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Abstract

We consider the problem of quantifying the degree of coordination between transcription and 

translation, in yeast. Several studies have reported a surprising lack of coordination over the years, 

in organisms as different as yeast and human, using diverse technologies. However, a close look at 

this literature suggests that the lack of reported correlation may not reflect the biology of 

regulation. These reports do not control for between-study biases and structure in the measurement 

errors, ignore key aspects of how the data connect to the estimand, and systematically 

underestimate the correlation as a consequence. Here, we design a careful meta-analysis of 27 

yeast data sets, supported by a multilevel model, full uncertainty quantification, a suite of 

sensitivity analyses and novel theory, to produce a more accurate estimate of the correlation 

between mRNA and protein levels—a proxy for coordination. From a statistical perspective, this 

problem motivates new theory on the impact of noise, model mis-specifications and non-ignorable 

missing data on estimates of the correlation between high dimensional responses. We find that the 

correlation between mRNA and protein levels is quite high under the studied conditions, in yeast, 

suggesting that post-transcriptional regulation plays a less prominent role than previously thought.
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1 Introduction

We consider the problem of estimating the degree of coordination between transcription and 

translation, in yeast. A credible estimate would have two important substantive implications. 
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It would help assess the extent to which analyses that take measures of transcription as 

proxies for measures of translation, are valid. A credible estimate would also help quantify 

the relative roles of transcriptional versus post-transcriptional regulation.

Several studies have addressed this problem over the years, in organisms as different as 

yeast and human, with diverse technologies (Gygi et al. 1999; Abruzzo et al. 2005; Castrillo 

et al. 2007; Ingolia et al. 2009; Vogel et al. 2010; Schwanhäusser et al. 2011). Typically, 

transcription is quantified in terms of the concentration of messenger RNA (mRNA), 

corresponding to different genes, while translation is quantified in terms of the ratio of 

protein abundance to mRNA. If rates of translation and degradation did not vary by gene, 

then protein-mRNA ratios would be constant, and mRNA-protein levels would be perfectly 

correlated (de Sousa Abreu et al. 2009). Accordingly, the correlation between the vectors of 

mRNA and protein concentrations has been used as a proxy for the degree of post-

transcriptional regulation. Published estimates of the correlation are low, mostly between 0.3 

and 0.6, and do not seem to increase with more modern technologies. Thus, the consensus is 

that the there is significant regulation of protein levels after transcription, especially in 

higher organisms and mammals. This finding is quite surprising. The community agrees the 

extent to which mRNA and protein levels correlate is still unclear (Vogel and Marcotte 

2012).

A close look at this literature suggests that the lack of reported correlation is not surprising 

after all. These studies are not based on a careful design, nor they carry out statistical 

analyses carefully, and ignore key aspects of how the data connect to the estimand. For 

instance, analyses are often limited to complete cases, discarding mRNAs and proteins with 

missing measurements. They ignore that missing measurements are more likely to be taken 

on mRNAs and proteins that are rare in cell. Structure in the variability of measurements, 

often referred to as batch effects (Leek et al. 2010), is not accounted for. Arguably, the low 

reported correlations are more likely to be due to limitations in the designs and analyses, 

rather than to limitations in the technology, or to aspects of regulation.

Conceptually, we can decompose the correlation into contributing components that should 

inform an appropriate study design and analysis. Namely, the main components that 

contribute to variation in the observed correlation between mRNA and protein levels are: 

differences in strain, technology and growth rate, the amount of alternative splicing, 

additional variability structured according to experiments, replicated measurements within 

an experiment, and actual biological variation (Raser and O'Shea 2005; Wallace et al. 2013).

Here, we design an original meta-analysis of 27 yeast data sets, supported by a multilevel 

model, full uncertainty quantification, a suite of sensitivity analyses and novel theory, to 

produce a more accurate estimate of the correlation between mRNA and protein levels. 

Briey, the proposed design controls for strain and reported growth rate, includes multiple 

technologies for measuring mRNA and protein levels. A simple multilevel model accounts 

for the structure in the meta variance-covariance matrix, and includes a non-ignorable 

missing data mechanism for missing measurements (Gelman and Hill 2006; Rubin 2004; 

Ibrahim et al. 2005). A limited amount of splicing in yeast (Parenteau et al. 2008) and other 

sources of variation contribute to the residual error. The strategy for the meta-analysis is to 
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first fit a simple normal-normal multilevel model, in which technologies are assumed as 

exchangeable. While this model is theoretically identifiable in the absence of missing data, 

or in the presence of data missing completely at random, properties of the inference under 

under non-ignorable missing data are uncertain. We show empirically that inference 

achieves nominal frequentist coverage for a number of key parameters in the presence of 

non-ignorable missing data, using posterior predictive meta data, in Section 4.1, and that the 

model is robust to departures from normality, in Section 4.2. In Section 4.3 we use this 

model to estimate the correlation between mRNA and protein levels. We then explore the 

impact of relaxing the exchangeable technologies assumption on the correlation estimates, in 

Section 4.4.

From a statistical perspective, this problem motivates new theory on the impact of noise, 

model mis-specifications and non-ignorable missing data on estimates of the correlation, in 

Section 3. These theoretical results are illustrated by the analysis presented in Section 4.2. It 

is worthwhile noting that, while standard theory exists that characterizes the impact of 

measurement noise and model mis-specifications on mean coefficients, and in some cases 

variance coefficients, there is no theory that characterizes the impact of such specifications 

on the covariance or correlation between high-dimensional responses, e.g., mRNA and 

protein concentrations, which is the estimand of interest in the problem we consider.

From a substantive perspective, we find that the correlation between mRNA and protein 

levels is quite high, in yeast, suggesting that post-translational regulation plays a less 

prominent role than previously thought.

1.1 Data collection and exploratory data analysis

We gathered 16 data sets that measure mRNA expression and 11 that measure protein 

concentrations, mostly published, yielding a total of 58 high-throughput measurements on 

5,308 genes and their corresponding proteins in yeast. The measurements were taken on 

yeast cultures using different technologies including custom and commercial microarrays, 

high-throughput sequencing and mass spectrometry.

The goal of the analysis is to study the steady state correlation of mRNA and protein levels. 

Thus it is important to use data that were collected under similar experimental conditions; 

from haploid yeast S. cerevisiae growing exponentially in rich shaken liquid medium with 

2% glucose between 22 and 30°C. Additional sources of variation are treated as noise for the 

purpose of the analysis.

Details of the data sets are summarized in Table 1. Throughout the paper we work with the 

natural logarithm of the raw data, as this is approximately normally distributed. This is 

standard in mRNA expression and protein abundance studies (Eisen et al. 1998).

The data sets in Table 1 have features that, if unaccounted for, are likely to result in poor 

estimates of the correlation of interest. First, the measurements are inherently noisy. Both 

biological and technical noise attenuate correlation estimates; we define attenuation as bias 

towards zero. Second, the measurements are structured. We refer to an “experiment” to 

indicate a set of replicated measurements, whether technical or biological, which were 
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obtained with a specific biotechnology and published in a specific paper (e.g., Ingolia et al. 

2009; Lipson et al. 2009). The data we collected can be grouped according to biotechnology 

and experiment. As expected, the variability of the mRNA expression values is larger 

between experiments than between replicated measurements within an experiment (Figure 

1). Interestingly, the range of the observed mRNA-protein correlations is almost the same as 

the between-experiment correlations, for both mRNA and protein levels. Principal 

component analysis of the replicates (see Figure 8 in the Appendix) confirms that 

experiment effects are large.

Third, a considerable portion of the data in any given experiment is missing. On average, 

over 25% of the values are missing in any replicated measurement, for either mRNAs or 

proteins, with some experiments missing over 95% of the values. The data sets with a very 

large number of measurements missing may be of questionable value for estimating the 

mRNA-protein correlation but they are included for completeness. These are classic data 

sets that originally led to the conclusion that mRNA and protein levels correlated poorly, 

and so their inclusion is natural.

Notably, it is harder to obtain mRNA expression and protein concentration values for 

mRNA transcripts and proteins that are rare in the cell. A quick analysis of replicated 

measurements suggests that the fraction of missing values appears to be inversely related to 

the average observed values of both mRNA and protein concentrations. This analysis is 

illustrated in Figure 2 and in Table 7 in the Appendix.

We give some theoretical insights in Section 3 on how each of these three effects attenuate 

the observed correlation, and also perform an analysis of simulated data in Section 4.2.

1.2 Contributions of this work

We estimate the degree of coordination between transcription and translation, in yeast. To 

accomplish that, we have curated a collection of 27 yeast data sets about mRNA and protein 

levels, in Table 1. We developed an original meta analysis strategy to estimate the amount of 

coordination, which we quantify in terms correlation between latent de-noised 

representations of mRNA and protein levels. This correlation is a parameter in a simple 

multilevel model that accounts for measurement error structure due to experimental 

protocols, replicated measurements, and technology biases (Johnson et al. 2007; Kipnis 

2003). The analysis involves Bayesian confidence intervals, a suite of sensitivity analyses 

including an evaluation of frequentist coverage, robustness of the estimates to departure 

from key assumptions, such as normality and correct specifications of the covariance 

structure, and the effects of technological bias on the estimates. We also develop novel 

theory that provides analytical insights into the results of the sensitivity analyses we 

perform. Namely, we quantify the expected reduction in correlation as a function of (1) 

noise in the data; (2) experiment effects and model misspecification; and (3) non-ignorable 

missing data. This theory extends Spearman’s correction for the attenuation of correlation 

(Spearman 1904) between two quantities to a multivariate setting while accounting for 

experiment effects. In particular, while corrections for the effect of missing data on 

exploratory analyses have been explored (Wiberg and Sundström 2009), we are the first, to 
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our knowledge, to discuss the estimation of correlation from multiple measurements each 

with different non-ignorable missing data mechanisms.

2 Methods

We posit a simple model to estimate a covariance matrix between high-dimensional 

responses, in the presence of structured measurement errors and non-ignorable missing data, 

and we develop a Markov chain Monte Carlo algorithm to perform inference. Models of this 

sort are well established in statistical applications (e.g., see Rubin and Little 2002; Johnson 

et al. 2007). We chose a combination of simple specifications to be able to develop novel 

theory for the estimated correlations, in Section 3. In Section 4.3, this model is used to carry 

out an original meta-analysis of the experiments listed in Table 1.

2.1 A structured covariance model of high-dimensional responses

While the model we detail below is generally applicable for the estimation of a covariance 

matrix among multiple responses, we specify the data generating process for our goal of 

estimating the amount of coordination between mRNA transcription and protein translation. 

In this application, we consider two high-dimensional responses, with approximately 5,300 

dimensions, corresponding to mRNA expression and protein abundance in yeast. Each 

response is measured multiple times in a number of experiments, where each experiment 

consists of one or more replicates. Let Xi,j denote the measurement for mRNA/protein i in 

replicate j. Replicates, experiments and response variables form a three-layer hierarchy of 

nested groups. Specifically, we have NL latent variables at the top of the hierarchy (two in 

this paper, representing mRNA and abundance), NE experiments measuring one of the latent 

quantities, and NR total replicates across experiments. To write down the model, we define 

two functions that map replicates to the other two layers. The function l[j] maps a replicate 

to the response type (mRNA expression or protein abundance) and the function k[j] maps 

replicates to experiments. These mappings are such that k[j1] = k[j2] implies l[j1] = l[j2]; that 

is, replicates of the same experiment measure the same response.

The model has two components: an observation model p(Ii,j|Xi,j), which provides the 

probability of observing a value for mRNA/protein i in replicate j, given the latent mRNA/

protein level, and a hierarchical model p(Xi,j|…) for the latent mRNA/protein levels 

themselves. We posit

(1)

(2)

(3)

(4)
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(5)

where the random variables Li,l specifies the latent mRNA expression and abundance, for 

mRNA and protein i = 1, …, N, and Li = [Li,1, …, Li,NL]′. The random variables Ei,k capture 

experiment effects for experiment k = 1, …, NE, and Ri,j are measurement noise for replicate 

j = 1, …, NR. Effects between experiments are independent, Cov(Ei1,k1, Ei2,k2) = 0 if k1 ≠ k2. 

Measurement noise is independent between replicates, Cov(Ri1,j1, Ri2,j2) = 0 if j1 ≠ j2. The 

parameter νj reflects replicate specific bias common to all mRNAs/proteins. The coefficient 

Gk is an experiment specific scaling factor for the latent expression and abundance. The 

indicator variable Ii,j denotes whether the value for Xi,j was observed and accounts for non-

ignorable missing data as detailed in Section 2.1.2.

The estimand of interest, Ψ, specifies the correlation matrix of the response variables. For 

our application, NL = 2 and ψ1,2 represents the correlation between the true mRNA and 

protein levels. The diagonal of Ψ is fixed to one for identifiability. The parameters ξk and θj 

specify the variances of the effects for experiment k, and the measurement noise for replicate 

j, respectively.

To write down the likelihood, let Xi = [Xi,1, …, Xi,NR]′ denote all measurements (both 

observed and missing) across replicates for mRNA/protein i, and let X = [X1, …, XN] 

denote the N × NR complete data matrix of all measurements. Then, X ~  (ν, I ⊗ Σ). Here 

the column covariance, Σ corresponds to the between experiment covariance. Since we 

assume independence between genes (but see Section 4.2), the row covariance is simply the 

N × N identity matrix.

Similarly, define I as the binary observation matrix of dimension N × NR, and define the 

vectors , and ν = [ν1, …, νNR]. Then the complete data 

likelihood for the proposed model is

(6)

where

(7)

and where Σ is a structured covariance matrix of size NR × NR detailed in Section 2.1.1.

Note that Table 1 lists a few experiments that contain only one replicate. For these 

experiments we simplify Equation 1 by removing the random effect for the replicate, Ri,j. 

This ensures that all the quantities remain identifiable.
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2.1.1 Covariance structure—The nested response-experiment-replicate grouping leads 

to a structured covariance matrix, Cov X = Σ, for the complete data. Assuming that 

replicates are ordered according to response type and experiment (l[j] and k[j]) in X, Σ 

consists of NL large blocks corresponding to the response variables; and each large block is a 

block diagonal plus rank one matrix, with one block for each experiment. Covariance 

matrices with this structure, illustrated in Figure 3, are often referred to as “similarity 

matrices” (e.g., see McCullagh 2006). In our model, Σ is a function of Ψ, ξk, θj and Gk. The 

marginal variance of each observation is

(8)

Two replicates j1 and j2 within the same experiment k = k[j1] = k[j2] also have l = l[j1] = l[j2] 

and their covariance is . The replicates are exchangeable within experiments but not 

between experiments.

2.1.2 Observation model—Figure 2 suggests that the fraction of missing data is 

negatively correlated with the average observed values for both mRNA expression and 

protein concentrations. This is evidence that the measurements are missing not at random 

(MNAR) (Rubin 2004).

We follow a well established approach to model this type of missing data mechanism, by 

means of a generalized linear model (Ibrahim et al. 2005). Equation 5 models the probability 

that measurement Xi,j is missing, p(Ii,j = 0), as a logistic function of the value of the 

measurement. The parameters of the missing data mechanism,  and , are shared by 

replicates within an experiment; they uniquely determine the probability that measurements 

are observed, conditional on Xi,j.

This observation model is flexible enough to include sharp censoring at a certain mRNA/

protein value or to capture very little or no dependence of missingness on mRNA/protein 

levels. Importantly, the observation model parameters vary by experiments. See Figure 7 in 

the Appendix for some examples on how the observation model fits to various experiments.

2.1.3 Prior specifications—To complete the model specifications we place priors on Ψ, 

ξk, θj,  and . Recall that referenced works report correlation in the 0.3–0.6 range. In 

developing an independent meta-analysis, we use either at, or weakly informative, to 

produce estimates that are unaffected by previous results that arguably depend on 

problematic assumptions and methods. For the parameters  and  of the logistic 

observation model we use a Cauchy prior with mean zero and scale 2.5, after scaling the 

data (at each imputation step) to have mean zero and standard deviation 1/2, as suggested by 

Gelman et al. (2008). We assume at priors on the scaling factors, Gk, and the measurement 

bias parameters νj. For the replicate and experiment variances θj and ξk we use independent 

conjugate scaled inverse χ2 priors with 3 degrees of freedom and scale 1/5. This is 

equivalent to an Inv-Gamma(3/2, 3/10) prior.
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Since the primary estimand of interest is the correlation matrix Ψ, the choice of prior is 

particularly important. One option is to use the inverse Wishart prior, scaled to have unit 

variance. The inverse Wishart prior is the standard conjugative prior for covariance 

matrices, but it is quite restrictive. For instance, the inverse Wishart specifies the same 

degrees of freedom for every entry in the matrix. Crucially, with the inverse Wishart prior 

higher variances are associated with higher correlations.

As such, using a scaled inverse Wishart distribution to specify a prior actually corresponds 

to an informative prior on the correlations. To avoid this, we assume that the correlation and 

variance are independent. This is consistent with the separation strategy introduced by 

Barnard et al. (2000). This strategy involves putting a at prior (Unif[−1, 1]) on the 

correlation in the proposed model. The coverage studies of Section 4.1 indicate that the 

estimated correlation is not biased by this choice of prior.

2.2 Inference via Markov chain Monte Carlo

We fit the hierarchical model and the observation model jointly using a Gibbs sampler. 

Algorithm 1 provides an overview of the sampling strategy. A more detailed description of 

the individual steps follows.

Algorithm 1: The Gibbs sampler
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Step 1. Since Li and Xi are multivariate normal, Li conditional on the other parameters is 

also multivariate normal. Specifically,

(9)

and Cov (Xi, Li) can be easily calculated from Equation 1 and the parameters Gk, ξk, θj.

Step 2. Given Li, we then draw Ψ using a Metropolis-Hastings random walk sampler. To 

sample the correlation, we use a truncated normal proposal, centered on the current value. 

Barnard et al. (2000) suggest setting the variance of the proposal distribution to a value 

inversely proportional to the number of measurements; after tuning, we set it to 1/(10N). 

When sampling from a bivariate covariance matrix, the truncation points for the proposal are 

simply −1 and +1, and the general formula is given by Barnard et al. (2000).

Step 3. The random effects and the variance parameters are drawn using Bayesian linear 

regression. First, for each experiment k, we draw Gk, ξk and Ei,k. Notice that Xi,j − Ri,j − νj is 

the same for all j replicates that belong to the same experiment k. So, we regress Xi,j − Ri,j − 

νj on Li,l[j]Gk[j] for an arbitrary j for which k[j] = k holds and for all i ∈ 1, …, N. For the 

conjugate scaled Inv-χ2 prior the posterior of ξk is also scaled Inv-χ2. Gk is drawn from a 

normal, see Gelman et al. (2003, Sec. 14.2) for details. Ei,k correspond to the residuals of 

this regression.

Step 4. Similarly, we draw νj, θj and Ri,j for each replicate j, by regressing Xi,j on Li,l[j]Gk[j] 

+ Ei,k[j], i ∈ 1, …, N. νj are drawn from a normal, θj are drawn from a scaled Inv-χ2, and the 

residuals of the regression correspond to Ri,j. Again, this is according to the textbooks, see 

Gelman et al. (2003, Sec. 14.2).

Step 5. Given these parameters, we impute the missing data. The conditional density for a 

missing measurement, i, in replicate j and experiment k[j] is proportional to the product of 

the logistic CDF and a normal density. That is:

(10)

While this density does not correspond to a simple conditional draw, it can be approximated 

by a normal. For low missingness probabilities, or censoring that occurs far out in the tails, 

the density is very nearly normal. For more extreme censoring, it is closer to the truncated 

normal density. Since we do not observe sharp missingness patterns, typically the observed 

data distribution is close to normal. We use a Metropolis-Hastings independence sampler 

with a normal proposal centered at the mode of the PDF and variance equal to the Hessian at 

the mode. We get over 90% acceptance using this approach.

Step 6. The parameters of the observation model are drawn from a normal, after Bayesian 

logistic regression on the missing and observed values to get the means and variances 

(Gelman et al. 2008).
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3 Theory

In Section 2.1, we developed a simple high-dimensional random effects model for the latent 

measurement, with a missing data mechanism specified through a logistic regression. While 

standard theory exists that explores identifiability and the effects of noise, structured errors, 

and non-ignorable missing data on estimates of the regression coefficients of models of this 

sort (e.g., see Wang et al. 1996), to the best of our knowledge, no theory exists that explores 

the effects on estimates of the correlation. In this Section, we establish a few novel 

theoretical results in this directions. They provide insights into the results of Section 4.

We state mild conditions under which the parameters of our model are expected to be 

identifiable, in Section 3.1. We then demonstrate three ways in which an analysis that 

disregards key aspects of the data leads to attenuated estimates of the correlation, ψ1,2. In 

Section 3.2 we specify, in the context of our model, the known result that noise attenuates 

correlation. In Section 3.3 we go further, proving that it is not enough to simply incorporate 

noise into the model– if we don't model the correlation structure of the noise between 

replicates, we still underestimate correlation. Finally, in Section 3.4 we state a condition 

under which ignoring missing data also coincides with negatively biased estimates of ψ1,2. 

Below, we state and discuss the main results. The proofs are provided in the Appendix.

Ultimately, all three results suggest that any analysis which ignores measurement error, 

covariance structure, or missing data will typically understate the magnitude of linear 

dependence between the response variables. Since all of the biases are in the same direction, 

the errors do not cancel out. These results are consistent with the relatively moderate 

correlations reported in previous analyses, none of which account for these three features. 

As such, these theoretical insights further support our finding in Section 4.3 that the true 

correlation between mRNA expression and protein abundance is larger than previously 

reported.

3.1 Identifiability

Lee (2007, Sec. 2.2.2) states the conditions under which Gaussian random effects models 

(without missing data) are identifiable. For instance, a sufficient condition is that we fix diag 

(Ψ) = 1. According to this condition, the random effect portion of the model proposed in 

Section 2.1 is identifiable, up to a sign change, for all Li,l[j] and Gk[j], since our model 

contains a single response variable for both mRNA expression and abundance levels.

The situation is more complicated for the observed data model because of the non-ignorable 

missing data mechanism. Simulation results in Section 4.1, obtained with parameters 

specified in Table 6, show near nominal frequentist coverage of the Bayesian posterior 

intervals obtained using our MCMC inference strategy. These empirical results suggest that 

identifiability is not an issue whenever measurements are missing according to Equation 5.

3.2 Attenuation due to noise

In this Section, we state how the correlation between any two measured responses is smaller 

in magnitude than the true correlation between the responses, as long as the measurement 

noise is non-negligible. While this general result has long been established (Spearman 
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1904), we identify the specific parameters in the proposed model which govern the degree of 

attenuation. Specifically, the amount of attenuation depends on the scaling factors, Gk, as 

well as the replicate and experiment noise, θk and ξk.

Theorem 1—Consider two observed replicates, X1, X2, from two different experiments, 

measuring different response variables. For simplicity, let l[j] = j and k[j] = j, so that for 

instance, Xi,1 = Li,1G1 + Ei,1 + Ri,1 + ν1. As specified in section 2.1, we assume without loss 

of generality that Var(Li) = ψi,i = 1. Given ξk > 0 and θk > 0, for k = 1, 2;

holds for ψ1,2 > 0.

3.3 Attenuation due to model mis-specification

In this Section we show that even if we account for noise by incorporating data from 

multiple experiments, if we do not account for the presence of structured noise within 

experiments, we still underestimate correlation. We prove this for a simplified case, where 

our model parameters are assumed to be homogeneous across responses, experiments and 

replicates.

We consider a model, ℳ, of the form as in Equations 1–4, with two response variables (NL 

= 2), two experiments in each response (NE = 4), and n/2 replicates for each experiment, (NR 

= 2n replicates in total):

(11)

We assume that the parameters are homogeneous across response variables, experiments and 

replicates: ξ = ξk ≥ 0 and θ = θj > 0 for all k and j, and also assume G = Gk for all k.

Let ℳ̃ be another model, again, of the form of equations 1–4, but without an experiment 

specific random effect:

(12)

As above, we assume that θ̃ = θ̃j > 0 and G̃ = G̃
k = 1 for all j and k. Aside from having no 

experiment specific random effect, the model two models are identical. That is, ℳ̃ has the 

same structure, ÑL = NL = 2, ÑR = NR = 2n.

Theorem 2—Consider data generated by model ℳ. Let  denote the posterior mean 

estimator of ψ1,2 under the misspecified model, ℳ̃. The posterior mean asymptotically 

underestimates the true correlation as N, the number of mRNAs and proteins goes to 

infinity. That is,
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(13)

with equality only if ξ = 0.

3.4 Attenuation due to missing data

In this Section we explore the implications of neglecting to model a non-ignorable missing 

data mechanism. Since correlation cannot be computed with incomplete pairs of 

observations, a complete case analysis by definition ignores all mRNAs and proteins for 

which either value in the pair is missing. We consider a simplified complete case analysis, 

with a missingness mechanism on only one of the random variables, which induces 

missingness in the other. The result below states that when the the missingness mechanism 

generates an observed data distribution which has smaller variance than the complete data 

distribution, the complete case analysis (on observed pairs) leads to an underestimate of the 

true correlation.

This condition is generally consistent with the missing data mechanism we posit in Eq 5. 

That is, with a logistic missingness mechanism, the variance of the observed data is smaller 

than that of the complete data. As such, this result suggests that previous approaches that 

ignore the missing values for mRNA expression or protein abundance (complete case 

analyses) generally underestimate the correlation.

Theorem 3—Let (X, Y) be a bivariate normal random variable. Consider a missingness 

mechanism on X and denote the observed data, ignoring all censored observations, Xobs. 

Further, assume the missingness mechanism is such that Var(Xobs) < Var(X). In a complete-

case analysis, the missingness mechanism on X also induces a stochastic censoring on Y, 

and only Yobs is observed. If Cor(X, Y) > 0, then

(14)

4 Results

We evaluate our methodology on synthetic and real data. In Section 4.1, we show that the 

Bayesian confidence intervals have good frequentist coverage, especially for the parameters 

of interest. In Section 4.2, we show that the proposed model is fairly robust to departures 

from normality of the log-mRNA or log protein abundance levels. We also empirically show 

that the basic structure of the model is necessary, consistent with theoretical results in 

Section 3. In Section 4.3, we present the results of the meta-analysis analysis on the data sets 

listed in Table 1 and compare our results to previous estimates of the correlation between 

mRNA expression and protein correlation in yeast. In Section 4.4, we incorporate 

technology information into the model, and check the sensitivity of the estimated correlation 

to different assumptions about the magnitude of technology bias.
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4.1 Frequentist coverage

We set out to evaluate frequentist coverage of the Bayesian intervals under realistic 

simulated data sets. We considered three scenarios for the true correlation, ψ1,2 = 0.5, 0.8, 

and 0.9. Each scenario consists of 27 simulated experiments, 11 measuring gene expression 

and 16 measuring protein abundance, each with a number of replicated measurement 

matching a real data set in Table 1, and each measurement with 5,300 dimensions—

corresponding to distinct genes and proteins. The remaining parameters (ηk, Gk, ξk, θj, for all 

j, k) were set to the posterior means reported in Table 6, which were obtained when fitting 

the model to the real data, to generate realistic data. Using these parameter values, we then 

simulated 100 replicated data collections for each correlation scenario.

Table 2 reports the frequentist coverage of the 50% and 95% Bayesian posterior intervals for 

the correlation ψ1,2 and the other model parameters. For each of the three correlation 

scenarios (ψ1,2 = 0.5, 0.8, and 0.9), we report the fraction of times the posterior interval 

covers the true correlation. For ξk,  and Gk we report the average coverage, over the NE 

experiment specific parameters. For νj and θj we report the coverage averaged over all NR 

replicates in the data set. The coverage is excellent for most parameters, especially the main 

parameter of interest, ψ1,2, and the experiment effect variances ξk.

4.2 Robustness to mis-specification

In this Section, we test the robustness of our model to departures from normality. Since it is 

not possible to observe the complete data, it is difficult to assess the left tail behavior of the 

complete data distribution for some data sets. To test how well our model performs for non-

normal distributions with skew and heavier tails, we generate the mRNA expression and 

protein levels, Li,l, using the asymmetric Laplace distribution. A standard multivariate 

asymmetric Laplace has the representation

(15)

where Z ~ NL (0, Σ) and X is exponentially distributed with mean one (Kozubowski and 

Podgorski 2000). The asymmetric Laplace distribution is a continuous mixture of normals 

with exponentially distributed variance. The parameter m induces skewness. Figure 4 

illustrates the univariate and bivariate asymmetric Laplace distributions for various values of 

the m skewness parameter.

We ran our algorithm on simulated data at three levels of correlation (0.5, 0.8 and 0.9) and 

varying skewness in the mRNA expression and protein levels. We again fixed the 

parameters to match those inferred from the true data (in Table 6) but this time generating Li 

from an asymmetric Laplace (Equation 15) instead of the bivariate normal (Equation 2). 

Table 3 shows the inferred correlation for data generated using the multivariate asymmetric 

Laplace. While the model, as expected, gives biased correlation estimates for non-normal 

data, the bias is very small, even for very skewed and/or peaked data distributions.

Not only is the model robust to misspecification, but also, simpler models fail to give good 

estimates for at least some of the parameters. We conducted four kinds of experiments on 
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synthetic data, the results of which are summarized in Table 4. All all four experiments we 

tested three different true ψ1,2 values: 0.5, 0.8 and 0.9, with 10 runs for each of these values. 

All experiments used 5000 mRNAs and proteins.

1. First we show that modeling noise is important because noise attenuates 

correlation. Ignoring noise results in a downward bias in the inferred correlation. 

See Theorem 1. We generated noisy bivariate normal data with unit variance, 

one replicate for mRNA and one for protein levels, for 5000 mRNAs/proteins, 

with true correlations 0.5, 0.8 and 0.9. The noise level was ξ + θ = 0.8. Then we 

ignored the noise in our naive inference, i.e. we calculated the observed 

correlation of the noisy bivariate normal data.

2. Second, we show that ignoring the structure of the noise leads to attenuated 

correlation estimates. We use 16 mRNA expression and 16 protein replicates 

equally divided in 4 experiments for both. We generate noisy multivariate 

Normal data with this structure, with constant noise levels ξk[j] = 0.6 

(experiment effects) and θj = 0.2 (replicate effects). The Gl[j] scaling parameter 

was one. Then we run the inference procedure by ignoring the experiment 

random effects, i.e. setting ξk = 0. See Theorem 2.

3a. Third, if part of the data is non-ignorably missing, then the correlation estimates 

are attenuated. We use 16 mRNA expression and 16 protein replicates equally 

divided in 4 experiments for both. We generate noisy multivariate Normal data 

with this structure, with constant noise levels ξk[j] = 0.6 (experiment effects) and 

θj = 0.2 (replicate effects). The Gl[j] scaling parameter was one. The parameters 

of the observation model were set arbitrarily in a way to get about 1000 

completely observed mRNAs and proteins. In the inference we ignore the non-

complete cases, and only use the (about 1000) completely observed mRNAs and 

proteins. See Theorem 3.

3b. Lastly, we show that imputing the missing data, but using a simpler, “missing at 

random” observation model fails to estimate correlation correctly. The synthetic 

data contained two experiments for both mRNA expression and protein levels, 

and two replicates for each experiments. The noise levels were set to ξk[j] = 0.6 

and θj = 0.2, the parameters of the observation model were tuned to obtain about 

1000 completely observed mRNAs and proteins. The missing data was then 

imputed by fitting the model using a MAR assumption instead of Equation 5. 

We find that using more experiments and/or more replicates tends to correct the 

bias in the inferred correlation. When the correlation is high, the conditional 

variance of a missing value, given all other observed values for the same mRNA 

or protein, will be small. With many good observed “surrogate measurements”, 

the results are somewhat robust to MAR assumptions.

What about correlation between observations? In this research we assume that the 

measurements on each gene are independent observations with between replicate 

covariance, Σ. We consider correlation between genes in the experiment effects. Certain 

functionally related genes may in fact vary together across experiments in which the data are 

actually obtained in some condition which is close to, but not exactly, the one defined. Let E 
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be the N × NE random matrix of experiment specific random effects. We can augment the 

model to incorporate “between gene” row correlation, Δ, across the experiments:

(16)

where ξ is the diagonal matrix of experiment specific variances. We evaluate the effect of 

non-identity row correlation, Δ, in simulation. We consider simulations involving three 

different correlation structures between genes to evaluate how this influences the inference 

of latent mRNA-protein correlation at three different ψ1,2 levels: 0.5, 0.8, and 0.9. In the first 

two cases we assume that the genes have a block correlation structure and that within blocks 

the genes are correlated at level 0.9. In two different simulations, we block the genes into 10 

groups and 100 blocks of roughly equal size. In the third simulation we generate data with 

the gene correlation structure estimated from an independent Yeast data set under multiple 

conditions (Brem and Kruglyak 2005).

Row-wise correlation essentially decreases the effective sample size, leading to 

overconfidence in the inference (Efron 2009). Table 4.2 shows the 95% interval of the 

sampling distribution as well as the coverage of the 95% credible interval. As expected, 

there is significant loss of coverage, but the model estimates are essentially unbiased and the 

error is small. Thus the substantive conclusions on the data in Table 1 are not expected to 

change much in the presence of row-wise correlation in the noise.

Finally, we test how robust our model is to misspecification of the missingness mechanism. 

In particular, we assume a rather simple logistic form for the missingness of both mRNA 

and protein levels. There is evidence of more complicated missingness mechanisms, 

especially in studies using LC MS/MS to measure protein abundance. Here, a two-stage 

missingness mechanism, capturing both informative and non-informative censoring may be 

more appropriate Karpievitch et al. (2009). To account for a possible misspecification of this 

type, we generate data assuming that every protein is missing with a 20% probability, 

independent of its abundance in addition to the logistic censoring specified in Equation 5. 

The data was generated in a way such that the total fraction of missingess matched the true 

data. We generate data at three levels of true correlation (0.5, 0.8 and 0.9) and estimate this 

correlation using the one-level informative missingness model. There is no bias in the 

estimates, even though the missing data mechanism is slightly misspecified (0.50 ± .02, 0.80 

± .01, 0.9 ± .006). Since the marginal probability of missingness can be well approximated 

by our two-parameter observation model, the procedure is robust to more complex 

mechanisms.

4.3 Quantifying the transcriptional control of protein production

The main focus of this research is to identify the underlying true correlation between mRNA 

expression and protein abundance in exponentially growing yeast at steady state. Thus, we 

fit our model on the data listed in Table 1. When fitting the model on this data, we initialize 

our chains using standard software (Rosseel 2012) to find the EM solution, assuming data 

missing at random (Honaker et al. 2011), and use this as a starting point for our Gibbs 

sampler. To save disk space we save every 50th sample, and use over 5000 samples to 

generate posterior estimates. We checked the convergence of the MCMC simutaion for the 
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ψ1,2 samples, using two MCMC chains and the R̂ statistics of Gelman and Rubin (1992). In 

our real data fits, R ̂ was close to 1 (less than 1.01), indicating very good convergence. The 

effective sample size for the inferred correlation, ψ1,2, is 1427. The average effective sample 

size for the experiment noise within mRNA expression experiments is 3368 and for protein 

expression experiments is 1609.

After accounting for the measurement structure, biological and technical noise, and missing 

data, we estimate the true posterior mean correlation to be 0.82 (± 0.01). This estimate is 

significantly larger than almost all previous estimates (Gygi et al. 1999; Ingolia et al. 2009) 

or estimates derived from naive complete-case analyses between single measurements 

(Figure 5A).

Some of our data sets have a very large number of measurements missing. To check that 

including them does not bias our results, we also fitted the model with exluding experiments 

with (1) more than 80% and (2) more than 60% of missingness. In both cases the inferred 

ψ1,2 value was 0.83±0.01, comparable to the result obtained on the full data set, 0.82±0.01, 

in fact slightly higher.

These results have implications for our understanding of the role of post-transcriptional 

regulation in yeast at steady-state. In particular, they suggest that this type of regulation is 

not as pervasive as previously thought. Additionally, the data and our results suggest that, 

using the current technologies, yeast mRNA expression levels are not much worse for 

predicting protein abundance values in a given experiment than another protein abundance 

measurement from another lab. This is important because measuring mRNA expression 

levels is simpler and cheaper than measuring protein abundances. Thus, mRNA levels may 

in fact be a reasonable proxy for protein abundance, at least in steady state. A list of all 

experiment specific parameters are given in Table 6. The parameters, η, reflect the inferred 

missingness pattern by experiment, and the noise parameters ξ and θ reflect how much each 

experiment and replicate deviate from the inferred true gene expression or protein levels.

4.4 Assessing the impact of different measurement technologies

In our initial analysis, we assumed that for both mRNA expression and protein levels, all of 

the experiment level variables, Ei,k, are exchangeable. However, in reality there is further 

distinguishing information, namely, the technology that is used by each lab. In the literature, 

in addition to lab level effects, there is evidence of different systematic biases in the 

technologies (Wang et al. 2009; Roberts et al. 2011; Yuen et al. 2002). Incorporating these 

effects implies that experiments are only exchangeable if they are conducted using the same 

technology.

By introducing technology specific variables into the model, we can assess how sensitive the 

estimate of Ψ is to a model incorporating technology. For this analysis, we assume that each 

technology, t, has some bias, Tt, which is normally distributed with a technology specific 

variance. However, as noted by Larsson et al. (2013), the extent of technology specific bias 

and variation is not completely understood. As such, in our model, the technology specific 

biases have unknown variance terms that are impossible to infer without external data or 

prior knowledge. Thus, we perform a sensitivity analysis to check how our inferred 
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correlation changes with different assumptions about this bias. We amend our model to 

incorporate technology information as follows:

(17)

(18)

with the rest of the model as defined in equations 2–5. Here, t[j] indexes a particular 

technology used for measuring replicate j. Technologies and experiments form nested 

groups. All replicates in a given experiment were performed using the same technology. 

Each technology is only used to measure either mRNA or protein levels. As before, Ei,k and 

Ri,j represent experiment and replicate specific effects.

Wt is a technology specific weight which can be fixed a priori or drawn from a distribution. 

The measured data alone cannot inform us about which technologies give more biased 

estimates. Accordingly, we fit our model, in separate runs, using different pre-chosen sets of 

weights, W, to explore the sensitivity of our results to possible biases in technology.

We consider three technologies for measuring mRNA expression (custom microarray, 

commercial microarray and RNA-Seq) and two technologies for measuring protein 

abundance (two-dimensional gel electrophoresis and mass spectrometry). For each 

technology, we assume Wt[j] is iid uniform over the set {1, 2, 5}. The values 1, 2, and 5 are 

arbitrary but representative of possible moderate and large technology specific biases. Under 

this assumption, the heavily weighted technology (Wt = 5) has bias with average magnitude 

that are  times smaller than the technologies assigned weight 1. Figure 5B shows the 

posterior mean correlation mixed over all combinations of weights. The mean correlation is 

slightly larger and more variable, but the qualitative results are qualitatively similar to those 

presented in Section 4.3. Figure 5C shows five conditional posteriors each with exactly one 

technology assigned weight 5 and the rest assigned weight 1.

Interestingly, the results in Figure 5C are nearly identical between protein abundance 

technologies, suggesting that mass spectrometry and the 2D gel technique imply biases of 

similar magnitude on Ψ̂. The results are more variable for the mRNA expression 

technologies. Weighting our estimate toward RNA-Seq yields the lowest correlation 

estimate (0.80) while weighting the estimate toward custom microarray yields a higher 

estimate (0.85). Crucially, when all technologies are given equal weight, the posterior mean 

correlation is close to the highest, at 0.86. Consistent with previous studies (Lu et al. 2007), 

this suggests that by combining data from experiments involving diverse technologies, we 

may in fact get better estimates than any one technology could give us on its own.

5 Discussion

We have presented an original meta-analysis of high-throughput biological data sets to 

quantify the coordination between transcription and translation, in yeast growin 

exponentially at steady state. Operationally, we have developed a hierarchical random 

effects model for log-transformed mRNA expression levels and protein concentrations, 
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which includes a non-ignorable missing data mechanism. The correlation between latent 

representations of these two high-dimensional responses is the estimand of interest in our 

meta-analysis. This estimand is traditionally regarded as a nuisance parameter (e.g., Wang et 

al. 1996), thus we develop theory to assess the effects of noise, structured measurements, 

and non-ignorable missing data on the estimates, in Section 3.

We defined the correlation between latent mRNA and protein levels as the estimand of 

interest, to quantify the notion of coordination between transcription and translation. Our 

study is necessarily restricted to a single state of a simple organism, and has no direct 

implications for post-translational regulation in other settings, dynamically changing 

environments, other organisms, or regulation that cannot be measured by correlation (e.g. 

amplification of effects). Alternative notions of coordination are possible, however, some 

more justifiable than others. The correlation between observable measurements is a poor 

choice, for instance. More sophisticated approaches could consider a notion of an underlying 

biologic signal, quantified by means of categorial, or even simply binary, signal (Parmigiani 

et al. 2002). In the context of such approaches, it would then be natural define the 

correlation of these categorical, or binary, random variables as the estimand of interest.

Further evidence that illustrates the relevance and timeliness of estimates about the scalar 

estimand of interest here is given by a recent paper that targets the same estimand, in human 

(Li et al. 2014). In this paper, the authors report an estimate for the correlation between 

mRNA and protein levels of about 0.8, which is close to the estimate we report, but slightly 

lower, as can be expected given the complexity of a study in human.

Identifiability of random effects models is an outstanding issue and needs to be evaluated on 

a case-by-case basis. As detailed in Section 3.1, our model meets sufficient conditions for 

identifiability for the parameters Li,l[j] and Gk[j] for all combinations of the indices i, j, k, l 

(e.g., Lee 2007, Sec. 2.2.2), but the non-ignorable missing data mechanism complicates the 

situation beyond the reach of available theory. However, the frequentist coverage results in 

Section 4.1 suggest that all the key parameters are identifiable. While these results were 

obtained on simulated data sets, the design of experiments matched closely the properties of 

the data collected for the meta-analysis, and parameter values were set to the estimated 

values obtained on the real data, thus adding confidence to the empirical identification.

We choose not to include information on estimates of the correlation between mRNA and 

protein levels reported in previous studies, including those whose data we included in the 

meta-analysis presented in Sections 4.3 and 4.4. This choice is motivated by the 

questionable statistical choices previous results depend on, including the use of complete 

cases only in the presence of non-ignorable missing data (caused by the measurement 

protocols implemented in the various technologies), the lack of modeling assumptions about 

important sources of variation in the data, or the lack of a model altogether. By not including 

previously reported correlations, we aimed at producing an independent analysis, based on a 

simple model that can be expected to produce robust estimates.

The exploratory data analysis summarized in Figure 2 suggests that the amount of missing 

data is inversely proportional to mRNA expression and protein concentration. This is 
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expected, since even modern high-throughput technology find it difficult to complete the 

measurement protocols successfully for rare transcripts and proteins (Walther and Mann 

2010; Soon et al. 2013). For convenience, we fully specified the non-ignorable missing data 

mechanism by means of a logistic regression, a well established approach (e.g., see Rubin 

and Little 2002; Ibrahim et al. 2005). Inference results were not sensitive to two alternative 

specifications of the (MNAR) missing data mechanism we considered; probit and log-log.

The assumption of normality of the log-transformed measurements of mRNA expression 

and protein concentration is another choice of convenience. We intended to carry out the 

meta-analysis with a model that included all the important sources of variation in the data, 

while simple enough to allow for some theoretical results on the correlation estimates. The 

multivariate normal distribution was an obvious choice. Exploratory data analysis suggested 

that log-transformed data are approximately normal. Goodness-of-fit evaluation by means of 

posterior predictive checks confirmed that the models in Sections 4.3 and 4.4 fit the data 

well. The simulation studies based on the multivariate asymmetric Laplace distribution for 

log-transformed data presented in Section 4.2, add further confidence that estimates of the 

correlation between mRNA and protein levels are robust to model mis-specifications.

5.1 Substantive conclusions

The main result of our meta-analysis is that the correlation between mRNA and protein 

levels, when estimated with a reasonable model, is much higher than previously reported. 

Our analyses indicate that a more accurate estimate of such correlation is between 0.82 and 

0.86, depending on which model variant is used, the most conservative estimate being 

0.82±0.01. The proportion of variance explained is expected to increase if one were to 

remove some of the within experiment variation by design. This could be accomplished, for 

instance, by using the same sample for both mRNA and protein quantification, by preparing 

the sample under conditions that are demonstrably steady-state and not altered by a transient 

stress response, or by using measurement technology with improved precision and accuracy. 

While our study is restricted to a simple organism and a well-defined condition, the analysis 

indicates that there has been widespread overestimation of the role of post-transcriptional 

regulation in these conditions (Gygi et al. 1999; Ingolia et al. 2009), and that suggests that 

other dominant modes of regulation are not waiting to be discovered.

Interestingly, the sensitivity analysis that incorporates technology information into the 

model suggests that the highest estimated correlation is obtained when we assume a bias of 

equal magnitude across technologies. This result is consistent with previous work that 

suggest improved estimates can be achieved by averaging across technologies (Lu et al. 

2007). While there is debate about the best high-throughput technology, this result suggests 

that consolidating data from different sources, under the assumption that all technologies are 

equally good, balances out the biases from any individual approach. In other words, new 

technology is not necessarily better, than older but more mature technology.

Technology alone, however, does not explain all of the variability between different 

experiments. We hypothesize that much of the between experiment variability is due to 

disparity in growth rates at time of harvest. Even though the studies in our data collection 

claim to analyze samples from exponentially growing yeast, it is plausible that the growth 
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rates differ due to experimental protocols. As evidence of this, preliminary results suggest 

that the scaling factors, Gk[j], are highly correlated with independent estimates of growth rate 

(Airoldi et al. 2009). We further explore this hypothesis elsewhere (Csárdi et al. 2013).

Ultimately, our meta-analysis analysis highlights the dangers of casually using correlations 

between observables to estimate the strength of the coordination between processes in the 

cell. We have shown that noise, missing data and model mis-specification can lead to 

spurious conclusions, in theory, and they actually do in practice.
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A Proofs

A.1 Theorem 1

Proof

Let ψ1,2 = Cor(L1, L2). Then the covariance between the observed measurements X1 and X2 

is Cov(X1,X2) = G1G2ψ1,2 by equations 1–4. Finally, using equation 8 for the observed data 

variance, we have

(19)

(20)

(21)
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A.2 Theorem 2

Proof

In the proof, we don’t need to assume that the latent response variances are fixed, they can 

vary freely. This is because the Gk = G̃
k = 1 restriction already ensures identifiability. We 

denote this new model, without unit variances, by ℳp. Similarly, our new misspecified 

model without unit variances is denoted by ℳ̃p. Models ℳ and ℳ̃ will be a special case of 

the proof.

Bunke and Milhaud (1998) show, under mild conditions satisfied here, that when the MLE 

converges to a unique value, the posterior mean converges almost surely to that same value. 

Thus, instead of working with the posterior mean , it suffices to prove that the 

inequality holds for the MLE: , with equality only if ξ = 0.

Figure 6: The structure of the covariance matrix Σ of the true model ℳp (left) and the 

covariance matrix Σ̃ of the misspecified model ℳ̃p (right), from Theorem 2. The marginal 

variances of the replicates are σ2 = θ + ξ + ϕ + γ and σ̃2 = θ̃ + ϕ̃ + γ̃ and the experiment 

covariances are ε = ξ + ϕ + γ.

Consider multivariate normal data X = [X1, …,X2n] generated from the true model ℳp. 

Under ℳp, Cov(X) = Σ can be written as

(22)
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where ⊕ is the direct sum operator, and 1n is the constant one column vector with n rows. In 

(22) we define ψ1 = ψ2 = γ + ϕ. As noted at the beginning of the proof, we do not assume 

that ψ1 = ψ2 = 1, since fixing Gk = G̃
k = 1 ensures identifiability for both models. We also 

assume γ ≥ 0, θ > 0, ξ ≥ 0, ϕ ≥ 0. The correlation between the responses can be written as 

ψ1,2 = γ/(ϕ+γ) now.

The misspecified model ℳ̃p has covariance matrix Σ̃, with the following structure:

(23)

where γ̃ ≥ 0, θ̃ > 0, ϕ̃ ≥ 0. Again, we do not assume ψ̃
1 = ψ̃

2 = 1 here, and ψ̃
1 = ψ̃

2 = ϕ̃+γ̃, 

and the correlation between the responses is ψ̃
1,2 = γ̃/(ϕ̃ + γ̃).

Figure 6 shows the strucure of both the true Σ and the misspecified Σ̃.

First, we reparameterize Σ̃ in terms of its eigenvalues. We present three properties about the 

eigenstructure of Σ̃:

1. Σ̃12n = (θ̃+nϕ̃+2nγ̃)12n, so  is a normalized eigenvector of Σ̃ with 

eigenvalue θ̃ + nϕ̃ + 2nγ̃. This can be seen easily by performing the matrix-vector 

product:

(24)

(25)

2. Let  be a column vector with n ones on the top and n minus ones on the bottom: 

. Then  so  is a normalized 

eigenvector of Σ̃ with eigenvalue θ̃ + nϕ̃

(26)

3. The remaining 2n−2 eigenvalues are all equal to θ̃. To see this, we show that if a 

vector v is orthogonal to both 12n and , then it is an eigenvector of Σ̃ with 

eigenvalue θ̃. We partition v into two blocks of equal size: v = [v⊤|v⊥]′. If v is 

orthogonal to 12n, then its elements sum up to zero. If it is orthogonal to , then 

the elements of both v⊤ and v⊥ sum up to zero as well. So we have

(27)

Thus, our eigendecomposition is , where
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(28)

(29)

(30)

and we will parameterize Σ̃ with λ1, λ2, λ3 instead of θ̃, ϕ̃ and γ̃.

The likelihood of a covariance matrix Φ, for X is given by

(31)

and the log-likelihood is

(32)

where S is the sample covariance matrix of X.

For a given data set, N is constant, so we can divide (32) by N/2 and omit the constant terms 

to get

(33)

In the limit as N → ∞, (N − 1)/N → 1 and S → Σ elementwise with probability 1. Since the 

likelihood function is continuous, the log-likelihood is simply

(34)
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by the continuous mapping theorem. We maximize log ℒ̃ over Φ, where Φ is of the same 

form as Σ̃ (Eq 23). For simplicity we use Σ̃ instead of Φ in the following.

We find the maximum of log ℒ̃ as a function of λ1, λ2 and λ3. Since the parameter space is 

not compact we first evaluate the log likelihood at the boundaries. It is easy to see that at 

each boundary, the log likelihood diverges to negative infinity:

(35)

If at least one of θ̃, ϕ̃ or γ̃ goes to infinity, then at least one eigenvalue of Σ̃ goes to infinity 

(see equations 28–30), so −log det(Φ) goes to negative infinity and the second term of the 

log likelihood is a finite constant. If θ̃ → 0, then the first term goes to positive infinity, the 

second to negative infinity, but because of the logarithm, the second term dominates and the 

likelihood goes to negative infinity. This means that the likelihood has a global maximum in 

the interior of the parameter space.

At the MLE, the derivative of the log-likelihood must vanish. Differentiating the log-

likelihood in terms of an arbitrary parameter p gives

(36)

where we use the fact that

(37)

The derivatives in terms of the three parameters are

(38)

In the following, we use the fact that Σ̃v1 = λ1v1 and Σ̃−1 v1 = 1/λ1v1 and set the first partial 

derivative to zero.

(39)

which, using , simplifies to

(40)

From here we can easily see that the MLE of λ1 is

(41)
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A similar argument leads to the MLE for λ2:

(42)

For the third parameter we have

(43)

The second term is the trace of

(44)

(45)

and the trace itself is

(46)

(47)

Using this with equation 43, we get

(48)

Going back to the original parameterization is easy:

(49)

and yields

(50)

To show that the posterior mean of the misspecified model underestimates the true 

correlation, we need to show that

(51)
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This is equivalent to ϕ̃MLE ≥ ϕ, which holds, with equality only if ξ = 0. This completes the 

proof.

A.3 Theorem 3

Proof

Denote ρ = Cor(X, Y) > 0 and ρobs = Cor(Xobs, Yobs). Assume, without loss of generality, that 

X and Y have mean zero and unit variance. We can write Y as

(52)

where Z is a standard normal, independent of X. By assumption, we only observe Xobs, with 

Var(Xobs) = c, with 0 < c < 1. By equation 52, we then have

(53)

(54)

(55)

Similarly, Cov(Xobs, Yobs) = ρc. Assuming ρ > 0, it is true that

(56)

B Additional figures and tables

Figure 7: Distribution of observed and imputed mRNA and protein levels, in different 

experiment, together with the logistic censoring probability. A: LEE protein abundance data, 

B: LU protein abundance data, C: CAUS mRNA expression data set.
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Figure 8: Principal component analysis of the mRNA replicates. Only mRNAs that were 

measured in all replicates, are included here, 390 genes in total. It is clear that most of the 

variation is according to the lab, where the experiment was performed. In the case of the 

Lipson and Ingolia labs, the two and three batches are also apparent and motivate our choice 

to treat these as separate experiments.

Table 7

Details about missing data. The tables show the number of proteins (left) and mRNAs (right) 

with a given number of observations. The number of observations is in the first columns, the 

number of proteins/mRNAs with that many observation in the second columns, and the 

number of proteins/mRNAs with at most that many observations in the third columns.

Proteins

# obs. # prot. cumul. # prot.

0 813 813

1 445 1258

2 249 1507

3 131 1638

4 79 1717

5 72 1789

Franks et al. Page 30

J Am Stat Assoc. Author manuscript; available in PMC 2016 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Proteins

# obs. # prot. cumul. # prot.

6 129 1918

7 334 2252

8 689 2941

9 624 3565

10 453 4018

11 342 4360

12 290 4650

13 235 4885

14 180 5065

15 191 5256

16 194 5450

17 204 5654

18 135 5789

19 49 5838

20 16 5854

mRNAs

# obs. # mRNAs cumul. # mRNAs

0 2 2

1 1 3

2 2 5

3 1 6

4 2 8

5 2 10

6 37 47

7 21 68

8 13 81

9 12 93

10 21 114

11 12 126

12 18 144

13 24 168

14 22 190

15 28 218

16 36 254

17 41 295

18 56 351

19 33 384
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mRNAs

# obs. # mRNAs cumul. # mRNAs

20 30 414

21 21 435

22 30 465

23 23 488

24 40 528

25 49 577

26 76 653

27 90 743

28 107 850

29 160 1010

30 210 1220

31 342 1562

32 370 1932

33 497 2429

34 685 3114

35 924 4038

36 809 4847

37 617 5464

38 390 5854
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Figure 1. 
mRNA expression data (left panel) and protein concentrations data (right panel) are highly 

structured. The plots show naive, biased Pearson correlation estimates between pairs of 

replicated measurements on the intersection of observed mRNAs/proteins; separately for 

replicates within experiments (solid) and across experiments (dashed). The thin black line in 

each panel shows the naive correlations between mRNA expression and protein replicates. 

The observed mRNA expression–protein correlations are comparable to the between-

experiment correlations for both mRNA expression and protein levels. The top labels 

indicate the mean pairwise correlation between and within experiments.
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Figure 2. 
Unavailable values are not missing at random. The bars show the average observed mRNA 

levels (left panel) and protein concentration values (right panel), standardized, plotted as a 

function of the number of missing values for each mRNA (out of 38 total), or protein (out of 

20 total). Bar widths are proportional to the number of genes (proteins) in each bin.
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Figure 3. 
A) Responses, experiments and replicates form a nested group structure. B) These groups 

define a “similarity matrix”, a covariance matrix characterized by a block structure for Var 

X = Σ. The  marginal variances are given by Equation 8,  is the within 

experiment covariance. Gk[jr] is the scaling factor for the experiment of the replicate 

corresponding to row jr of the matrix, Gk[jc] is the same for column jc.
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Figure 4. 
A) examples for asymmetric Laplace distributions for various shape parameters, the means 

of the distribution are matched to zero. B) examples for bivariate asymmetric Laplace 

distributions with ψ1,2 = 0.8 and various m = [m1, m2] shape parameters.
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Figure 5. 
A) mRNA expression–protein correlation estimates. The lines with filled and empty circles 

show all naive pairwise correlation estimates, using mRNAs measured in both data sets 

only, and the posterior distribution for the correlation, inferred via our structured covariance 

model, respectively. Dashed vertical lines correspond to mean values. The correlation of the 

(naive) average protein and mRNA expression levels over measurements is also shown. B) 

Posterior distribution of the correlation using the technology extension to our model, and 

discrete technology variance priors on all combinations over the weights 1, 2 and 5. The 

vertical lines show three weight configurations: the ones with the smallest and largest mean 

inferred correlation and the equal weighting (all weights equal to 1). C) Posterior 

distributions of mRNA expression–protein correlations, conditional on exactly one up 

weighted technology (W = [1, 1, 1, 1, 5]).
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Table 1

List of mRNA data sets (above the midline) and protein concentration data sets (below the midline). If the data 

set has multiple measurements, the number of replicates in each data set is given after the technology name, in 

parentheses. ‘2D gel’ stands for two-dimensional gel electrophoresis, and ‘MS’ for mass-spectrometry. The 

last column is the missingness rate out of the 5,308 genes in our data set.

ID Reference Technology (measurements) Missing

CAUS Causton et al. (2001) commercial microarray (×5) 19–22%

DUD Dudley et al. (2002) custom microarray (×4) 5%

GARC García-Martínez et al. (2004) custom microarray 1%

HOLS Holstege et al. (1998) commercial microarray 12%

ING1 Ingolia et al. (2009) RNA-Seq (mRNA rich) (×2) 9–10%

ING2 Ingolia lab, unpublished, 2010 RNA-Seq (rq) (×2) 4–5%

ING3 Ingolia lab, unpublished, 2010 RNA-Seq (ca) (×2) 6–8%

LIP1 Lipson et al. (2009) RNA-Seq (×6) 1%

LIP2 Lipson et al. (2009) commercial microarray 4%

MAC MacKay et al. (2004) custom microarray 28%

MIUR Miura et al. (2008) cPCR (×4) 26–29%

NGAL Nagalakshmi et al. (2008) RNA-Seq 22%

PELE Pelechano and Pérez-Ortín (2010) custom microarray 14%

ROTH Roth et al. (1998) commercial microarray (×2) 59–70%

VELC Velculescu et al. (1997) SAGE 58%

YASS Yassour et al. (2009) RNA-Seq (×4) 5%

FUTR Futcher et al. (1999) 2D gel 99%

GHAM Ghaemmaghami et al. (2003) Western blot 34%

GODO de Godoy et al. (2008) LC MS/MS 25%

GYGI Gygi et al. (1999) 2D gel 98%

LEE Lee et al. (2011) LC MS/MS (×3) 67–76%

LU Lu et al. (2007) LC MS/MS 83%

NGAR Nagaraj et al. (2012) LC MS/MS (×6) 31%

NEWM Newman et al. (2006) GFP 60%

PENG Peng et al. (2003) LC MS/MS 74%

THAK Thakur et al. (2011) LC MS/MS (×3) 84–85%

WASH Washburn et al. (2001) LC MS/MS 77%
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Table 4

Features of the data that attenuate correlation: noise, noise structure, missing data and non-randomly missing 

data. See text for the complete description. Standard deviations are 0.01 or less, unless shown otherwise.

1. Noise 2. Structure 3a. Missing data 3b. Non-randomly missing data

ψ1,2 ψ̂1,2 ψ̂1,2 ψ̂1,2 ψ̂1,2

0.5 0.32 0.45 0.32 (± 0.07) 0.45 (± 0.02)

0.8 0.50 0.71 0.65 (± 0.02) 0.77 (± 0.03)

0.9 0.56 0.80 0.81 (± 0.03) 0.88 (± 0.02)
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Table 5

The 95% interval of the sampling distribution of the posterior mean when experiment noise is correlated 

between genes. The results show that the estimate of ψ1,2 is essentially unbiased but the variation increases as 

the degree of between gene correlation increases. The fourth column shows the coverage of the 95% credible 

interval. While there is significant undercoverage, the error is small.

2.5% Mean 97.5% Coverage

ψ = 0.5, 10 blocks 0.46 0.50 0.52 0.81

ψ = 0.5, 100 blocks 0.47 0.50 0.52 0.91

ψ = 0.5, Brem et al 0.48 0.50 0.52 0.90

ψ = 0.8, 10 blocks 0.77 0.79 0.81 0.59

ψ = 0.8, 100 blocks 0.79 0.80 0.81 0.89

ψ = 0.8, Brem et al 0.78 0.80 0.82 0.74

ψ = 0.9, 10 blocks 0.86 0.89 0.91 0.28

ψ = 0.9, 100 blocks 0.89 0.90 0.91 0.76

ψ = 0.9, Brem et al 0.88 0.90 0.91 0.60
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