around 45 subjects), the corrected estimate of the exposure coefficient in particular 

begins to suffer bias. Predictably, inflated standard errors are also observed with smaller 

internal validation samples. In practice, we thus recommend empirical examinations at the 

study planning stage based upon a series of assumptions about the misclassification 

processes. Simulation studies using programs available from the lead author can facilitate 

such examinations to inform the necessary total sample size and validation fraction.

4.2 Impact of X|C model misspecification

Simulation studies were also conducted to examine the impact of misspecifying the X|C 
model on estimating primary parameters. In hypothetical examples, data were simulated 

based on eqns. (1) and (18)–(20) with HIV status an important predictor in both the primary 

Y|X,C model and the X|C model. A total of 500 simulations were performed in Table 6, 

which also provides the true parameter values and overall and internal validation sample 

sizes. Three candidate models were fit under each scenario: the correct model, a model 

misspecifying the X|C model and a model misspecifying the primary model.

Table 6 shows that when HIV status is important in both the X|C and primary models, 

failing to adjust for this factor in the X|C model appears to slightly bias the estimate of the 

coefficient of HIV status in the primary model. When the X|C model is correctly specified 

but HIV status is omitted from the primary model, the estimated coefficients for TRICH and 

race in the latter are biased. We also simulated the scenario when HIV status is only 

important in the X|C model. In this case we observe that the accuracy in estimating primary 

parameters remains (results not shown). Similar findings have been observed in simulations 

when misclassification models are subject to misspecification. Empirical observations 

support adopting the strategy recommended in Section 2.4, i.e., that one should restrict the 

attention only to covariates selected in the primary model when building the X|C and 

misclassification models. Perhaps most importantly, we find that the AIC-based model 

selection strategy selected the correct model in most cases.

Discussion

In this manuscript, we have expanded upon previously demonstrated likelihood-based 

methodology for dealing with misclassification via a main/internal validation study design. 

The approach may be viewed as a generalization of aspects of prior work [e.g., 2, 26] to 

incorporate validation data and covariates into both the main model of interest and into 

misclassification models. It also generalizes the logistic regression-based approach outlined 

in [24], in which only outcome misclassification was addressed. The joint likelihood is 

developed for various combinations of differential and/or dependent misclassification of two 

binary variables (Y and X), yielding special case extensions of general main/internal 

validation study likelihood specifications described in [14]. Specific motivation for these 

developments is provided by cross-sectional data involving assessments of BV and 

Trichomoniasis status and covariates measured in the HERS.

Our goal has been to provide clear guidance on adjusting for biases due to misclassification 

in binary response and predictor variables in logistic regression, when resources permit the 
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collection of a reasonably-sized internal sample with validations of both variables. We 

strongly emphasize the importance of such internal validation sampling to assess 

misclassification patterns and to ensure the validity of the results, noting that only this study 

design-based tactic permitted the identification of the complex misclassification mechanisms 

operating in the HERS. The parametric approach taken here has the advantage of 

accessibility, with SAS NLMIXED programs provided in the Appendix. It also makes AIC 

calculations available to assist with model selection and mechanism evaluation, as 

demonstrated in the HERS example.

Although throughout we have adopted logit links for all models, other links can also be used 

without noteworthy additional conceptual or technical difficulty. Compared to alternative 

approaches such as sensitivity analyses, our approach along with the collection of internal 

validation data allows much greater flexibility when the misclassification process is 

complex, as evident in the HERS data with respect to BV and Trichomoniasis status. In 

contrast, sensitivity analyses may be preferred if there is a strong reason to believe that 

misclassification in both variables is nondifferential and if there is reasonably reliable 

preliminary knowledge regarding the operating characteristics (SE and SP) of the error-

prone tests measuring the response and the exposure. However, if misclassification may be 

complex, it would be valuable to make efforts to collect validation information.

As with any parametric approach, model selection can be critical in our setting in order to 

ensure valid estimation. We have suggested a practical strategy in Section 2.4, in which 

candidate covariates in the X|C and SE/SP models should only be selected from covariates 

in the primary model, unless one has confidence that additional covariates introduced into 

the X|C or misclassification models are conditionally independent from the response. 

Otherwise, bias may occur in the estimation. An alternative analytic strategy could borrow 

ideas from multiple imputation [34], via which one could base imputation of the value of X 

on a model that includes other correctly measured covariates (C). Cole et al. [35] 

demonstrate the application of multiple imputation when X is misclassified. Although only 

nondifferential misclassification was discussed in their work, their approach could 

potentially be extended to more general situations that might include differential 

misclassification and the case of both X and Y subject to misclassification. Compared to 

existing alternatives, we note that our ML approach has been generalized to complex 

misclassification in both exposure and response variables, and is computationally accessible. 

It also allows for AIC-based model selection, which makes it possible to carefully study and 

account for the misclassification pattern. One should always note that, like in all model 

selection problems, the primary response model should be specified in light of the research 

question as well as scientific knowledge, in addition to statistical considerations.

In separate work [36], we have studied methods to adjust for differential misclassification of 

BV status longitudinally within the HERS. Future work may include efforts to extend these 

regression-based correction approaches to adjust for both outcome and predictor 

misclassification when both are repeatedly measured over time.
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Table 1

Logistic Regression Results for BV Status (Y) on 904 Women at the 4th HERS Visit.

Variable β̂ (StdErr)
 (95% CI)

Ideal Analysisa

Trichomoniasis (+ vs. −) 0.88 (0.19) 2.41 (1.66, 3.50)

Age (Years) −0.04 (0.01) 0.96 (0.94, 0.98)

Race (Black vs. Others) 0.76 (0.16) 2.15 (1.57, 2.92)

HIV Risk Cohort (IDU vs. Sexual) 0.31 (0.15) 1.37 (1.03, 1.83)

HIV Status (+ vs. −) 0.22 (0.15) 1.25 (0.93, 1.69)

Naive Analysisb

Trichomoniasis (+ vs. −) 1.24 (0.27) 3.44 (2.03, 5.84)

Age (Years) −0.05 (0.01) 0.95 (0.93, 0.98)

Race (Black vs. Others) 0.69 (0.18) 1.99 (1.40, 2.83)

HIV Risk Cohort (IDU vs. Sexual) 0.90 (0.17) 2.45 (1.74, 3.45)

HIV Status (+ vs. −) −0.31 (0.17) 0.73 (0.52, 1.03)

a
LAB BV vs Culture Trichomoniasis, adjusting for age, race, HIV risk cohort and HIV status.

b
CLIN BV vs Wet Mount Trichomoniasis, adjusting for age, race, HIV risk cohort and HIV status.
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Table 2

Results of ML Analysis of Main/Internal Validation Study Data on 904 Women at the 4th HERS Visit 

(nm=690, nv=214).

Variable β̂ (StdErr)
 (95% CI)

Assuming dependent and differential misclassificationa (AIC=1771.5)

Trichomoniasis (+ vs. −) 0.64 (0.41) 1.90 (0.38, 3.42)

Age (Years) −0.05 (0.02) 0.95 (0.92, 0.98)

Race (Black vs. Others) 0.79 (0.24) 2.19 (1.16, 3.23)

HIV Risk Cohort (IDU vs. Sexual) 0.28 (0.26) 1.32 (0.64, 2.00)

HIV Status (+ vs. −) 0.23 (0.27) 1.26 (0.58, 1.94)

Assuming independent and differential misclassificationb (AIC=1777.7)

Trichomoniasis (+ vs. −) 1.06 (0.38) 2.88 (0.73, 5.02)

Age (Years) −0.05 (0.02) 0.95 (0.92, 0.98)

Race (Black vs. Others) 0.73 (0.24) 2.07 (1.09, 3.05)

HIV Risk Cohort (IDU vs. Sexual) 0.30 (0.26) 1.35 (0.65, 2.05)

HIV Status (+ vs. −) 0.21 (0.28) 1.23 (0.56, 1.90)

Assuming nondifferential misclassificationc (AIC=1809.8)

Trichomoniasis (+ vs. −) 1.38 (0.37) 3.99 (1.09, 6.90)

Age (Years) −0.05 (0.02) 0.95 (0.92, 0.99)

Race (Black vs. Others) 0.73 (0.24) 2.08 (1.11, 3.04)

HIV Risk Cohort (IDU vs. Sexual) 0.85 (0.22) 2.35 (1.32, 3.37)

HIV Status (+ vs. −) −0.14 (0.23) 0.87 (0.47, 1.26)

a
ML estimates of primary parameters are obtained by jointly modeling eqn.s (1) and (18)–(20).

b
WETTRICH is removed from eqn. (19) to indicate independence. The assumption is not supported by the data from the AIC value.

c
No covariates affect SE and SP of Y and X in eqn.s (19) and (20). The assumption is not supported by the data from the AIC value.
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Table 3

Results of ML Analysis of Main/Internal Validation Study Data on 904 Women at the 4th HERS Visit 

(nm=690, nv=214): Estimates of eqn. (19)a Describing SE/SP of Y* (CLIN BV).

ML estimates of coefficients in eqn. (19)

Variable θ̂ (95% CI) p-value

LAB BV (+ vs. −) 2.92 (1.99, 3.85) <0.0001

Wet Mount Trichomoniasis (+ vs. −) 1.34 (0.33, 2.34) 0.01

Culture Trichomoniasis (+ vs. −) 0.36 (−0.21, 0.94) 0.22

HIV Risk Cohort (IDU vs. Sexual) 0.91 (0.41, 1.41) 0.0004

HIV Status (+ vs. −) −0.61 (−1.15, −0.06) 0.03

a
ML estimates of parameters in eqn (19) are obtained by jointly modeling eqns (1) and (18)–(20).
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Table 4

Results of ML Analysis of Main/Internal Validation Study Data on 904 Women at the 4th HERS Visit 

(nm=690, nv=214): Estimates of eqn. (20)a Describing SE/SP of X* (WET TRICH).

ML estimates of coefficients in eqn. (20)

Variable δ̂ (95% CI) p-value

Culture Trichomoniasis (+ vs. −) 4.13 (2.39, 5.87) <0.0001

LAB BV (+ vs. −) 0.45 (−0.26, 1.16) 0.21

HIV Risk Cohort (IDU vs. Sexual) 1.28 (0.55, 2.00) 0.001

a
ML estimates of parameters in eqn (20) are obtained by jointly modeling eqns (1) and (18)–(20).
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Table 5

Results of Simulations Designed to Mimic Conditions of HERS Examplea.

Variable β̂ (StdErr)h 95% CI Coverage

Ideal Analysisb

Trichomoniasis (+ vs. −) 0.65 (0.25) 96.6%

Age (Years) −0.05 (0.003) 93.2%

Race (Black vs. Others) 0.80 (0.19) 96.4%

HIV Risk Cohort (IDU vs. Sexual) 0.28 (0.18) 95.0%

HIV Status (+ vs. −) 0.25 (0.19) 96.4%

Naïve Analysisc

Trichomoniasis (+ vs. −) 1.54 (0.29) 12.2%

Age (Years) −0.02 (0.002) 0

Race (Black vs. Others) 0.38 (0.18) 37.2%

HIV Risk Cohort (IDU vs. Sexual) 0.83 (0.18) 12.8%

HIV Status (+ vs. −) −0.42 (0.18) 5.8%

Complete Analysis (nv=25%×n)d

Trichomoniasis (+ vs. −) 0.61 (0.49) 94.6%

Age (Years) −0.05 (0.01) 96.0%

Race (Black vs. Others) 0.82 (0.34) 95.0%

HIV Risk Cohort (IDU vs. Sexual) 0.28 (0.33) 94.6%

HIV Status (+ vs. −) 0.23 (0.35) 95.6%

Complete Analysis (nv=15%×n)e

Trichomoniasis (+ vs. −) 0.58 (0.62) 94.2%

Age (Years) −0.05 (0.01) 93.6%

Race (Black vs. Others) 0.82 (0.40) 94.2%

HIV Risk Cohort (IDU vs. Sexual) 0.28 (0.36) 95.0%

HIV Status (+ vs. −) 0.24 (0.42) 95.8%

Complete Analysis (nv=10%×n)f

Trichomoniasis (+ vs. −) 0.50 (0.76) 93.0%

Age (Years) −0.05 (0.01) 93.6%

Race (Black vs. Others) 0.84 (0.45) 94.0%

HIV Risk Cohort (IDU vs. Sexual) 0.28 (0.48) 93.6%

HIV Status (+ vs. −) 0.26 (0.50) 93.6%

Complete Analysis (nv=5%×n)g

Trichomoniasis (+ vs. −) 0.23 (1.05) 84.6%

Age (Years) −0.05 (0.02) 93.0%

Race (Black vs. Others) 0.94 (0.58) 94.4%

HIV Risk Cohort (IDU vs. Sexual) 0.35 (0.62) 95.2%
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Variable β̂ (StdErr)h 95% CI Coverage

HIV Status (+ vs. −) 0.29 (0.65) 93.4%

a
500 simulations. nm=690, nv=214. Data were generated from eqns. (1) and (18)–(20). True parameters: (β0=0.63, β1=0.64, β2=−0.05, β3=0.79, 

β4=0.28, β5=0.23, θ0=−3.27, θ1=2.92, θ2=1.34, θ3=0.36, θ4=0.91, θ5=−0.61, γ0=−3.43, γ1=2.48, δ0=−5.64, δ1=4.13, δ2=0.45, δ3=1.28).

b
ML estimates from eqn. (1).

c
ML estimates from eqn. (1) with (Y*, X*) replacing (Y, X).

d
ML estimates of primary parameters are obtained by jointly modeling eqn.s. (1) and (18)–(20). The internal validation sample accounts for 25% 

of the total sample. 500/500 replicates converged.

e
The internal validation sample accounts for 15% of the total sample. 499/500 replicates converged.

f
The internal validation sample accounts for 10% of the total sample. 497/500 replicates converged.

g
The internal validation sample accounts for 5% of the total sample. 485/500 replicates converged.

h
Empirical standard deviations across 500 estimates are reported in parenthesis.
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Table 6

Results of Examining Impact of Misspecifying X|C Model When HIV Status is Important in X|C and 

Conditionally Dependent on Responsea.

Variable β̂ (StdErr)f

Correct modelb

Trichomoniasis (+ vs. −) 0.60 (0.44)

Age (Years) −0.05 (0.01)

Race (Black vs. Others) 0.82 (0.35)

HIV Risk Cohort (IDU vs. Sexual) 0.28 (0.32)

HIV Status (+ vs. −) 1.05 (0.33)

X|C is misspecifiedc

Trichomoniasis (+ vs. −) 0.58 (0.44)

Age (Years) −0.05 (0.01)

Race (Black vs. Others) 0.82 (0.33)

HIV Risk Cohort (IDU vs. Sexual) 0.27 (0.32)

HIV Status (+ vs. −) 1.09 (0.33)

Primary Model is Misspecifiedd

Trichomoniasis (+ vs. −) 0.88 (0.45)

Age (Years) −0.05 (0.01)

Race (Black vs. Others) 0.65 (0.32)

HIV Risk Cohort (IDU vs. Sexual) 0.26 (0.33)

HIV Status (+ vs. −) N/A

ML estimates from AIC-based selected modele

Variable β̂ (StdErr)f 95% CI Coverage

Trichomoniasis (+ vs. −) 0.60 (0.44) 94.8%

Age (Years) −0.05 (0.01) 95.2%

Race (Black vs. Others) 0.82 (0.34) 96.8%

HIV Risk Cohort (IDU vs. Sexual) 0.28 (0.32) 94.0%

HIV Status (+ vs. −) 1.07 (0.33) 95.2%

a
500 simulations. nm=690, nv=214. Data were simulated from eqns. (1) and (18)–(20). True parameters: (β0=0.63, β1=0.64, β2=−0.05, β3=0.79, 

β4=0.28, β5=1, θ0=−3.27, θ1=2.92, θ2=1.34, θ3=0.36, θ4=0.91, γ0=−3.43, γ1=2.48, γ2=1 for HIV status, δ0=−5.64, δ1=4.13, δ2=0.45, δ3=1.28).

b
ML estimates of primary parameters are obtained by jointly modeling eqns. (1) and (18)–(20) with correct model specification.

c
ML estimates of primary parameters are obtained by jointly modeling eqns. (1) and (18)–(20) with eqn. (18) misspecified in which HIV status was 

omitted.

d
ML estimates of primary parameters are obtained by jointly modeling eqns. (1) and (18)–(20) with eqn. (1) misspecified in which HIV status was 

omitted.

e
The model specifying both X|C and primary models correctly was selected 96% of the time.

f
Empirical standard deviations across 500 estimates are reported in parenthesis.
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