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Abstract

Pulmonary surfactant is essential for life as it lines the alveoli to lower
surface tension, thereby preventing atelectasis during breathing.
Surfactant is enriched with a relatively unique phospholipid, termed
dipalmitoylphosphatidylcholine, and four surfactant-associated
proteins, SP-A, SP-B, SP-C, and SP-D. The hydrophobic proteins,
SP-B and SP-C, together with dipalmitoylphosphatidylcholine,
confer surface tension–lowering properties to thematerial. Themore
hydrophilic surfactant components, SP-A and SP-D, participate in
pulmonary host defense andmodify immune responses. Specifically,
SP-A and SP-D bind and partake in the clearance of a variety of
bacterial, fungal, and viral pathogens and can dampen antigen-
induced immune function of effector cells. Emerging data also show
immunosuppressive actions of some surfactant-associated lipids,
such as phosphatidylglycerol. Conversely, microbial pathogens in
preclinical models impair surfactant synthesis and secretion, and

microbial proteinases degrade surfactant-associated proteins.
Deficiencies of surfactant components are classically observed
in the neonatal respiratory distress syndrome, where surfactant
replacement therapies have been the mainstay of treatment.
However, functional or compositional deficiencies of surfactant are
also observed in a variety of acute and chronic lung disorders.
Increased surfactant is seen in pulmonary alveolar proteinosis,
a disorder characterized by a functional deficiency of the granulocyte-
macrophage colony-stimulating factor receptor or development of
granulocyte-macrophage colony-stimulating factor antibodies.
Genetic polymorphisms of some surfactant proteins such as SP-C
are linked to interstitial pulmonary fibrosis. Here, we briefly review the
composition, antimicrobial properties, and relevance of pulmonary
surfactant to lung disorders and present its therapeutic implications.
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It is established that pulmonary surfactant
reduces surface tension at the air–water
interface in the alveoli, thereby preventing
collapse of these structures at end-
expiration. In this manner, surfactant
reduces the work associated with
breathing. Although surfactant and its
surface active properties were discovered
relatively early in the 1920s (1), its
components and mechanism of action
only began to be elucidated in the 1950s
by Pattle (2) and Clements (3). The
breakthrough by Avery and Said helped

identify a fundamental discovery linking
pulmonary surfactant deficiency to
infants who died of respiratory distress
syndrome (RDS) (4). Indeed, these
critical findings helped propel surfactant
replacement therapy as an approach that
has revolutionized treatment of RDS.
However, during the 1990s, investigators
uncovered several additional important
biological properties of this surface-active
material in the area of host immunity
against microbial infection and
immunomodulatory activity.

Surfactant Composition
and Function

Composition
Pulmonary surfactant is composed
primarily of phospholipids and key proteins
(5). Lipids compose 80 to 90% of its
molecular weight, of which the most
abundant species are phosphatidylcholine,
phosphatidylglycerol, and phosphatidylinositol
(Figure 1); specifically, phosphatidylcholine
constitutes approximately 70% of the lipid
portion of surfactant, and it exists as
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a relatively unique form, known as
dipalmitoylphosphatidylcholine (DPPC).
Together with surfactant proteins,
DPPC provides the surface activity of
surfactant (6–8). The remaining types
of lipid, including phosphatidylserine,
phosphatidylethanolamine, and
sphingomyelin, appear to be present
in relatively small amounts. This lipid
composition is well conserved among
vertebrates (7).

Surfactant contains four associated
proteins, surfactant protein (SP)-A, SP-B,
SP-C, and SP-D. Two of these proteins, SP-
A and SP-D, are hydrophilic, and the others
are hydrophobic (9). SP-A and SP-D are
members of a family of innate immune
proteins, termed collectins (10, 11). These
proteins have in common an NH2-terminal
collagen-like region and a C-terminal lectin
domain that binds carbohydrates in
a calcium-dependent manner. Binding sites
for these lectin domains are found on
bacterial and viral surfaces (12), and this in
part is responsible for the role collectins play
in innate and adaptive immunity.

The hydrophobic surfactant proteins,
SP-B and SP-C, are stored and secreted
along with surfactant phospholipids (13,
14). SP-B is an indispensable protein that
plays a role in enhancing the

surface tension–reducing properties of
surfactant (14) and also appears to have
some antimicrobial activity (15–17). The
role of SP-C, one of the most hydrophobic
peptides known, is uncertain, but its high
degree of conservation among species
suggests an integral function (17).

Surfactant components are
synthesized primarily by the alveolar type
II cell, which produces surfactant lipids and
surfactant proteins (5, 18), and the airway
club cell, which synthesizes surfactant
proteins SP-A, SP-B, and SP-D (19–21)
(Figure 2).

Function
The main functions of surfactant are as
follows: (1) lowering surface tension at the
air–liquid interface and thus preventing
alveolar collapse at end-expiration, (2)
interacting with and subsequent killing of
pathogens or preventing their dissemination,
and (3) modulating immune responses.

The drastic change in surface area of
alveoli throughout the respiratory cycle
dictates that alveolar surface tension needs
to be less than 2 mN/m at end-expiration to
prevent alveolar collapse (22). This critical
function of surfactant is achieved through
its maintenance of a film highly enriched
in DPPC, which produces extremely low

surface tension (,1 mN/m) on
compression (17). These biophysical
properties have led to modified exogenous
surfactant replacement therapies that
have impacted outcomes of neonatal
RDS in many studies (23, 24).

Surfactant also plays a vital role in host
defense against infection. The collectins
SP-A and SP-D enhance bacterial and viral
clearance. As previously mentioned, the
C-terminal lectin domains of these proteins
preferentially bind nonhost oligosaccharides
found on viruses and bacteria. The most
well-described function of the collectins
is their ability to opsonize pathogens and
facilitate their phagocytosis by cells of
the innate immune system, such as
macrophages and monocytes, as well as
regulate the production of cell-derived
mediators (11, 25). Studies have shown that
mice deficient in SP-A exhibit impaired
clearance against various bacterial and viral
infections, including group B Streptococcus
(26, 27), Pseudomonas aeruginosa (28),
and respiratory syncytial virus (29). More
recently, SP-A and SP-D have also been
demonstrated to have direct antibacterial
activity against Escherichia coli, Klebsiella
pneumoniae, and Enterobacter aerogenes
(30), as well as antifungal activity against
Histoplasma capsulatum (31), through
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Figure 1. The composition and function of surfactant. Surfactant is composed of 90% lipid and 10% protein. The lipid content contains primarily phospholipid,
specifically dipalmitoylphosphatidylcholine, which is responsible for the biophysical function of surfactant. The large hydrophilic proteins, surfactant protein (SP)-A
and SP-D, play an important role in host defense and immune modulation, whereas SP-B and SP-C primarily partake in modulating biophysical properties.
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increasing membrane permeability of the
microbes. In humans there exist two genes,
SP-A1 and SP-A2, that encode for SP-A1
and SP-A2 proteins, respectively (32). This
suggests a possibility that there may be

human subpopulations with differential
vulnerabilities to microbial infection based
on these SP-A isoforms.

In addition to facilitating and activating
the immune system, the lung collectins also

act as immunomodulators. SP-A can inhibit
dendritic cell maturation (33) and inhibit
eosinophil release of IL-8 (34). Studies have
shown that SP-A and SP-D inhibit allergen-
induced lymphocyte proliferation via
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Figure 2. Surfactant life cycle—synthesis, secretion, and recycling. Alveolar type II cells, which cover about 7% of alveolar epithelial surface, are mainly
responsible for surfactant production using dietary substrates (1). Surfactant is synthesized in the endoplasmic reticulum (ER) (2) of alveolar type II
cells, and transported to the Golgi (3) for further modification. Most of the surfactant components are stored in the lamellar bodies (4) until they are
secreted into liquid hypophase on the alveoli by exocytosis (5). Surfactant forms a lattice-like structure, called tubular myelin (6), which is transported to
the air–liquid interface to form a monolayer of surfactant film (7). The phospholipids are either internalized and degraded by macrophages (8) or recycled
back to the type II cells for reuse (89). Note that surfactant protein (SP)-A, SP-B, and SP-D are also synthesized in club cells in terminal bronchioles.
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multiple mechanisms and that this effect is
blunted in activated lymphocytes from
children with asthma (35). SP-A and SP-D
also bind directly to allergens and particles
such as pollen grains (36), house dust mite
allergen (37), and Aspergillus fumigatus
allergen (38), inhibiting specific IgE binding
to allergens and subsequently decreasing
allergen-induced histamine release.

Pulmonary Disorders Related
to Surfactant Dysfunction
or Deficiency

Abnormalities in surfactant production
or function are associated with several
pulmonary diseases, and, at the same time,
pulmonary infections alter surfactant
metabolism. The most well-known disorder
of surfactant deficiency is RDS in preterm
infants. As discussed earlier, preterm
neonates who are born before they produce
enough surfactant develop RDS, which
can be treated with exogenous surfactant.
There are several genetic disorders that
cause surfactant dysfunction. The mode
of their inheritance is either autosomal
dominant (involving the gene encoding
SP-C or thyroid transcription factor 1) or
autosomal recessive (involving the gene
encoding SP-B or the gene encoding
ATP-binding cassette protein member A3)
(39). Most neonates with these genetic
disorders do not survive without lung
transplantation. For adults, several human
observational studies show that subjects with
acute respiratory distress syndrome (ARDS)
have altered composition and function of
surfactant (40, 41). Unfortunately, exogenous
surfactant did not show a mortality benefit
in randomized controlled trials (RCTs) (42).

Although the disorders mentioned
above are related to inadequate or
dysfunctional surfactant, an overabundance
of surfactant can also cause clinical disease.
Pulmonary alveolar proteinosis, a rare
disease caused by gene mutations leading to
dysfunction of the granulocyte-macrophage
colony-stimulating factor receptor or
development of granulocyte-macrophage
colony-stimulating factor antibodies, results
in accumulation of surfactant within the
alveoli and the terminal airways and
can cause impairment of gas exchange.
Varying levels of SP-A and SP-D from
bronchoalveolar lavage in different
pulmonary disorders are summarized
in Table 1. It was previously believed that
surfactant components existed only in

the lungs. Animal models and human
observation studies have shown, however,
that surfactant proteins leak into the
vascular space when alveolocapillary
membranes are injured (43–46).
Importantly, circulating surfactant protein
levels may have clinical usefulness. One
study demonstrated that surfactant protein
levels can be used as an indicator of
lung injury and poor outcomes in H1N1
viral infections (47), and another showed
that SP-A and SP-D levels are elevated in
those with pulmonary fibrosis compared
with healthy volunteers (48).

Genetic polymorphisms of surfactant
proteins are known to be associated with
a higher prevalence of idiopathic pulmonary
fibrosis (49, 50) but also a reduced
prevalence of interstitial lung disease in
systemic sclerosis (51). Additionally, several
studies also describe the association between
genetic polymorphisms for surfactant
proteins and high-altitude pulmonary edema
(52), ARDS (53), lung carcinoma (54), and
bronchopulmonary dysplasia (55). A rare
missense mutation in SFTPA2, the gene
encoding SP-A2, is associated with
development of familial idiopathic
pulmonary fibrosis and lung cancer (56).

On the other hand, numerous
respiratory infections have been shown
to modify surfactant composition. For
example, P. aeruginosa inhibits surfactant
biosynthesis (57, 58), decreases its host
defense and biophysical function (59), and
secretes elastase to degrade surfactant
proteins A and D (60, 61). Also, LPS,
a major cell wall component of gram-
negative bacteria, inhibits phospholipid
synthesis and secretion (57, 58). Surfactant
inhibition by bacteria seems to be associated
with host cell cytokines such as tumor
necrosis factor-a, which leads to degradation

of surfactant biosynthetic enzymes. Human
adenovirus disrupts the trafficking of
surfactant phosphatidylcholine (62), whereas
A. fumigatus down-regulates SP-B and SP-C
protein and mRNA expression in mice (63).
Respiratory syncytial virus (RSV)-infected
bronchial epithelial cells have decreased
SP-A protein levels through reduced mRNA
translation efficiency (64).

Antimicrobial Function

Bacteria
The hydrophilic proteins SP-A and SP-D
play a major role in host defense by
inhibiting bacterial growth, facilitating
bacterial uptake by host cells, and
aggregating and opsonizing pathogens (65).
These surfactant proteins can bind to both
gram-negative and gram-positive bacteria.
SP-A and/or SP-B interact with LPS derived
from K. pneumoniae (30, 66), E. coli
(30, 67), P. aeruginosa (68–70), and
Legionella pneumophila (71), which
consequently result in agglutination,
enhancement of pathogen uptake, and
growth inhibition. These surfactant
proteins also bind with peptidoglycan, a cell
wall component of gram-positive bacteria
derived from Staphylococcus aureus (72)
and Streptococcus pneumoniae (26, 27),
as well as Mycobacterium avium,
Mycobacterium tuberculosis, and
Mycoplasma pneumoniae to enhance
uptake by phagocytes and inhibit their
growth (73–78).

Fungi
Both SP-A and SP-D are able to
bind to a variety of fungi, mostly
opportunistic pathogens, to facilitate
agglutination and phagocytosis by host cells.

Table 1. Levels of SP-A and SP-D from bronchoalveolar lavage in pulmonary disease

SP-A Levels SP-D Levels Lipid Levels References

RDS in neonates ↓ N/A ↓ 140–143
PAP ↑ ↑ ↑ 144–146
ARDS ↓ N/A ↓ 40, 147
IPF ↓ = ↓ 145, 148–150
Sarcoidosis ↑ = = 145, 149, 151, 152
Bacterial pneumonia ↓ N/A ↓ 153, 154
Smokers ↓ ↓ = 155, 156
Asthma ↓ N/A = 157

Definition of abbreviations: ARDS = acute respiratory distress syndrome; IPF = idiopathic pulmonary
fibrosis; N/A = not available; PAP=pulmonary alveolar proteinosis; RDS= respiratory distress syndrome.
↓ indicates decrease; ↑ indicates increase; = indicates unchanged.
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Animal studies demonstrate that pulmonary
collectins (SP-A and SP-D) increase the
permeability of the cell membrane
of H. capsulatum, inhibiting its growth
directly (31). They also bind to A.
fumigatus (79), Blastomyces dermatitidis
(80), Coccidioides posadasii (81),
Cryptococcus neoformans (82, 83), and
Pneumocystis jiroveci (carinii) (84, 85),
which results in agglutination and
enhanced uptake. Interestingly, this
effect appears to be microbe specific,
as the binding of pulmonary collectins to
Candida albicans inhibits phagocytosis
by alveolar macrophages while still
inhibiting the fungal growth (86, 87).

Virus
Pulmonary collectins (SP-A and SP-D) bind
to viruses to facilitate pathogen removal.
Viruses are unique compared with many
microorganisms in that they require
entrance into host cells to replicate. As SP-A
and SP-D are present in the mucus layer and
alveolar surface, they are well positioned
to prevent infection of epithelial cells
through viral neutralization, agglutination,
and enhanced phagocytosis. SP-A and/or
SP-D bind to hemagglutinin and
neuraminidase of influenza A virus to inhibit
their activity (88–90). Interestingly, the
hemagglutinin of pandemic influenza viruses
has a low binding activity for surfactant
protein D compared with that of a seasonal
influenza strain (91). Pulmonary collectins
also bind to glycoproteins of viruses,
including HIV (92, 93), RSV (94), and severe
acute respiratory syndrome coronavirus (95).
Recent studies indicate that, in addition to
pulmonary collectins, the surfactant lipid
components also inhibit RSV infection (96).

Therapeutic Applications
and Implications
The primary indication for surfactant
replacement therapy is RDS in preterm
infants. Several human observational studies
and RCTs demonstrate reduced mortality
and morbidity, including interstitial
emphysema and pneumothorax, when
exogenous surfactant is administered to
preterm infants born at less than 30 weeks’
gestation who are at high risk for RDS
(97–99). Both synthetic and natural types
of surfactant are effective, but natural
preparations that retain surfactant protein
B and C analogs have been shown to be
superior in terms of decreasing mortality
and lowering the rate of RDS complications

in preterm infants (100, 101). Currently the
2014 American Academy of Pediatrics
guidelines recommend initial nasal
continuous positive airway pressure
immediately after birth for all preterm
infants and subsequent intubation
with prophylactic or early surfactant
administration in select patients (102).
Endotracheal instillation remains a widely
accepted technique of surfactant
administration (103). However, this
technique may be complicated by episodes
of severe airway obstruction (104).
Noninvasive or less-invasive techniques,
including aerosolized surfactant, laryngeal
mask airway-aided delivery, pharyngeal
instillation, and the use of thin intratracheal
catheters, are being evaluated (105–109).

For adult patients, both synthetic and
natural animal surfactants have been tried
for the treatment of ARDS, via either
intratracheal instillation or aerosolized
delivery. However, studies did not
demonstrate a significant mortality benefit
or a consistent improvement in oxygenation
with this approach (42, 110–114). Initially
it was believed that exogenous surfactant
could be beneficial to patients with ARDS
because they have decreased surfactant
levels and persistent atelectasis contributing
to gas exchange abnormalities. Patients
with ARDS also have altered composition
and function of surfactant, which is
compounded further by mechanical
ventilation (40, 41, 115). Despite the
theoretical soundness of exogenous
surfactant administration in patients with
ARDS, this therapeutic option has limited
justification at this time. Given the fact that
neonates start surfactant therapy early in
the course of the disease before RDS
becomes severe, it may be worthwhile to
consider studying an approach with early
surfactant administration, but this depends
on the development of effective biomarkers
that can identify or predict patients with
ARDS early in the course of disease.
Contrary to RDS, ARDS is a heterogeneous
syndrome with various degrees of
inflammation and tissue remodeling
depending on the individual patient,
which may explain differential responses
to surfactant therapy. Alternatively, the
utility of novel proteolytically stable
surfactant preparations as replacement
therapies might be an area of future study.

Exogenous surfactant also has been
examined in a variety of lung diseases such
as asthma and pneumonia (116). Although

a pilot study for aerosolized natural
surfactant showed improved lung function
during an acute asthma exacerbation (117),
it did not show clinical benefit in patients
with stable asthma (118). One case report
demonstrated oxygenation improvement
with intrabronchial instillation of surfactant
in an adult patient with gram-negative
lobar pneumonia (119). Other case reports
demonstrate similar oxygen improvements
in HIV-infected infants with P. carinii
pneumonia (120, 121) or RSV pneumonia
(122). One RCT of a 2-week treatment
course with aerosolized synthetic surfactant
showed improved pulmonary function in
adult patients with stable chronic bronchitis
(123). These observations need to be
confirmed with larger well-controlled
studies in subjects with respiratory illness.

One potential therapeutic implication
of surfactant replacement therapy is
immunosuppression. Animal studies and
limited human data show that exogenous
surfactant decreases cytokine release (124),
DNA synthesis of inflammatory mediators
(125, 126), lymphocyte proliferation (127),
immunoglobulin production (128), and
expression of adhesion molecules
(129). Intratracheal administration of
a surfactant–amikacin mixture to rats
with Pseudomonas pneumonia showed
improved antiinflammatory effects
compared with amikacin alone (130).
These observations suggest the possibility
that surfactant may be used to modulate
immune responses during inflammatory
lung disease, but further studies are necessary.

Outside of exogenous surfactant
therapy, there is also evidence that certain
pharmacologic agents may enhance
endogenous surfactant levels, although the
current data are limited. Corticosteroids
have been widely used in women at risk for
preterm delivery, as they reduce neonatal
morbidity and mortality from RDS.
Antenatal steroids accelerate development
of type 2 pneumocytes and thus increase the
production of surfactant proteins and
enzymes necessary for phospholipid
synthesis. Corticosteroids also induce
pulmonary b-receptors, which play a role
in surfactant release and alveolar fluid
absorption when stimulated (131). Thyroid
hormone also has a synergistic effect on
phospholipid synthesis with corticosteroids
in animal models (132, 133). Ambroxol
may also act to increase surfactant release
and is under investigation for use in RDS
(134). Hydroxychloroquine has been
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anecdotally reported to successfully treat
children with SP-C deficiency with or
without corticosteroid use (135–137). The
mechanism of action is unclear, but it
may be related to hydroxychloroquine’s
inhibition of the intracellular processing
of SP-C precursors leading to late
accumulation of SP-C (138). Other agents
such as keratinocyte growth factor have
been shown to increase surfactant secretion
or its synthesis (139).

Conclusions

In summary, pulmonary surfactant has
important functions beyond reducing
surface tension and altering mechanical
properties that lead to decreased work of
breathing. As the lung epithelium is in

constant exposure to the environment,
surfactant provides a crucial first line of
defense against infection by enhancing the
removal of pathogens, modulating the
response of inflammatory cells, and
optimizing lung biophysical activity.
Hydrophilic proteins, which constitute
a small portion of surfactant, play
a major role in antimicrobial activity.
Although surfactant is an established
treatment for RDS in preterm infants, there
has been no compelling clinical benefit for
use of exogenous surfactant in adult
patients with ARDS thus far. Further
studies need to be performed to explore
the possibility of surfactants as an
immune modulating therapy or designing
small molecules that modulate availability
of surfactant components in respiratory
illness.

Summary

d Surfactant has many biological
functions, including its tension-
reducing property at the air–water
interface, antimicrobial activity, and
immunomodulation.

d Although surfactant is an established
treatment for RDS in preterm infants,
no clinical benefit has been shown in
adult patients with ARDS.

d Animal studies and limited anecdotal
reports suggest surfactant could
be used to treat infectious and
inflammatory lung disease; however,
further preclinical and clinical
studies are necessary. n

Author disclosures are available with the text
of this article at www.atsjournals.org.
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16 Blanco O, Pérez-Gil J. Biochemical and pharmacological differences
between preparations of exogenous natural surfactant used to treat
Respiratory Distress Syndrome: role of the different components in
an efficient pulmonary surfactant. Eur J Pharmacol 2007;568:1–15.

17 Perez-Gil J, Weaver TE. Pulmonary surfactant pathophysiology: current
models and open questions. Physiology (Bethesda) 2010;25:132–141.

18 Weaver TE. Pulmonary surfactant-associated proteins. Gen
Pharmacol 1988;19:361–368.

19 Voorhout WF, Veenendaal T, Kuroki Y, Ogasawara Y, van Golde LM,
Geuze HJ. Immunocytochemical localization of surfactant protein D
(SP-D) in type II cells, Clara cells, and alveolar macrophages of rat
lung. J Histochem Cytochem 1992;40:1589–1597.

20 Kalina M, Mason RJ, Shannon JM. Surfactant protein C is expressed
in alveolar type II cells but not in Clara cells of rat lung. Am J Respir
Cell Mol Biol 1992;6:594–600.

21 Wang J, Souza P, Kuliszewski M, Tanswell AK, Post M. Expression of
surfactant proteins in embryonic rat lung. Am J Respir Cell Mol Biol
1994;10:222–229.

22 Clements JA. Lung surfactant: a personal perspective. Annu Rev
Physiol 1997;59:1–21.

23 Soll R, Ozek E. Prophylactic protein free synthetic surfactant for
preventing morbidity and mortality in preterm infants. Cochrane
Database Syst Rev 2010;1:CD001079.

24 Soll RF. Prophylactic synthetic surfactant for preventing morbidity and
mortality in preterm infants. Cochrane Database Syst Rev 2000;2:
CD001079.

25 Wright JR. Immunomodulatory functions of surfactant. Physiol Rev
1997;77:931–962.

26 LeVine AM, Bruno MD, Huelsman KM, Ross GF, Whitsett JA,
Korfhagen TR. Surfactant protein A-deficient mice are susceptible
to group B streptococcal infection. J Immunol 1997;158:
4336–4340.

27 LeVine AM, Kurak KE, Wright JR, Watford WT, Bruno MD, Ross GF,
Whitsett JA, Korfhagen TR. Surfactant protein-A binds group B
Streptococcus enhancing phagocytosis and clearance from lungs
of surfactant protein-A-deficient mice. Am J Respir Cell Mol Biol
1999;20:279–286.

28 LeVine AM, Kurak KE, Bruno MD, Stark JM, Whitsett JA, Korfhagen
TR. Surfactant protein-A-deficient mice are susceptible to
Pseudomonas aeruginosa infection. Am J Respir Cell Mol Biol 1998;
19:700–708.

29 LeVine AM, Gwozdz J, Stark J, Bruno M, Whitsett J, Korfhagen T.
Surfactant protein-A enhances respiratory syncytial virus clearance
in vivo. J Clin Invest 1999;103:1015–1021.

30 Wu H, Kuzmenko A, Wan S, Schaffer L, Weiss A, Fisher JH, Kim KS,
McCormack FX. Surfactant proteins A and D inhibit the growth
of gram-negative bacteria by increasing membrane permeability.
J Clin Invest 2003;111:1589–1602.

31 McCormack FX, Gibbons R, Ward SR, Kuzmenko A, Wu H, Deepe GS
Jr. Macrophage-independent fungicidal action of the pulmonary
collectins. J Biol Chem 2003;278:36250–36256.

FOCUSED REVIEWS

770 AnnalsATS Volume 12 Number 5| May 2015

http://www.atsjournals.org/doi/suppl/10.1513/AnnalsATS.201411-507FR/suppl_file/disclosures.pdf
http://www.atsjournals.org


32 Floros J, Wang G, Mikerov AN. Genetic complexity of the human
innate host defense molecules, surfactant protein A1 (SP-A1) and
SP-A2—impact on function. Crit Rev Eukaryot Gene Expr 2009;19:
125–137.

33 Brinker KG, Garner H, Wright JR. Surfactant protein A modulates the
differentiation of murine bone marrow-derived dendritic cells. Am J
Physiol Lung Cell Mol Physiol 2003;284:L232–L241.

34 Cheng G, Ueda T, Nakajima H, Nakajima A, Kinjyo S, Motojima S,
Fukuda T. Suppressive effects of SP-A on ionomycin-induced IL-8
production and release by eosinophils. Int Arch Allergy Immunol
1998;117:59–62.

35 Wang JY, Shieh CC, You PF, Lei HY, Reid KB. Inhibitory effect of
pulmonary surfactant proteins A and D on allergen-
induced lymphocyte proliferation and histamine release in children
with asthma. Am J Respir Crit Care Med 1998;158:510–518.

36 Malhotra R, Haurum J, Thiel S, Jensenius JC, Sim RB. Pollen grains
bind to lung alveolar type II cells (A549) via lung surfactant protein A
(SP-A). Biosci Rep 1993;13:79–90.

37 Wang JY, Kishore U, Lim BL, Strong P, Reid KB. Interaction of human
lung surfactant proteins A and D with mite (Dermatophagoides
pteronyssinus) allergens. Clin Exp Immunol 1996;106:367–373.

38 Madan T, Kishore U, Shah A, Eggleton P, Strong P, Wang JY,
Aggrawal SS, Sarma PU, Reid KB. Lung surfactant proteins A and
D can inhibit specific IgE binding to the allergens of Aspergillus
fumigatus and block allergen-induced histamine release from
human basophils. Clin Exp Immunol 1997;110:241–249.

39 Faro A, Hamvas A. Lung transplantation for inherited disorders of
surfactant metabolism. NeoReviews 2008;9:e468–e476.

40 Gregory TJ, Longmore WJ, Moxley MA, Whitsett JA, Reed CR, Fowler
AA III, Hudson LD, Maunder RJ, Crim C, Hyers TM. Surfactant
chemical composition and biophysical activity in acute respiratory
distress syndrome. J Clin Invest 1991;88:1976–1981.

41 Hallman M, Spragg R, Harrell JH, Moser KM, Gluck L. Evidence
of lung surfactant abnormality in respiratory failure: study of
bronchoalveolar lavage phospholipids, surface activity, phospholipase
activity, and plasma myoinositol. J Clin Invest 1982;70:673–683.

42 Davidson WJ, Dorscheid D, Spragg R, Schulzer M, Mak E, Ayas NT.
Exogenous pulmonary surfactant for the treatment of adult patients
with acute respiratory distress syndrome: results of a meta-
analysis. Crit Care 2006;10:R41.

43 Chida S, Phelps DS, Soll RF, Taeusch HW. Surfactant proteins and
anti-surfactant antibodies in sera from infants with respiratory
distress syndrome with and without surfactant treatment. Pediatrics
1991;88:84–89.

44 Doyle IR, Nicholas TE, Bersten AD. Serum surfactant protein-A levels
in patients with acute cardiogenic pulmonary edema and adult
respiratory distress syndrome. Am J Respir Crit Care Med 1995;
152:307–317.

45 Jobe A, Ikegami M, Jacobs H, Jones S, Conaway D. Permeability of
premature lamb lungs to protein and the effect of surfactant on that
permeability. J Appl Physiol 1983;55:169–176.

46 Robertson B, Curstedt T, Herting E, Sun B, Akino T, Schäfer KP.
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