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Abstract

Epidermal melanocytes are particularly vulnerable to oxidative stress due to the pro-oxidant state
generated during melanin synthesis, and to intrinsic antioxidant defences that are compromised in
pathologic conditions. Melanoma is thought to be oxidative stress-driven, and melanocyte death in
vitiligo is thought to be instigated by a highly pro-oxidant state in the epidermis. We review the
current knowledge about melanin and the redox state of melanocytes, how paracrine factors help
counteract oxidative stress, the role of oxidative stress in melanoma initiation and progression and
in melanocyte death in vitiligo, and how this knowledge can be harnessed for melanoma and
vitiligo treatment.

Introduction

Oxidative stress results from overproduction of pro-oxidant species in cells, and/or reduction
of cellular antioxidant capacity, and can damage nucleic acids, lipids, and proteins, leading
to mutagenesis or cell death (Sander et al., 2004). Reactive oxygen species (ROS) are
produced by mitochondria and peroxisomes during normal cellular metabolic processes. The
ROS production may be accentuated under pathologic conditions, such as inflammation and
cancer, as well as, upon exposure to exogenous factors, such as ultraviolet rays (UV), or
chemicals (Klaunig and Kamendulis, 2004; Klaunig et al., 2009; Sander et al., 2004; Zhang
et al., 1997). Skin is the largest organ that interfaces with the environment, and a major
source of ROS that are induced by sun exposure. Epidermal melanocytes are particularly
vulnerable to excessive ROS production due to their specialized function: melanin synthesis,
which is stimulated by sun exposure, during the process of tanning, and by inflammation
that results in postinflammatory hyperpigmentation (Figure 1). Oxidative stress can disrupt
the homeostasis of melanocytes, compromising their survival or leading to their malignant
transformation (Casp et al., 2002a; Fried and Arbiser, 2008; Gavalas et al., 2006;
Govindarajan et al., 2002; Guan et al., 2008; Picardo et al., 1996a; Schallreuter et al., 1999).
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Melanin and the redox state of melanocytes

Melanin synthesis involves oxidation reactions and superoxide anion (O27) and hydrogen
peroxide (H,0,) generation, which subject melanocytes to oxidative stress (Koga et al .,
1992; Simon et al., 2009). Confinement of melanin synthesis to melanosomes protects other
cellular components from oxidative damage. Tyrosinase, the rate-limiting enzyme for
melanin synthesis, oxidizes tyrosine to dopa, and dopa to dopaquinone, a specific
orthoquinone that can react with nucleophilic compounds such as thiols or amino groups.
The catalytic activity of tyrosinase results in the generation of O, (Koga et al., 1992;
Tomita et al., 1984). Dopaquinone is converted into dopachrome through a redox exchange.
After spontaneous decarboxylation, dopachrome generates either dihydroxyindole (5,6-
DHI), which is oxidized into indole quinone, or produces dihydroxyindole carboxylic acid
(5,6-DHICA) after tautomerisation by tyrosinase-related protein 2 (TRP2), and 5,6-DHICA
is then converted into the corresponding quinone. Moreover, TRP2 protects against
oxidative stress by increasing glutathione levels, and reducing the toxicity of quinones and
DNA damage induced by free radicals (Michard et al., 2008). The redox cycling from
indoles to quinones generates ROS (Nappi and Vass, 1996). Polymerization of these reactive
quinones finally leads to the formation of the brown/black eumelanin. The red-yellow
pheomelanin differs from eumelanin in that it has a higher ratio of sulfur to quinones, and its
synthesis involves the generation of cysteinyl-dopa (instead of dopa), which is converted
into benzothiazine derivatives. These differences account for the higher sunlight-induced
pro-oxidant property of pheomelanin compared to eumelanin.

In the skin, the balance between the pro- and antioxidant properties of melanin are mainly
determined by the relative eumelanin and pheomelanin contents, the levels of melanin
intermediates, the concentrations of reactive metals within the melanosome
microenvironment (Di Donato et al., 2002; Liu et al., 2005). There are conflicting reports
about the role of melanin or melanin intermediates as pro- or antioxidants. Constitutive
pigmentation is reported to correlate directly with catalase activity in cultured human
melanocytes, and with the levels of thioredoxin reductase in human skin (Maresca et al.,
2008). Generation of H,O5 in response to UV correlates inversely with constitutive
pigmentation, suggesting an anti-oxidant effect of melanin(Song et al., 2009). In comparison
to keratinocytes, the induction of 8-hydroxydeoxyguanosine (8-OHdG), a major form of
oxidative DNA damage, and expression of several base-excision repair (BER) genes are
higher in melanocytes (Mouret et al., 2012). Paradoxically, cultured human melanocytes
with high melanin content are reported to be more vulnerable to UVA-induced, but less
susceptible to hydrogen peroxide-induced oxidative DNA damage than their counterparts
with low melanin content (Hoogduijn et al., 2004; Wang et al., 2010). Stimulation of
melanogenesis in human melanocytes or mouse melanoma cells is reported to increase
UVA-induced DNA damage (Kvam and Tyrrell, 1999; Marrot et al., 1999; Wenczl et al .,
1998). In contrast, stimulation of melanogenesis in cultured human melanocytes by a-
melanocortin (a-MSH) increases the activity and protein levels of catalase, and markedly
reduces UV-induced H,O, generation (Maresca et al., 2008; Song et al., 2009). In human
melanoma cells, increased pigmentation protects against UV- or hydrogen peroxide- induced
mitochondrial DNA damage (Swalwell et al., 2011). The controversy about the pro-oxidant
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versus the antioxidant effects of melanin and its intermediates is fuelled by reports using
purified melanin or melanin intermediates exogenously added to cultured cells or naked
DNA (Kipp and Young, 1999; Kovacs et al., 2012; Tomita et al., 1984). Although these data
support the oxidative nature of melanin, the experimental conditions used are unlikely to be
physiologically relevant, since melanin is normally confined in melanosomes.

of antioxidant defenses in melanocytes by paracrine factors

The homeostasis of epidermal human melanocytes is maintained primarily by a complex
paracrine network consisting of growth factors and cytokines synthesized by epidermal
keratinocytes and dermal fibroblasts, and modulated by UV. The keratinocyte-derived
endothelin-1 is a potent mitogen and melanogenic factor that reduces H,O, generation and
apoptosis in UV-irradiated human melanocytes (Imokawa et al., 1992; Kadekaro et al.,
2005; Tada et al., 1998). The melanocortins a-MSH and adrenocorticotropic hormone
(ACTH) are synthesized by keratinocytes and melanocytes, and stimulate eumelanin
synthesis as well as melanocyte survival and proliferation by binding and activating the
melanocortin 1 receptor (MC1R). The MC1R is a G4 protein-coupled receptor expressed on
the cell surface of melanocytes. Treatment of cultured human melanocytes with a-MSH
results in rapid reduction in the generation of H,O5 in response to UV exposure, consistent
with earlier findings by Haycock et al. (Haycock et al., 2000; Kadekaro et al., 2005;
Kadekaro et al., 2010; Song et al., 2009). Additionally, a-MSH increases the protein and
activity levels of catalase, and counteracts the inhibitory effect of UV on this enzyme (Song
et al., 2009). Subsequently, treatment with a-MSH reduces the induction of 8-oxodG and
enhances its repair in UV-irradiated melanocytes, and also reduces oxidative DNA damage
induced by H,0O, (Kadekaro et al., 2012; Song et al., 2009). The antioxidant effects of a-
MSH require binding and activation of MC1R, are absent in melanocytes expressing loss-of-
function MC1R, and are inhibited by agouti signaling protein, the physiological MC1R
antagonist (Song et al., 2009). These results establish the significance of the activated
MCI1R in protection of melanocytes from oxidative stress.

Activation of p53 is an important mechanism by which the activated MC1R reduces
oxidative stress in melanocytes. It is noteworthy that p53 regulates pigmentation by
increasing the expression of tyrosinase in human melanocytes, and pro-opiomelanocortin,
the precursor for melanocortins, in mouse keratinocytes (Cui et al., 2007). Activation of the
MCI1R by a-MSH binding augments the UV-induced accumulation of p53 in human
melanocytes by increasing phosphorylation of p53 on Ser15. Treatment with a-MSH also
increases the levels of the BER enzymes OGG1 and APE-1 by a p53-dependent mechanism
(Kadekaro et al., 2012).

Additionally, activation of MC1R by a-MSH regulates intracellular redox status by up
regulating the expression of antioxidant genes, including heme oxygenase-1 (HO-1), ferritin,
and peroxiredoxin-1 (Kadekaro et al., 2010; Song et al., 2009). a-MSH activates a number
of transcription factors known to regulate the redox state of melanocytes. In normal human
melanocytes and melanoma cells, the redox sensor APE-1 is a target of Mitf, the master
regulator of melanocyte survival and function (Liu et al., 2009). Treatment of human
melanocytes with a-MSH up regulates Mitf as well as APE-1 (Kadekaro et al., 2012;
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Kadekaro et al., 2005). Melanocytes also express Nrf-2, an important transcription factor
that up regulates the expression of genes for phase Il detoxification enzymes, and its main
target HO-1 (Jain et al., 2010; Jian et al., 2011; Kaspar et al., 2009; Marrot et al., 2008;
Taguchi et al., 2011). Additionally, a-MSH increases the expression of Nrf-2 gene and its
target genes HO-1, y-glutamylcysteine-synthetase, and glutathione-S-transferase Pi in
cultured human melanocytes, and abrogates the inhibitory effects of UV on Nrf-2 and its
targets (Kokot et al., 2009). Another transcription factor that is activated by a-MSH is
NF«B, known to be activated by TNF-a and ROS (Haycock et al., 2000; Ichiyama et al.,
1999; Manna and Aggarwal, 1998). Treatment of melanocytes with a-MSH inhibits UV-
induced apoptosis by increasing the protein levels of Bcl2, a known target of NFxB and Mitf
(Bohm et al., 2005; Kadekaro et al., 2005).

Significance of oxidative stress in melanoma

Sunlight is a major inducer of ROS formation in the skin, and a major contributor to skin
cancer (Sander et al., 2004). Irradiation of the skin by UVA and/or UVB impairs natural
antioxidant defenses, and induces high levels of ROS. Acute exposure to UV is a main
etiological factor for melanomagenesis. Irradiation of cultured human melanocytes with UV
(75% UVB, 25%UVA) results in rapid dose-dependent generation of H,O, (van der Kemp
et al., 2002)(van der Kemp et al., 2002), and subsequent decrease in catalase activity and
protein levels, and reduced HO-1 expression (Kadekaro et al., 2012; Kadekaro et al., 2005;
Kadekaro et al., 2010; Kokot et al., 2009; Song et al., 2009). Exposure of human OGG1
protein, an important BER enzyme, to UVB results in its inactivation (van der Kemp et al.,
2002).

There is increasing evidence for the significance of oxidative stress in initiation and
progression of melanoma. The role of oxidative stress in melanoma is supported by the
findings that mutations in several melanoma-associated genes result from, or exacerbate,
oxidative stress. The activating V600EBRAF mutation, a somatic mutation commonly
expressed in nevi and melanoma, may be oxidative stress-induced (Landi et al., 2006). In
melanocytes, p16 is an important regulator of oxidative stress, and its depletion in cultured
human melanocytes significantly increases ROS levels (Jenkins et al., 2011). Melanocytes
are more sensitive to p16 depletion than either keratinocytes or fibroblasts, which may
impart the association of p16 mutations with melanoma. Loss of PTEN is associated with
melanoma progression, presumably due to increased superoxide anion resulting from
sustained activation of Akt (Govindarajan et al., 2007). Loss-of-function alleles of the
MCI1R that are associated with increased melanoma risk cause sustained oxidative stress in
human melanocytes due to inability to respond to a-MSH (Kadekaro et al., 2010). In
addition, oxidative stress can impair nucleotide excision repair, the main repair pathway for
UV-induced DNA photoproducts, via lipid peroxidation products that inactivate DNA repair
enzymes (Feng et al., 2006; Feng et al., 2004). Null polymorphisms of GSTM1 and GSTT1
that belong to the glutathione S-transferase family of antioxidant genes, have been
associated with high risk of melanoma, especially in subjects with history of sunburns in
childhood (Fortes et al., 2011). One SNP in the glutathione S-transferase gene GSTP1,
which reduces the activity of the enzyme, has been associated with melanoma susceptibility,
and with further increase in melanoma risk when co-expressed with MC1R variant alleles
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(Ibarrola-Villava et al., 2012). These results strongly suggest that oxidative stress is a driver
of melanomagenesis (Cassidy et al., 2013).

There is increasing evidence for aberrant redox state in melanoma. Melanocytes derived
from melanoma patients display increased sensitivity to oxidizing agents due to endogenous
antioxidant imbalance (Grammatico et al., 1998; Meyskens et al., 2001; Picardo et al.,
1996b; Picardo et al., 1999). Melanoma tumor cells have higher intracellular levels of O,~
compared to normal melanocytes, and aberrantly activate the transcription factors NF-xB
and AP-1 (Meyskens et al., 2001). Moreover, melanoma tumor cells express higher levels of
neuronal nitric oxide synthase, thus generate higher levels of nitric oxide than normal
melanocytes, and this increase correlates with the disease stage in melanoma (Yang et al.,
2013). The significance of oxidative stress in melanoma is further supported by the finding
that the antioxidant N-acetylcysteine inhibits tumor formation in the HGF-survivin
melanoma mouse model (Cotter et al., 2007), and selective inhibitors of neuronal nitric
oxide synthase inhibit melanoma cell growth and metastatic potential (Yang et al., 2013).
Accordingly, antioxidants are being considered for prevention, as well as treatment of
melanoma.

The association of aberrant melanin synthesis with oxidative stress and melanoma has been
investigated by several research teams. Dysplastic nevi that are precursors for melanoma
have increased ROS, and high pheomelanin, sulfur, iron, and calcium levels, and DNA
damage (Pavel et al., 2004; Salopek et al., 1991; Smit et al., 2008). Noonan et al.(2012)
reported that frequency of UVA-induced melanoma tumors in HGF mice increases with skin
pigmentation via an oxidative process involving melanin photoreactivity (Noonan et al.,
2012). Conversely, tumor formation in HGF mice is inhibited by the antioxidant N-
acetylcysteine (Cotter et al., 2007). In human skin, UVA-induced pigmentation was found to
lack photoprotective properties (Miyamura et al., 2011), indicating that exposure to UVA
(e.g. in tanning beds) is not a safe practice. Recently, Mitra et al.(2012) observed that
recessive yellow mice, with loss of function mclr, and co-expressing activating BRAFV600E
mutation develop more invasive melanoma tumors than their albino counterparts, and that
pheomelanin results in oxidative DNA damage (Mitra et al., 2012). They concluded that
oxidative DNA damage resulting from pheomelanin synthesis is causal for melanoma,
independently of UV exposure. How these findings apply to human pigmentation and
melanoma deserves to be investigated, since human melanocytes synthesize both, eumelanin
and pheomelanin, unlike recessive yellow mouse melanocytes that only synthesize
pheomelanin. The ratio of these pigments should determine the overall effects on the redox
state of melanocytes particularly upon UV exposure. Also, eumelanin and pheomelanin and
their intermediates might differ chemically in human vs. mouse melanocytes, which might
impact their pro- or antioxidant properties. Given that eumelanin is a scavenger of ROS
(Meredith and Sarna, 2006), it can be concluded that reduction of eumelanin, as in
individuals with fair skin, or absence of eumelanin, as in recessive yellow mice, potentiates
melanoma risk by increasing the vulnerability of melanocytes to oxidative stress.
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Oxidative stress and loss of melanocytes in vitiligo

Vitiligo is a depigmentary disease that occurs in approximately 0.5% of the world
population, and is characterized by loss of melanocytes in the epidermis by an autoimmune
mechanism (Spritz, 2013; Taieb and Picardo, 2007). However, there is strong evidence for
the role of oxidative stress as a key factor in the onset and progression of the disease.
Increased sensitivity of melanocytes from vitiligo patients to UVB-induced cell death as
compared to normal melanocytes was attributed to their compromised capacity to cope with
increased oxidative stress (Jimbow et al., 2001). Further evidence supports the exaggerated
sensitivity of melanocytes from non-lesional vitiligo skin to chemical or physical oxidative
stress (Boissy and Manga, 2004; Maresca et al., 1997). Vitiligo patients are known to have
very high levels of H,O, (1 mM) and peroxynitrite in their epidermis, concomitant with
reduced levels and activity of catalase, which affects the immune response (Maresca et al .,
1997; Schallreuter et al., 1999; Schallreuter et al., 2012; Schallreuter et al., 1991). High
levels of H,0, inactivate and reduce the levels of methionine sulfoxide reductase (MSR) A
and B, and thioredoxin/thioredoxin reductase, thus contributing to oxidative stress and
melanocyte death in vitiligo (Schallreuter et al., 2008; Zhou et al., 2009). Also, high levels
of H,O, in the epidermis are found to oxidize proopiomelanocortin-derived bioactive
peptides ACTH and a-MSH, both of which have antioxidant and survival effects on human
melanocytes, and this effect can be mitigated by treatment with pseudocatalase (Kadekaro et
al., 2005; Kadekaro et al., 2010; Spencer et al., 2007). These findings suggest that the pro-
oxidant state of vitiligo skin is causal for melanocyte death.

The transcription factor Nrf-2 is implicated in the pathogenesis of vitiligo. An allelic variant
of the Nrf-2 gene, A=650 is thought to be a risk factor for vitiligo (Guan et al., 2008). More
recently, Natarajan et al.(2010) reported increased transcript levels of Nrf-2, as well as its
targets NQO-1, y-glutamyl cysteine ligase catalytic and modulatory subunits (GCLC and
GCLM, respectively) in vitiligo lesional epidermis, as compared to non-lesional skin
(Natarajan et al., 2010). However, induction of Nrf-2, and its target genes HO-1, NQO-1,
GCLC, and GCLM by the electrophilic compounds curcumin and santalol is evident in non-
lesional, but not in lesional vitiligo skin, further confirming the disruption of redox
homeostasis in vitiligo (Natarajan et al., 2010). Treatment of vitiligo patients with PUVA
increases the expression of the Nrf-2 target HO-1 in the skin (Elassiuty et al., 2011).
Comparison of cultured non-lesional vitiligo melanocytes to their normal counterpart shows
that the former exhibit greater induction of HO-1 than the latter in response to exposure to
UVA or the phenolic compound 4-Tertuary butylphenol, demonstrating increased sensitivity
of vitiligo-derived melanocytes to oxidative stress.

In vitiligo, oxidative stress-induced death of melanocytes is exacerbated by abnormal levels
and/or activities of other antioxidant and BER enzymes. Catalase allelic variants have been
associated with vitiligo, and the levels of several antioxidant enzymes, such as catalase,
glutathione peroxidase, and glutathione reductase have been found to be altered in vitiligo,
which account for sustained high levels of hydrogen peroxide in the epidermis (Casp et al.,
2002b; Gavalas et al., 2006; Park et al., 2006). Salem et al. (2009) showed that in both
lesional and non-lesional vitiligo skin, the levels of the BER enzymes OGG1, APE1, and
DNA polymerase p are increased (Salem et al., 2009). In addition to high levels of hydrogen
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peroxide, high levels of inducible nitric oxide synthase (iNos) in lesional and non-lesional
skin, and increased 8-0xoG in the skin and plasma of vitiligo patients, can be detected,
further indicating generalized oxidative stress in vitiligo.

Targeting oxidative stress pathways for treatment of melanoma and vitiligo

A major benefit to understanding redox-related mechanisms occurring in healthy and
diseased melanocytes is the capacity to harness these pathways for effective, targeted
therapies and prevention measures. Repigmentation of depigmented skin of Vitiligo,
characterized by high levels of epidermal hydrogen peroxide and peroxynitrite, is achieved
by reducing hydrogen peroxide, such as with application of narrow band UVB-activated
pseudocatalase (Schallreuter et al., 2013). For treatment of melanoma, characterized by
aberrant redox state, two different strategies were proposed (Fruehauf and Meyskens, 2007).
The first strategy is to use agents that increase ROS scavenging to reduce melanoma tumor
growth via inhibiting hydrogen peroxide signaling, which mediates the proliferative effects
of growth factors and inhibits the activity of protein tyrosine phosphatases, such as PTEN.
Over expression of superoxide dismutase, glutathione peroxidase, or catalase reduces tumor
cell growth (Finch et al., 2006; Liu et al., 2006; Venkataraman et al., 2005). There is
increasing evidence for the efficacy of antioxidants as chemopreventative agents that inhibit
melanoma onset and progression. Administration of the antioxidant NAC or selenium delays
the onset of UV-induced melanoma tumors (Cassidy et al., 2013; Cotter et al., 2007).
Honikiol, a potent scavenger of superoxide and peroxyl radicals, inhibits melanoma cell
growth in vitro (Dikalov et al., 2008; Mannal et al., 2011). Selective inhibitors of nitric
oxide reduce melanoma cell growth and metastasis (Yang et al., 2013). Selenium, which
increases glutathione peroxidase activity and the levels of glutathione, also decreases the
size of human melanoma xenografts in vivo, and inhibits the growth of human melanoma
cells invitro (Cassidy et al., 2013). Treatment of human melanoma cell lines with CAMP
inducers, such as a-MSH, inhibits their proliferation, due in part to inhibition of oxidative
stress (Lyons et al., 2013). The second strategy is to treat melanoma tumors with agents that
trigger apoptosis by compromising ROS scavenging. Such agents include butathionine
sulfoximine, which depletes GSH, and disulfiram, which inhibits copper, zinc superoxide
dismutase, both of which inhibit melanoma cell proliferation in vitro (Cen et al., 2004;
Fruehauf et al., 1998). Additionally, quercetin, motexafin gadolinium, melphalan and
cisplatin, which inhibit thioredoxin, are effective in killing cancer cells (Hashemy et al .,
2006; Lu et al., 2006; Witte et al., 2005). Resveratrol, known to inhibit APE-1/Ref-1
endonuclease activity sensitizes melanoma cells to DNA alkylating agents (Yang et al.,
2005). Combined therapy utilizing some of the above agents can synergistically inhibit
melanoma tumor growth. Understanding the complexity of oxidative stress pathways in
pigmentation production, melanocyte proliferation and malignant transformation has
enormous potential to expand our armamentarium of clinically effective compounds and
offer enormous promise for patients suffering from pigmentary disorders and melanoma.
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Figure 1.

Induction of ROS by endogenous and exogenous sources and antioxidant defences that
restore normal redox state in melanocytes.
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Generation of ROS by the various steps in the melanin synthetic pathway.

J Invest Dermatol. Author manuscript; available in PMC 2015 May 04.



