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Abstract

Research studying the role of inflammation in hypertension and cardiovascular disease has 

flourished in recent years; however, the exact mechanisms by which the activated immune cells 

lead to the development and maintenance of hypertension remain to be elucidated. The objective 

of this brief review is to summarize and discuss the most recent findings in the field, with special 

emphasis on potential therapeutics to treat or prevent hypertension. This review will cover novel 

immune cell subtypes recently associated to the disease including the novel role of cytokines, toll-

like receptors and inflammasomes in hypertension.
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Introduction

As recently reviewed [1,2,3,4], the importance of immunity and inflammation in 

hypertension and vascular disease has been appreciated for decades, yet progress has been 

slowed by limited experimental tools and conflicting results. Recently, with the advent of 

more robust experimental methods, significant progress has been made to elucidate the 

mechanisms linking inflammation and immunity to hypertension and cardiovascular disease. 

This review focuses upon recent experimental observations that may provide therapeutic 

targets.

Novel immune cell subtypes associated with the development of 

hypertension

Tregs and Th17 cells

Experimental studies have focused upon the pathophysiological role of individual T-cell 

subsets. Specific experimentation is elucidating the functions of two T-cell subtypes distinct 
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from the classical Th1 and Th2 paradigm – regulatory T-cells (Tregs) and Th17 cells. The 

development, differentiation, and plasticity of these cell types are still under intense scrutiny 

among immunologists, but many researchers hypothesize therapeutic benefit for 

inflammatory disorders by altering the dynamics of Tregs and Th17 cells. In the past few 

years, studies have shown that Tregs attenuate hypertension and target organ damage, while 

Th17 cells exacerbate the pathology.

Regulatory T-cells are characterized by high expression of the transcription factor forkhead 

box P3 (FOXP3) and the ability to suppress inflammatory signaling of immune and non-

immune cells [5]. Tregs are essential for immunological self-tolerance and deficiency of this 

cell type leads to autoimmune disease [6]. Tregs are touted as a possible therapy to quell the 

abhorrent inflammatory milieu thought to mediate target organ damage in many 

hypertensive models. Many types of Tregs have been described according to cell surface 

marker expression and/or cytokine profile in the human immune system (CD8+ Tregs, Tr1, 

natural killer Tregs, etc.) [7]; however, the main focus in the field of hypertension has been 

on natural Tregs, or CD4+CD25+FOXP3+ T-lymphocytes. The mechanisms by which Tregs 

suppress inflammatory signaling continue to be elucidated, although it is widely thought that 

IL-10 and TGFβ play an important role in Treg-mediated immunosuppression [8].

Th17 cells are a recently described subset of T-cells characterized by the expression of the 

master transcription factor retinoic acid-related orphan receptor (ROR)γt and by the 

production of interleukin 17 (IL-17) [9]. In contrast to the anti-inflammatory role of Tregs, 

Th17 cells are proinflammatory, and exacerbate tissue damage and disease in conditions of 

chronic inflammation and autoimmunity [10]. This appears to be the case in hypertensive 

pathology as well, and blunting Th17 signaling may alleviate the inflammation associated 

with hypertension and target organ damage. For instance, the consequences of angiotensin II 

(AngII) infusion in mice – hypertension, vascular dysfunction, vascular inflammation, 

oxidative stress, aortic stiffening and collagen deposition – are attenuated in IL-17a null 

mice (IL-17A−/−) [11,12]. Moreover, administration of recombinant IL-17 in C57BL/6 

mice decreases NO-dependent vascular relaxation via Rho-kinase signaling and causes 

hypertension [13**]. Similarly, IL-17 has been demonstrated to have deleterious 

cardiovascular effects in rodent models of DOCA-salt hypertension [14] and preeclampsia 

[15].

In contrast, Tregs are proposed to be protective. AngII-induced hypertension and 

endothelium-dependent vascular dysfunction in mice are attenuated by adoptive transfer of 

Tregs, possibly by reducing oxidative stress and/or increasing nitric oxide bioavailability in 

the vasculature [16,17]. Additionally, in vitro studies showed that incubating resistance 

vessels with culture media from activated Tregs restored endothelium-dependent 

vasodilation and reduced vascular NADPH oxidase activity via an IL-10 dependent pathway 

[18]. Tregs have also been implicated in the protection from hypertension experienced by 

females, which has been attributed to sex-specific hormones [19]. Sex hormones have been 

shown to modulate immune function [20], and recent studies have investigated sex-

dependent differences in immune system characteristics. For instance, in spontaneously 

hypertensive rats (SHR), Tregs represent a greater percentage of infiltrating T-cells in the 

kidneys of female rats compared to males [21]. This finding correlates with increased 
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number of IL-10+ renal cells and lower IL-17+ cells in female SHR compared to males 

[22*], suggesting that Tregs may mediate the protection against hypertension in females. 

Moreover, transaortic constriction in the mouse results in hypertension, infiltration of 

immune cells in the heart, and cardiac fibrosis. Adoptive transfer of Tregs in this model has 

no effect on blood pressure but significantly blunts accumulation of immune cells in the 

heart, blunts cardiac hypertrophy, and attenuates left-ventricular fibrosis [23]. Other studies 

have shown blood pressure-independent protection via Tregs and damage via Th17 cells of 

cardiovascular organs, suggesting a greater role for Tregs and Th17 cells in cardiovascular 

disease.

Data regarding the role of Tregs and Th17 cells in human hypertension are sparse, although 

an intriguing study by Kleinewietfeld et al. [24**] showed that differentiation of naïve 

human T-cells to the Th17 phenotype in culture is greatly enhanced when in the presence of 

elevated concentrations of NaCl [24]. Due to high levels of NaCl consumption in developed 

countries and the argued correlation between high salt intake and increased blood pressure, 

the direct effect of NaCl on T-cell differentiation could have drastic effects on organ damage 

and blood pressure regulation. Ultimately, much work needs to be done to fully appreciate 

the role of Tregs and Th17 cells in hypertension and target organ damage. Studies thus far 

indicate that understanding the mechanisms by which these cells elicit their phenotypic 

effects may lead to novel therapeutic targets for the treatment of hypertension.

Dendritic cells

Dendritic cells (DCs) are bone marrow-derived, professional antigen-presenting cells (APC) 

that play a key role as modulators of the inflammatory response. Four subsets of DCs have 

been characterized, including classical DCs (cDCs), plasmacytoid DCs (pDCs), monocyte-

derived inflammatory DCs (Mo-DCs) and Langerhans cells [25,26]. DCs form a dense 

network in most human and animal tissues, including areas important in the regulation of 

blood pressure, such as arteries [27], kidneys [28] and brain [29]. These immature, resident 

DCs are thought to maintain tolerance and organ homeostasis by patrolling the environment 

for self- and non-self-antigens. In pathological conditions such as atherosclerosis, chronic 

kidney disease or pulmonary hypertension, DCs become activated and induce activation of 

T-lymphocytes.

Immature or precursor DCs can also be found in the bloodstream, surveying for potential 

antigens. The amount of circulating precursor DCs is indicative of the immune status of the 

organism, and decreased blood precursor DC levels have been reported in inflammation-

related cardiovascular disorders. Reduced circulating precursor DC numbers in patients with 

atherosclerosis, myocardial infarction, or stage 3 chronic kidney disease have been 

associated with enhanced activation and recruitment of mature DCs in vascular lesions, 

infarcted areas or renal tissue [30,31,32]. Once in the tissue, DCs act as mediators of 

cardiovascular disease. These reports highlight the potential use of circulating precursor 

DCs as new cardiovascular biomarkers to predict the development of cardiovascular disease.

In experimental hypertension, interesting new research has shown that AngII-induced 

superoxide production in DCs is associated with the accumulation of products of free 

radical-mediated lipid peroxidation, known as isoketals, in these cells. Isoketals can cross-
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link lysine residues on proteins, rendering them immunogenic. In turn, DCs present these 

modified proteins to T-lymphocytes, triggering T-cell activation and hypertension [33**]. 

The use of isoketal scavengers in mice prevented activation and immunogenecity of DCs, 

and attenuated hypertension in response to a subpressor dose of AngII. These results identify 

isoketal scavengers as a new potential therapeutic approach to the prevention of 

hypertension in humans. These data, together with reports by Nahmod et al. [34] on the 

importance of AngII receptor type 1 (AT1) on DCs’ differentiation and functionality, 

emphasize the role of DCs on the development of AngII-induced hypertension.

Recent reports also highlight the role of the mineralocorticoids aldosterone and DOCA, 

well-known inducers of hypertension, on promoting DC-induced polarization of T-cells 

towards the pro-inflammatory phenotype Th17 [35]. As explained above, Th17 cells have 

been strongly implicated in the development of hypertension. In these studies, treatment 

with the mineralocorticoid receptor inhibitors spironolactone and epleronone prevented the 

stimulatory effects of aldosterone on DCs and inhibited polarization of T-cells into Th17 

cells [35]. These studies suggest the potential use of mineralocorticoid receptor inhibitors as 

immunomodulator therapy to treat hypertension.

Naïve T-cells require 2 signals for activation: interaction of the T-cell receptor with the 

processed peptide presented by the APC, and simultaneous interaction of additional 

receptors on the T-cell surface with B7 ligands on the APC surface. Due to this required 

dual activation, inhibition of the B7-mediated T-cell activation pathways has also been 

proposed as new therapy for the treatment of hypertension. Vinh et al. [36] demonstrated 

that in an experimental model of hypertension, blockade of B7-dependent co-stimulation by 

CTLA4-Ig reduces the development of hypertension in response to AngII and DOCA, 

opening a new promising avenue for the development of therapies against the disease. In 

short, further research is required to fully understand the role of DCs in hypertension, 

especially regarding the role of these cells in other kinds of hypertension, such as salt-

sensitive hypertension.

Immunosenescent CD8+ cells

Chronic antigen stimulation leads to gradual accumulation of late differentiated CD8+ T-

cells, characterized by critically shortened telomeres, loss of the costimulatory receptor 

CD28, gain of CD57 receptor expression and increased production of inflammatory 

cytokines and chemokines [37]. These T-cells have been traditionally called 

immunosenescent, but, contrary to their name, CD8+CD28−CD57+ T-cells maintain the 

ability to proliferate under certain activation conditions [37]. Accumulation of these cells 

occurs with aging, and in chronic inflammatory states such as cancer or autoimmune 

diseases. Given the role that inflammation plays in hypertension, it has also been proposed 

that these cells could play a role in the development of disease. Youn et al. [38**] 

demonstrated that hypertensive patients have an increased fraction of circulating 

immunosenescent CD8+ T-cells, elevated circulating levels of C-X-C chemokine receptor 

type 3 (CXCR3) chemokines and serum granzyme B compared to healthy, age-matched 

control subjects. CXCR3 chemokines are well-known tissue-homing chemokines for T cells. 

On the other hand, granzyme B is a protease used by cytotoxic cells to induce cell death in 
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target cells, and it is elevated during T-cell-driven inflammation. Of note, 

CD8+CD28−CD57+ T-cells are known to be highly cytotoxic. Although this study has some 

limitations, this report is the first implicating the involvement of T-cells in human 

hypertension and specially highlights the importance of immunosenescent CD8+ T-cells in 

the disease.

The role of cytokines in the development of hypertension

Recent attention has been focused on exploring the pathways and inflammatory mediators 

that immune cells use to drive high blood pressure and end-organ damage. When immune 

cells become activated and/or are recruited to a target organ, they produce cytokines that 

determine the local inflammatory response. Chemokines, a special kind of cytokine, are 

chemoattractants that direct migration of immune cells into tissues. Some of the 

inflammatory cytokines and chemokines that have been studied for their involvement in 

hypertension are TNF-α, IL-17, MCP-1, and IL-6.

Contributions of TNF-α to the development of high blood pressure have been demonstrated 

by pharmacological or genetic approaches in animal models of AngII-induced hypertension, 

lupus, metabolic syndrome and preeclampsia, as reviewed by Ramseyer and Garvin [39]. In 

these cases, blockade of the TNF-α pathway led to decreased blood pressure and 

inflammation. However, contrasting results were reported in other models of hypertension 

like DOCA-salt hypertension or a human Ang/renin double transgenic rat model of AngII 

hypertension [39]. These opposite observations may be explained by the different type of 

TNF-α receptor that is activated in each model. To date, two different TNF-α receptors have 

been described: TNFR1 and TNFR2, but complete understanding of their functions is still 

lacking. Most pro-inflammatory effects of TNF-α are associated with activation of TNFR1, 

and, in humans, high serum TNFR1 levels strongly correlate with diseases associated with 

hypertension, like end-stage renal disease and type 2 diabetes [40]. Other reports, however, 

indicate that genetic deletion of TNFR1 leads to increased blood pressure in response to 

AngII [41]. On the other hand, some reports link TNFR2 activation to increased vascular 

inflammation [42], while others suggest that it has beneficial roles in the cardiovascular 

system [43]. It is clear from these contradictory reports that further investigation of the role 

of TNF-α and its receptors in hypertension is needed to develop better therapies.

In recent years, the pro-inflammatory cytokine IL-17 has been implicated in the 

development of hypertension. This cytokine is produced by Th17 cells, macrophages, 

dendritic cells, and natural killer cells in response to immune activation [44]. Elevated IL-17 

correlated with hypertension in subjects with type 2 diabetes [11] and in patients with 

preeclampsia and lupus [45], diseases associated with elevated blood pressure. Madhur et al. 

[11] reported that IL-17 is required for the maintenance of AngII-induced hypertension and 

vascular dysfunction. Another group recently demonstrated that this effect of IL-17 on 

vascular function is mediated by promoting NOS3 phosphorylation, thus decreasing enzyme 

activity and NO production in endothelial cells [13**]. This cytokine could also be 

important in salt-sensitive hypertension, since recent studies indicate that naïve T-cells 

increase expression of serum glucocorticoid kinase 1 (SGK1; a known salt-sensor protein) 

and polarize to Th17 cell phenotype in the presence of high salt. These studies demonstrate 
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that SGK1 is critical for the induction of Th17 cells, and could hint to a mechanism by 

which high salt may trigger Th17 development, IL-17 production and promote tissue 

inflammation [46**].

By activating the CCR2 receptor, chemokine MCP-1 (also known as CCL2) leads to the 

activation and migration of monocytes and leukocytes to sites of inflammation. Production 

of MCP-1 can be stimulated by AngII [47] and endothelin-1 [48], fundamental players in the 

development of hypertension and end-organ damage. Moreover, the use of Ang receptor 

blockers reduces MCP-1 levels both in experimental models and in hypertensive patients 

[49]. In addition, genetic deletion of the MCP-1 axis or blockade of CCR2 in experimental 

models decreases blood pressure and reduces vascular and renal inflammation [50,51]. 

These results highlight the potential of MCP-1 axis inhibition for treating hypertension; 

however, in-depth clinical studies are still needed.

Levels of the pro-inflammatory cytokine IL-6 are also elevated in hypertensive conditions. 

Studies by Brands et al. [52] demonstrated that IL-6 is fundamental for the development of 

AngII-induced hypertension and that activation of the JAK/STAT3 pathway by IL-6 plays a 

key role in the disease. Moreover, a human study further confirmed these results by showing 

that plasma levels of IL-6 increase in response to acute AngII infusion, and that these levels 

are exaggerated in hypertensive patients [53*]. IL-6 is also elevated in pulmonary 

hypertension and anti-IL-6 antibody therapy has been successfully used in a one-patient 

clinical trial in Japan [54], indicating the potential therapeutic value of targeting IL-6.

Although CD40L is not considered a cytokine, it is included in this section because of its 

powerful pro-inflammatory effects. CD40L is part of the TNF superfamily and acts by 

promoting cytokine and chemokine release. It is derived from activated platelets, and has 

been implicated in thrombosis [55]. Recent research also suggests that AngII promotes and 

augments the inflammatory activity of the CD40/CD40L system in human vascular cells 

[56], and that genetic deletion of CD40L improves endothelial dysfunction and decreases 

aortic inflammation and oxidative stress [57]. These reports suggest that CD40L mediates 

many deleterious effects of AngII in the vasculature. In addition, soluble CD40L (sCD40L) 

is elevated in plasma of hypertensive patients and significantly decreased after anti-

hypertensive treatment [58]; also, non-dipper hypertensive patients (at increased risk of 

cardiovascular events) present increased CD40L levels [59]. Based on these reports, CD40L 

could be a valuable biomarker of cardiovascular disease and a potential therapeutic target.

Toll-like receptors: controllers of the adaptive immune response in 

hypertensive conditions

The involvement of the innate immune response has emerged as an important determinant of 

hypertension and end-organ damage. Contrary to what was originally believed, the innate 

immune system not only responds to exogenous pathogens, but it can also be activated by 

endogenous molecules released by stressed, damaged, or necrotic cells [60]. These 

molecules, known as damage-associated molecular patterns (DAMPs), are important 

inflammatory mediators [61]. Examples of DAMPs include: high mobility group box 1 

(HMGB1), heat shock proteins 60 and 70, AngII, IL-1α, uric acid, DNA fragments, 
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mitochondrial content, HDL and oxidized LDL [62*,63]. Interestingly, many of these 

DAMPs are known to be present in cardiovascular diseases such as atherosclerosis [64], 

diabetes [65], pulmonary hypertension [66], essential hypertension [67] and preeclampsia 

[68].

Toll-like receptors (TLRs) are a conserved family of receptors that trigger pro-inflammatory 

signaling cascades in response to either microbial structures or DAMPs released by injured 

tissues [62*]. These receptors have a fundamental role in the innate immune response. 

Eleven different TLRs have been described in humans and thirteen in mice (TLR1-13) [69]. 

Different signaling cascades are activated by TLRs depending adaptor protein binding [70]. 

Examples of adaptor proteins include myeloid differentiation factor 88 (MyD88), MyD88-

adapter-like (Mal), IL-1 receptor associated kinase-4 (IRAK4) and TIR-containing adaptor 

molecule (TICAM).

Recent studies suggest that the innate immune system may be the first step in the 

pathogenesis of hypertension, and that TLRs may be the molecular link between the innate 

and adaptive immune responses during cardiovascular disease. In fact, expression of TLRs 

has been described in blood vessels [69], brain [71], renal tubules, podocytes, mesangial 

cells [65], T-lymphocytes, macrophages, and dendritic cells [69,72]; all key players in the 

development and maintenance of hypertension. In recent years, TLRs have been implicated 

in preeclampsia (TLR2, TLR3, TLR4 and TLR9, [73,74,75]); programming of vascular 

dysfunction (TLR4, [76]); hypertension induced by AngII (TLR2 and/or TLR4, [77,78]), 

obesity (TLR4, [79]) or L-NAME (TLR4, [80]); atherosclerosis (TLR2, [81]); pulmonary 

hypertension (TLR4, [66]); diabetic nephropathy (mostly TLR4 but also TLR2, [65]); and 

ischemia-reperfusion renal injury (TLR2 and/or TLR4, [82]). In addition, TLR7 and TLR9 

have been shown to be involved in the inflammation typical of lupus [83], a disease also 

associated to hypertension.

In light of the involvement of TLRs in cardiovascular disease, several novel therapies 

designed to target these receptors are in the works [84]. By targeting TLRs, modulation of 

the inflammatory cascade may be achieved at an earlier point and control disease more 

effectively. The number of TLR antagonists is still very limited, however, and further 

preclinical research is needed. A powerful anti-TLR2 antibody has been reported as 

effective in reducing the myocardial infarct area in mouse and pig models of ischemia/

reperfusion [85,86] and to diminish and stabilize atherosclerotic lesions in a mouse model 

[87]. TLR4-antagonists RsLPS and CXR-526 showed promising results against the 

development of atherosclerotic plaques [88] and significantly decreased signs of kidney 

injury in a mouse model of type 1 diabetes [89], respectively. Moreover, treatment with 

antibodies against TLR4 is efficient in ameliorating hypertension in DOCA salt and SHR rat 

models [90,91]. Additionally, dual blockade of TLR7/9 decreased inflammation in a model 

of lupus [83]. Alternative approaches, like targeting the adaptor proteins or increasing 

ubiquitination of TLRs [84], are also being studied.

Overall, these studies support the involvement of TLRs in the development of hypertension 

and other related cardiovascular diseases, and highlight these receptors as attractive targets 

for potential new therapies. Despite the existence of several TLR antagonists, further 
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understanding of the roles of TLRs and how they vary in different cardiovascular diseases is 

needed in order to develop more TLR-targeting therapeutic options.

The role of inflammasomes in hypertension

The nucleotide-binding oligomerization domain (Nod)-like receptor containing pyrin 

domain 3 (NLRP3, also known as NALP3 or cryopyrin) inflammasome is the most 

characterized member of the nucleotide-binding domain leucine-rich repeats (NLR) family 

of pattern recognition receptors (PRRs). Activation of the NLRP3 inflammasome signifies 

cleavage and activation of a subclass of inflammatory caspases that are responsible for the 

maturation of inactive pro-inflammatory cytokine precursors like pro-IL-1β or pro-IL-18. 

NLRP3 inflammasome formation controls the innate immune system activation in response 

to a wide range of danger signals including pathogen-associated molecular patterns 

(PAMPs) and DAMPs derived from disease and infection.

With 23 NLR genes identified, there exist other types of caspase-processing 

inflammasomes, including NLRP1, NLRC4, and AIM2. NLRP1 was the first discovered 

inflammasome demonstrated to process both caspase-5 and caspase-1, and is primarily 

activated by bacterial cell wall component muramyl dipeptide (MDP) and Bacillus anthracis 

lethal toxin [92,93]. NLRC4 inflammasomes sense various gram-negative bacteria 

conserved proteins like flagellin, rod, and needle [94,95], while AIM2 inflammasomes 

respond to foreign nucleic acids and double-stranded DNA [96]. The NLRP3 

inflammasomes specifically have gained much attention over recent years due to its growing 

role in the sterile inflammatory response to DAMPs associated with a number of chronic 

degenerative diseases [97,98]. Activation by this diverse range of danger signals results in a 

cytosolic multiprotein complex formed by the oligomerization of the NLRP3 sensory 

protein, the adaptor molecule apoptosis-associated speck-like protein containing a CARD 

(caspase recruitment domain) (ASC), and the cysteine protease caspase-1, causing the 

maturation of pro-inflammatory cytokines IL-1β and IL-18, thereby contributing to very 

early initiation of the immune response.

Very recent and exciting literature suggests an important role for NLRP3 inflammasomes in 

humans and animal models of kidney disease and hypertension. NLRP3 inflammasome 

involvement has been reported in glomerular and tubulointerstitial injury, where NLRP3 

mRNA is significantly increased in renal biopsies of patients with various types of 

nondiabetic kidney disease, including acute tubular necrosis, focal segmental 

glomerulosclerosis, and hypertensive nephrosclerosis [99**]. In NLRP3 and ASC-deficient 

mice, glomerular injury, renal leukocyte infiltration, and T-cell activation associated with 

nephrotoxic serum nephritis was attenuated [100**]. Furthermore, the inflammasome has 

been shown to contribute to IgA nephropathy, hyperhomocysteinemia-induced glomerular 

sclerosis, and ischemia-reperfusion injury [101,102,103]. In mouse models of hypertension, 

studies have demonstrated protective effects of inflammasome inhibition in the two-kidney, 

one clip (2K1C) model, where NLRP3 or ASC deficiency prevents blood pressure elevation 

and lowers plasma renin activity [104]. Additionally, in murine ATP-induced hypertension, 

ATP infusion resulted in increased salt-sensitive hypertension, caspase-1 activity, IL-1β 

production and CD43+ T-cell infiltration in the renal medulla [105]. Administration of 
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caspase-1 inhibitor WEHD, however, blocked ATP-induced hypertension, reduced sodium 

retention, and blunted inflammasome activation and the production of IL-1β. In humans, an 

intronic 42 base pair variable number of tandem repeat (VNTR) polymorphism in the CIAS1 

gene that encodes for NLRP3 has been linked to essential hypertension susceptibility 

[106**]. Interestingly, the CIAS1 gene is part of the CATERPILLER gene family, which 

also contains PYPAF5 that encodes the AngII/vasopressin receptor (AVR) implicated in 

salt-sensitive hypertension in the Dahl SS model [107]. Patients with pulmonary arterial 

hypertension demonstrated increased NLRP3 inflammasome complex formation and 

caspase-1 activation in purified monocytes compared to control subjects, and also had 

significantly elevated IL-1β and IL-6 in the serum [108]. Superoxide scavenging 

experiments suggest that these inflammasome activating effects may be due to an oxidant/

antioxidant imbalance [109]. Together, these animal and human data strongly implicate an 

important contribution of the NLRP3 inflammasome in the development of hypertension and 

may potentially serve as an early disease biomarker and therapeutic target.

Conclusions

Innate and adaptive immunity play a significant role in the pathogenesis of hypertension. 

Specific immune cell types, cytokines, toll like receptors, and components of 

inflammasomes all pose novel targets for antihypertensive therapy. These targets are 

summarized in Table 1. Further research will remain to elucidate the interrelationship and 

common mediators of these immune mechanisms.
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Table 1

Therapeutic targets discussed in this review.

Type of Mediator Description Potential Application as a
Target in Hypertension

Regulatory T-cells (Tregs) T cell subtype characterized by the
ability to suppress inflammatory
signaling; proposed to be
protective, where deficiency of
Tregs leads to autoimmune
disease

- Increasing the presence or
 functionality of Tregs may reduce
 oxidative stress, increase NO
 bioavailability, block immune cell
 accumulation, and protect
 against hypertension

Th17 cells T cell subtype that produces IL-17;
pro-inflammatory and exacerbate
tissue damage and disease

- Blunting Th17 signaling may
 alleviate inflammation and target
 organ tissue damage associated
 with hypertension

Dendritic cells (DCs):

- Classical DCs

- Plasmacytoid DCs

- Monocyte-derived inflammatory DCs

- Langerhans cells

Bone marrow-derived antigen
presenting cells (APCs) that play a
key role in modulating the
inflammatory response by
distinguishing between self- and
non-self antigens; induce the
activation of T-lymphocytes

- Circulating precursor DCs as
 biomarkers to predict the
 development of cardiovascular
 disease
- Development of isoketal
 scavengers to attenuate
 immunogenicity of DCs and
 hypertension

Immunosenescent CD8+ cells T cells characterized by shortened
telomeres, loss of CD28, gain of
CD57 expression, and increased
production of inflammatory
cytokines and chemokines

- Biomarker and potential
 therapeutic target in
 hypertensive patients

Chemokines and cytokines

- TNF-α

- IL-17

- MCP-1

- IL-6

- CD40L

Activated and recruited immune
cells produce these inflammatory
mediators, which determine the
local inflammatory response

- Implicated in development and
 maintenance of hypertension
- Blockade of these inflammatory
 pathways may decrease
 infiltration of immune cells,
 inflammation and blood pressure

Toll-like receptors (TLRs:
TLR1-13)

- Family of receptors that trigger
pro-inflammatory signals in
response to microbial structures or
DAMPs released by injured
tissues.
- Potential molecular link between
innate and adaptive immune
responses in cardiovascular
disease

- Targeting TLRs may modulate
 the inflammatory cascade at an
 earlier point to help control
 disease more effectively

NLRP3 inflammasomes - Pattern recognition receptors
responsible for maturation of pro-
inflammatory cytokines like IL-1β
and IL-18 in response to PAMPs
and DAMPs;
- Controllers of the initiation of the
 innate immune response

- Inflammasome inhibition has
 been shown to prevent blood
 pressure elevation, lower plasma
 renin activity, and reduce sodium
 retention
- CIAS1 gene encoding for NLRP3
 linked to essential hypertension
 susceptibility
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