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Abstract

Communication neural prostheses are an emerging class of medical devices that aim to restore 

efficient communication to people suffering from paralysis. These systems rely on an interface 

with the user, either via the use of a continuously-moving cursor (e.g., mouse) or the discrete 

selection of symbols (e.g., keyboard). In developing these interfaces, many design choices have a 

significant impact on the performance of the system. The objective of this study was to explore the 

design choices of a continuously-moving cursor neural prosthesis and optimize the interface to 

maximize information theoretic performance. We swept interface parameters of two keyboard-like 

tasks to find task and subject specific optimal parameters as measured by achieved bitrate using 

two rhesus macaques implanted with multielectrode arrays. In this report, we present the highest 

performing free-paced neural prosthesis under any recording modality with sustainable 

communication rates of up to 3.5 bits per second (bps). These findings demonstrate that 

meaningful high performance can be achieved using an intracortical neural prosthesis, and that, 

when optimized, these systems may be appropriate for use as communication devices for those 

with physical disabilities.

I. INTRODUCTION

NEURAL prostheses translate brain activity into control signals for guiding assistive devices 

such as robotic arms and computer cursors. One goal of these systems is to restore efficient 

communication to those with motor impairment. Several reports of neural prostheses have 

shown promising proof-of-concept demonstrations [1]–[11], but clinically-useful 

performance remains a challenge despite recent advances. [12]–[14] A central measure of 

any communication system is information throughput. The higher the throughput of the 
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system, the faster it can transmit information, yielding a more useful clinical tool. A 

theoretic upper-limit known as channel capacity estimates the maximum bitrate of a channel 

assuming infinitely long channel codes and infinite symbols transmitted. Channel capacity 

for short selection chains was calculated in prior work [5], and provided an upper bound of 

6.5 bps for the bitrate in that system. This previous study from our group used a system-

paced, delayed center-out discrete selection task where selections were made in short chains 

followed by real arm reaches to keep the monkey engaged in the task and preserve time-

locking. A follow on study reported ways that this system could be run without external 

knowledge of timing (system timing), but importantly this was an open-loop offline study as 

opposed to a closed-loop online study [15]. Many electroencephalographic (EEG) studies 

also commonly report channel capacity, labelling it as the system’s information transfer rate 

(ITR) [16]. These EEG systems have often been used to demonstrate information rates using 

a system-paced task, usually by flashing symbols at a fixed rate and measuring event 

potentials, such as P300. One such system averaged an ITR of 0.09 bps in this manner [17]. 

Another P300 study achieved 0.38 bps using a checkerboard pattern of flashing characters 

[18]. Most recently, EEG BCI studies based on code modulation of visual evoked potentials 

have achieved ITRs of 1.8 bps [19] and 2.4 bps [20]. However, channel capacity and ITR, 

while important and useful, are not the same as achieved bitrate in a closed-loop system 

[21]. The achievable bitrate of these systems has not been well demonstrated, while the 

channel capacity has not exceeded 2.4 bps for EEG or electrocorticographic (ECoG) studies 

[17]–[20], [22]–[25]. Additionally, many of these systems are paced by the computer as 

opposed to being paced by the subject, increasing cognitive demand and making them less 

suitable for extended use.

A task that is paced by the user is more desirable because it allows the user to set the pace of 

symbol transmission and pause as desired. Further, although task optimizations are common 

in the EEG studies, they are relatively rare in intracortical systems. These types of 

optimizations may be important to the successful development of intracortical neural 

prostheses. In fact, we recently reported conference abstracts of keyboard applications with 

intracortical electrode arrays in a person with ALS as part of the BrainGate2 FDA pilot 

clinical trial [26], [27], which further emphasizes the need to optimize these systems for 

maximum performance and ease of use.

The aim of this study was to demonstrate the maximum achievable, sustained bitrate on a 

free-paced typing-like task that would closely mimic a clinical system. As such, the use of 

complex channel codes may overestimate the achievable bitrate. Further, the clinical use 

case is unlikely to involve the transmission of channel codes greater than one or two 

symbols because they are difficult for people to remember and use. While channel codes are 

considered best practices for data integrity in electronic transmission systems, they are not 

practical when used by people. Notably, a conventional computer keyboard primarily 

employs a single-symbol channel code: each key selection encodes an independently 

meaningful piece of information to the computer. Thus, in this study, achieved bitrate was 

measured using a single-symbol channel code.

Designing a keyboard interface also involves many design choices that would impact 

performance. These design choices are not obvious, and thus to find the optimal interface, 
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parameter optimization is necessary. Since performance can only reliably be measured 

online in a closed-loop setting [28], this optimization must occur iteratively. As such an 

optimization has never been performed to our knowledge, we elected to exhaustively 

explore the parameter space when searching for optimal parameters.

II. MATERIALS & METHODS

A. Experimental Setup

All procedures and experiments were approved by the Stanford University Institutional 

Animal Care and Use Committee (IACUC). Experiments were conducted with adult male 

rhesus macaques (L and J), implanted with 96 electrode Utah arrays (Blackrock 

Microsystems Inc., Salt Lake City, UT) using standard neurosurgical techniques. Electrode 

arrays were implanted in arm motor regions of primary motor cortex (M1) and dorsal 

premotor cortex (PMd), as estimated visually from local anatomical landmarks [5]. Monkey 

L was implanted with a single array at the M1/PMd border on 2008-01-22, whereas Monkey 

J had two arrays implanted, one in M1 and the other in PMd on 2009-08-24. In Monkey J, 

only the M1 array was used in this study. Implantation targets were shoulder and brachium 

areas. We found that in both monkeys we had neural responses to shoulder, brachium, 

antebrachium, and carpus regions as evaluated by passive movement. Monkey L’s array was 

placed in the right hemisphere. Monkey J’s arrays were placed in the left hemisphere.

The monkeys were trained to make point-to-point reaches in a 2D plane with a virtual cursor 

controlled by the contralateral arm or by a neural decoder, as diagrammed in Figure 1a. The 

ipsilateral arm was restrained in these experiments. From arm movement sessions, a neural 

prosthesis decoder was trained using the ReFIT-KF algorithm [13]. Briefly, this involved 

500 trials of center-out and back arm reaches followed by 500 trials of a first-pass neural 

control training set before the final ReFIT-KF decoder was ready. During neural control 

sessions, the contralateral arm was left unbound and typically continued to move. This 

approach was preferred because it minimized any behavioral (and thus neural) differences 

between the testing set (neural prosthesis session) and the training set (arm control sessions). 

This animal model was selected because we believe it more closely mimicked the neural 

state of a human subject employing a neural prosthesis in a clinical study [29], and has 

previously demonstrated comparable performance to the dual arm-restrained animal model 

[13]. Specifically, this animal model most closely mimics the neural state of a human 

subject utilizing a neural prosthesis because it does not place any constraints on neural 

activity. With respect to neural activity, it is the closest animal model possible to a human 

subject without resorting to means of temporarily or permanently paralysing the monkey. A 

paralyzed human subject’s cortex can explore any desired and achievable neural state and 

yet, because of their paralysis (e.g., spinal cord injury), their limb would not move. 

Requiring the monkey’s arm to remain motionless or otherwise restraining it necessitates a 

more constrained neural state (i.e., there are some neural states that are off-limits for the 

monkey because they lead to movement). This discrepancy results in differences in the 

neural states between the monkey and the human subject, and since the goal is to mimic a 

human subjects neural activity and not their behavior, artificial constraints on the monkey’s 

behavior is non-ideal. Despite the arm being free, during experimental blocks, the cursor 
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was continuously and always under neural control. Nevertheless, to adress the potential 

concern of the role of somatosensory feedback driving the decoder, we also conducted a 

smaller optimization sweep with both arms restrained in both monkeys.

The virtual cursor and targets were presented in a 3D environment (MSMS, MDDF, USC, 

Los Angeles, CA) [30]. Hand position was measured with an infrared reflective bead 

tracking system (Polaris, Northern Digital, Ontario, Canada) polling at 60 Hz. Neural data 

were initially processed by the Cerebus recording system (Blackrock Microsystems Inc., 

Salt Lake City, UT) and were available to the behavioral control system within 5 ± 1 ms. 

Spike counts were collected by applying a single negative threshold, set to 4.5 × root mean 

square of the voltage of the spike band of each neural channel per the Cerebus software’s 

thresholding [12]. Behavioral control and neural decode were run on separate PCs using the 

Simulink/xPC platform (Mathworks, Natick, MA) with communication latencies of 3 ms. 

This system enabled millisecond-timing precision for all computations. Visual presentation 

was provided via two LCD monitors with refresh rates at 120 Hz, yielding frame updates 

within 7 ± 4 ms. Two mirrors, setup as a Wheatstone stereograph, visually fused the 

monitors into a single 3D percept for the monkey, although all task relevant motion was 

limited to two dimensions [28]. Datasets are referenced by monkey-date format: a dataset 

from Monkey J would be JYYMMDD.

B. Tasks

Two keyboard-like tasks were investigated in this experimental setup with both monkeys: 

the grid task and the radial task. These tasks were designed as cursor-based keyboard 

interfaces that a human subject could use when controlling a neural prosthetic cursor. The 

same ReFIT-KF decoder was used for both tasks. This decoder was retrained at the start of 

each experimental day and used for the duration of that day. The goal of both tasks was to 

acquire a green target among possible yellow targets. Targets were prompted in random with 

replacement fashion for both tasks, and thus repeated targets were allowed, mimicking the 

situation where the user may want to select the same character twice. Each task had two 

parameters that were swept when performing the optimization. This was a free-paced task 

because trial lengths were determined by how quickly selections were made by the monkey. 

There were no breaks between trials of an experimental block, such that a new target 

appeared immediately after a selection was made.

Although some task parameters would lead to layouts with less than 26 keys (i.e. the number 

of letters in the English alphabet), the goal of this study was to thoroughly sweep the 

parameter space to find the optimal bitrate. Further, this type of preclinical work directly 

informs the subsequent design, testing, and optimization of the relevant parameters in 

clinical keyboard systems as we recently demonstrated in a bench-to-bedside methodology 

[26], [27], [31]. Monkeys were given a liquid reward at the end of each correct target 

acquisition.

1) Grid Task—The layout of the grid task, shown in Figure 1b, resembled traditional 

keyboard interfaces. It uniformly divided a 24×24 cm workspace into contiguous, non-

overlapping, square acceptance regions each containing a potential target in yellow. Within 
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this workspace, the cursor was always in the acceptance region of a possible target. The goal 

of this task was to navigate the cursor onto the green target and maintain it within the 

acceptance region for a required hold time. Dwelling over an incorrect target region resulted 

in an incorrect selection, akin to striking the wrong key on a keyboard. The grid task had a 

five second time out, resulting in a failed trial if no selection was made during the alloted 

time. Once a selection was made, a 200 ms lockout period was enforced during which no 

target could be selected. Without this lockout period, the monkey would often fail a 

subsequent trial very quickly after a selection because the cursor tended not to move out of 

the acceptance region of the prior target while the monkey searched to find the next target. 

This 200 ms lockout period, which is on the order of reaction time [32], was too short for the 

monkey to attend and acquire the next target, and thus did not slow down performance 

unless the same target was prompted twice.

2) Radial Task—The radial task, depicted in Figure 1c, was a keyboard interface inspired 

from the human computer interface community [33]. It divided the workspace equally into 

pie slices, each slice having one yellow target. In this task, the goal was to navigate the 

cursor into the acceptance region in the direction indicated by the green target. A selection 

would immediately be made once the cursor moved into an acceptance region; no hold time 

was required. The cursor would then be reset to the center of the workspace and the next 

trial would begin. A fixed gap size of  was present between all acceptance regions to 

allow some tolerance at the edges of the pie slices.

C. Optimization

In both tasks, each trial prompted the selection of a single correct target in green, while 

many other potential choices appeared in yellow. Therefore, each selection conveyed 

information equal to the binary logarithm of the number of all possible targets on the screen. 

Viewing the BMI as a communication channel, the information transmitted over time 

represents the throughput of the system. Task parameters must thus be optimized with the 

aim of maximizing throughput. A common adjustable parameter in both tasks was the 

number of targets. A successful trial conveyed more information when the number of targets 

increased, but this increased the task’s difficulty, consequently lowering the success rate. In 

addition, each task had a second, unique, adjustable parameter. In the case of the grid task, 

this parameter was the hold time required to select a target. A long hold time slowed the 

overall rate of target selection, whereas a short hold time increased it but lowered the 

threshold for inadvertent selections while navigating to the prompted target. In the radial 

task, the distance to the targets was the second adjusted parameter: targets further from the 

center decreased the selection rate, while placing them closer to the center increased it at the 

expense of a higher error rate.

For each task, we found experimentally, by virtue of directly measuring the performance 

achieved at every combination of parameters, the optimal task parameters that yielded the 

highest information throughput, as measured in bits per second (bps). These optimal 

parameters struck the best balance between success and selection rates. Parameters were 

swept across several days in a random-without-replacement block fashion.
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There were 16 parameter pairs tested for the grid task with both monkeys. For the radial 

task, there were 20 parameter pairs tested with Monkey L and 25 parameter pairs tested with 

Monkey J. Each block consisted of a random parameter pair (e.g., grid task: 49 targets at 

450 ms hold time) that was run for approximately 200 trials (3–6 minutes). Some parameter 

pairs were unusable because of high error rates (e.g. short hold times with large acceptance 

regions), resulting in a communication rate of 0 bps, and were stopped early to prevent 

monkey frustration.

D. Bitrate

Neural prosthetic performance on these tasks was evaluated using information theoretic 

measures. The primary measure used in this study was achieved bitrate. This was calculated 

by measuring the net rate at which correct symbols were transmitted. For the purposes of a 

communication neural prosthesis, evaluating bitrate required the transmission of a single-

symbol out of multiple potential choices, where every symbol had an equal likelihood of 

being prompted, including sequentially repeating symbols. To mirror the primary use-case 

and avoid overestimation, we assumed a channel code of a single-symbol and calculated 

only achieved bitrate. In conventional keyboards, there is the occasional, limited use of 

multi-symbol channel codes with keyboards such as the Shift, Ctrl, and Alt keys (e.g., Ctrl

+C for copy); however, these were not addressed in this study.

An important additional issue in calculating achieved bitrate was how to handle error. To 

conservatively address incorrect symbol transmissions, we used only the net number of 

correct symbol transmissions as the measure of total meaningful symbols transmitted during 

an experimental session. Any incorrect transmissions (e.g., selecting the wrong key) had to 

be followed by the respective number of correct transmissions (i.e., simulating the delete 

key) before meaningful information transfer could be resumed. This is very similar to the 

usage of a keyboard for typing, where incorrect key selections are corrected by the use of the 

delete key before resuming character transmission. The formula for achieved bitrate, B, 

under these conditions is described by Equation 1.

(1)

In Equation 1, N is the total number of targets on the screen, Sc is the number of correct 

selections, Si is the number of incorrect selections, and t is the time elapsed. In this study, t 

was measured as the total time elapsed between the start of the first trial of a block to the 

end of the block’s last trial. All inter-trial time was counted as part of the elapsed time. If the 

quantity (Sc − Si) < 0, then the bitrate is set to a floor of 0 bps since it cannot be negative. 

Note that trials where a selection was not made (i.e., the cursor was out of the workspace or 

the trial timed out) were not errors in symbol transmission and thus they were not counted in 

Si since no symbol was transmitted. However, the time spent during such a trial was 

included in the elapsed time and consequently decreased bitrate appropriately. Thus, the 

achieved bitrate calculated in the optimization sweeps was the bits per trial for that task 

condition, multiplied by the net total number of successful trials across all blocks of all days 
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for a given parameter pair divided by the total time spent across all blocks of all days for 

that given parameter pair.

Equation 1 is the most conservative measure for evaluating bitrate and thus a good estimate 

of the minimum expected neural prosthetic performance. In the context of a typing task, 

word completion algorithms would be employed to elevate typing rate, but this is not a 

measure of raw performance. It should be noted that neural prostheses achieving a 50% 

success rate that may otherwise appear functional would nonetheless have an information 

rate of 0 bps under these metrics.

This approach in is contrast to the measurement of ITR as defined in earlier work [16]. ITR, 

since it is a measure of channel capacity, will be nonzero for a 50% success rate, possibly 

significantly so, contingent on the structure or pattern of the errors. However, such a 

measurement is potentially misleading as it requires a multi-symbol channel code (e.g. at 

least two selections per symbol transmitted [16]). This is not the natural use case for 

conventional typing keyboards and confounds the measurement by complicating the task 

structure. In this study, we sought to measure achieved bitrate in the simplest and most 

conservative way with as straightforward a task as possible using a single-symbol channel 

code. Despite the harsh penalty for errors, this approach more accurately measures the 

clinical utility of a neural prosthesis, as transmitting text involves similar challenges and 

penalties (e.g. the use of the delete key) when used in the clinical setting.

E. Dual arm restrained optimization

Additionally, as a control, for a limited set of parameters, we conducted optimization sweeps 

on both tasks with both monkeys where both arms were restrained during the neural control 

experiments. This was done to serve as a control experiment to demonstrate that in the arm 

free condition, decoder performance is not a function of somatosensory input. Under this 

model, both of the monkey’s arms were gently restrained at the start of the experimental day 

and held throughout the experiment. The arms were monitored via an infrared camera and 

noted not to be moving while restrained in these experiments. A ReFIT-KF decoder was 

built with initial kinematics seeded off of a computer controlled cursor while the monkey 

passively observed. After this step of passive observation of automatic cursor movements, 

the second step decoder training was under neural control and the same as in the main 

experiment. We note that this decoder and training protocol is identical to the dual arm 

restrained animal model decoder control tested in prior work [13].

III. RESULTS

The results of the optimization for both tasks are presented in two figures. Figure 2 shows 

the results of the grid task optimization and Figure 3 shows the results of the radial task. 

Each row of each figure plots the results of one monkey. The parameter optimization is 

plotted as a heatmap in the middle figure of each row (panels b and e of Figures 2, 3). 

Additionally, complete numerical reports of the optimization sweeps appear in 

Supplementary Tables 1–4. As hypothesized, varying task parameters had a significant 

impact on performance. A two-sample unpaired t-test demonstrated statistical significance 

for the optimal parameters versus every other parameter pair evaluated (p < 0.05) on both 
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tasks with Monkey L. On the same t-test, Monkey J’s optimal parameters met statistical 

significance for all parameters except for the 49 target, 450 ms hold time parameter pair on 

the grid task (p-value 0.07), and the following distances on the 12 target radial task: 9 cm, p-

value 0.19; 11 cm, p-value 0.29; 13 cm, p-value 0.11. This is likely because Monkey J had a 

wider range of parameters that he performed well at on the radial task compared to Monkey 

L. Points for this t-test were collected by calculating the instantaneous bitrate across bins of 

10 non-overlapping trials of a given parameter pair from the optimization data. These were 

the same points used to calculate the standard deviation of bitrate in the supplementary 

tables. The histogram on the left (panels a and d of Figures 2, 3) is the distribution of the 

time to target of all trials collected during the optimization sweep for the optimal 

parameters. These histograms reflect the expected right skew normal distributions for target 

acquisition time in tasks like these [4], [13]. The time-series plot on the right (panels c and f 

of Figures 2, 3) plots the exhaustive, sustained performance of the optimal parameters on a 

single day where those were the sole parameters evaluated. Example videos of the optimal 

parameters for both tasks with both monkeys are presented as supplementary videos.

On the grid task, for Monkey J, the optimal task parameters were 25 targets with a 450 ms 

hold time, achieving an average bitrate of 3.4 bps at these parameters. On the same task, 

Monkey L had similar optimal parameters, achieving an average bitrate of 3.0 bps. Monkey 

J sustained around 3.5 bps for over an hour and a half when tested exhaustively with these 

optimal parameters before tiring out and stopping. Monkey L had about the same initial 

performance and lasted about the same time, however his work ethic, and not the decoder 

quality, diminished gradually over the course of the 90 minutes.

On the more fast-paced radial task, Monkey J’s optimal task parameters were 8 targets at a 

distance of 9 cm, achieving an average bitrate of 3.1 bps. Monkey L had different optimal 

parameters, averaging 3.0 bps with 8 targets and a distance of 7 cm. Sustained performance 

for the radial task was lower than the grid task for both monkeys. We speculate that this may 

be because the radial task required more concentration and engagement than the grid task, 

and was thus more fatiguing and variable in performance.

For comparison, on the grid task with the optimal parameters under arm control, Monkey J 

achieved 100% success rate with acquire times around 450–600 ms, corresponding to a 

bitrate in the range of 4.5–5.2 bps. Monkey L could also achieve 100% success rate with 

comparable bitrates under arm control. The maximum achievable bitrate varies based on the 

task parameters. The upper limit on bitrate on the grid task with optimal parameters (25 

targets at 450 ms hold time) is 7.1 bps (i.e., ), but this would require 

near instantaneous movement to each prompted target. The maximum bitrate for the easiest 

parameter pair on the grid task (9 targets at 850 ms hold time) is 3.0 bps. The maximum 

bitrate for the hardest parameter pair on the grid task (64 targets at 250 ms hold time) is 13.3 

bps. The bitrate is not infinite because of the required hold time and the 200 ms post-

selection lockout time.

As an additional reference point to the established literature, we also calculated information 

transfer rate (ITR) for the optimal parameters we found in this study. The ITR for the 
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optimal parameters on the grid task was 3.4 bps (Monkey J) and 3.0 bps (Monkey L) with 

optimal parameters of 25 targets and 450 ms for both monkeys. The ITR for the optimal 

parameters on the radial task was 2.9 bps (Monkey J, 8 targets and 9 cm) and 2.8 bps 

(Monkey L, 8 targets and 7 cm). To our knowledge, these ITRs are higher than previously 

reported in the literature with the exception of [5].

Results of the dual arm restrained limited optimization sweep are detailed in Supplementary 

Tables 5–8. For the grid task, these are from datasets J101007-J101008 and L101005-

L101008. For the radial task, these are from datasets J101008, J101011, J101015, L101008, 

L101011, and L101015. In this animal model as well we found that the choice of parameter 

pairs had an impact on the achieved bitrate of the system. These optimization parameters 

were different than that found in the main experiment, likely due to the different quality of 

cursor control under this animal model, again demonstrating the importance of task 

optimization for a given level of neural cursor control. While it is difficult to summarize the 

performance difference (and thus supplementary tables are provided), when comparing the 

maximum bitrate achieved for each task (grid/radial), for each monkey (J/L), and for each 

model (unrestrained/restrained arm), we found and average of 29% lower bitrate with arms 

restrained versus arms unrestrained. This is generally consistent with our previous report 

comparing these two animal models [13].

IV. DISCUSSION

The tasks performed in this study are considered free-paced tasks because they are not 

bound to rigid system-based timing cues required of fixed-timing trial-based tasks, but 

instead controlled by the user. Although the monkeys did not voluntarily take breaks from 

the task, the self-paced nature of the system allows for user-controlled breaks by simply not 

selecting any targets. In a clinical system, this may be made more explicit by the direct use 

of a pause button at the edge of the workspace, but this is an abstract idea not within easy 

reach of monkey behavior and was thus not implemented in this study. This system also 

demonstrated flexibility to conform to a user’s desired task rate, as the tempo of the task was 

set by the monkeys’ target acquisition rate, which was guided by the monkeys’ intention and 

desire for reward. A human user could select targets as fast or as slow as comfortable 

without any adjustment to the design of system or task structure.

The parameter sweep findings demonstrated that the choice of parameters had a significant 

impact on the information transmitted. Incorrect selection of parameters led to severalfold 

slower communication rates, or, in the worst case, no meaningful throughput at all. In 

general, higher bitrate tasks also had higher success rates. Careful tuning of these parameters 

is important for maximizing the utility of the communication channel. The findings of the 

optimal parameters for the grid task performed here served as the basis task for a set of later 

experiments exploring how well the high performance achieved here could be sustained 

across time without resorting to retraining the decoder [34].

It should also be noted that each subject had their own optimal parameters for a given task. 

Thus, a parameter search should be done on a per subject basis. This need not be exhaustive, 

as was done in this study, but could instead be informed based on prior subjects with only a 
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speedy local search around typical parameters to find the best set for a given subject. 

Moreover, it is essential that parameter optimizations be performed and clinically-relevant 

metrics be utilized in studies to facilitate comparison. Without optimization and 

standardized, appropriate metrics, it is unclear how the field will advance performance 

through the years if some studies do not state their best (optimized) results and use 

comparable, meaningful measures.

The two tasks required different control strategies by the monkeys. The grid task was a 

continuous control task where the cursor was always moving smoothly, requiring both 

accurate movements as well as accurate stopping ability. The radial task however did not 

require any stopping ability and simply needed fast and accurate movements to the correct 

threshold before being reset to the center. This lack of a need to stop made the radial task 

more tolerant of decoders with poor control, as simpler decoders like the velocity Kalman 

filter will work reasonably well for movements towards the intended direction of a target 

(e.g., Figure 1e in [13]). This also suggests that a higher velocity gain on the decoder may 

have resulted in higher performance with the radial task, however this was not explored in 

this study. Thus, although the same ReFIT-KF decoder was used for both tasks, it is likely 

that different or optimized decoders may be better suited for different tasks. This may 

partially explain why the maximum achieved bitrates for the radial task are slightly lower 

than those achieved in the grid tasks across both monkeys. Nonetheless, in using the same 

decoder, the ReFIT-KF algorithm, in both tasks, we demonstrated generalizability of the 

algorithm. This may be an important feature for clinical translation as this single decoder 

may perform well in a variety of cursor control use cases.

Additionally, the experiments shown in panels c and f of Figures 2, 3 demonstrate that 

optimal parameters can lead to sustained high performance across a day. These sustained 

performance experiments were performed only with the optimal parameter pairs because 

entire experimental days were devoted to them, unlike the block structure of the 

optimization sweep. The performance falloff seen at the end of these experiments is 

consistent with monkey behavior and not representative of decoder performance. Monkeys, 

just like humans, will work consistently for a fixed period on a given task and then stop 

abruptly. Similar performance falloff is seen in arm controlled sessions (e.g., Figure 3b in 

[13]), indicating that this is a behavioral phenomenon. These optimal parameters facilitate 

the most effective communication rates and minimize subject frustration, enabling over 

hour-long sessions. Attempts to use non-optimal parameters (i.e., at or near 0 bps) led to 

rapid subject frustration and refusal to participate. This reinforces the need to carefully 

select task parameters, not only for the highest instantaneous communication rates, but also 

for enabling long-running sessions that maximize ease of use.

V. CONCLUSION

Taken together, these results demonstrate the highest reported sustained communication 

rates of any neural prosthesis under any measurement modality (i.e., EEG, ECoG, or 

intracortical electrodes) [22]–[25].
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Sustainable high performance is a central factor in the successful translation of neural 

prosthetics and the findings here suggest that careful task optimization can lead to 

significant increases in communication rates. The sustained high communication rates found 

here also suggest that these systems are capable of transmitting meaningful information for 

hours at a time, an important feature of clinical neural prostheses. Further work is still 

necessary to explore the application of these information theoretic optimization findings to 

directly clinically-appropriate measures and settings as neural prostheses march closer to 

clinically therapeutic use.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Experimental Setup. a Diagram of monkey in experimental rig interacting with virtual 

workspace. b Diagram of grid task configured for 25 targets. Dashed white lines are drawn 

for illustration purposes to denote the boundaries of the acceptance regions and were not 

shown to the monkey. The gray cursor was under neural control and the task was to navigate 

and hold the cursor over the green target. c Diagram of the radial task with 8 targets. Dashed 

white lines again are for illustration purposes only.
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Fig. 2. 
Experimental data of grid task. Monkey J: a–c. Monkey L: d–f. a Acquire time histogram of 

grid task with task parameters of 25 targets and 450 ms hold time. The peak at 0.2 s 

represents trial targets that were randomly repeated. This time represents the moment of 

successful target acquisition and does not include the hold time. b Bitrate heatmap of task 

parameters swept for grid task. Each point in black represents a tested pair of task 

parameters, with the colors interpolated between points. Data from datasets J100913 – 

J100917 and J100928 – J100930, comprising of 20716 trials. c Information plot of sustained 

performance across an experimental session for the grid task. The line plots the average 

overlapping 50 trial smoothed bitrate as a function of time. Data from dataset J101013. d 
Acquire time histogram of grid task with 25 targets and 450 ms hold time. e Bitrate heatmap 

as in b. Data from datasets L100913 – L100917, L100920, and L100929 – L100930; 

comprising of 17677 trials. f Information plot as in c. Data from dataset L101014.
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Fig. 3. 
Experimental data of radial task. Monkey J: a–c. Monkey L: d–f. a Acquire time histogram 

of radial task with task parameters of 8 targets and 9 cm distance. b Bitrate heatmap of task 

parameters swept for radial task. Each point in black represents a tested pair of task 

parameters, with the colors interpolated between points. Data from datasets J100901 – 

J100903 and J100906 – J100907, comprising of 16754 trials. c Information plot of sustained 

performance across an experimental session for the radial task. The line plots the average 

bitrate as a function of time. Data from dataset J101014. d Acquire time histogram of radial 

task with 8 targets and 7 cm distance. e Bitrate heatmap as in b. Data from datasets L100831 

– L100903 and L100906; comprising of 14684 trials. f Information plot as in c. Data from 

dataset L101013.
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