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Abstract

During the development of the hematopoietic system, at least 8 distinct lineages are generated in 

the mouse embryo. Transgenic mice expressing fluorescent proteins at various points in the 

hematopoietic hierarchy, from hematopoietic stem cell to multipotent progenitors to each of the 

final differentiated cell types, have provided valuable tools for tagging, tracking, and isolating 

these cells. In this chapter, we discuss general considerations in designing a transgene, survey 

available fluorescent probes, and methods for confirming and analyzing transgene expression in 

the hematopoietic systems of the embryo, fetus, and postnatal/adult animal.
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1. Introduction

Since the discovery and cloning of the first fluorescent protein (FP), wild type green 

fluorescent protein (wtGFP) from the bioluminescent jellyfish Aequorea victoria (1) and the 

subsequent creation of spectral variants (2–4), FPs have become indispensable for imaging 

cellular differentiation and function at high resolution and in real time (reviewed in refs. 3, 

4). Gene-specific regulatory elements can be used to drive targeted expression of FP 

reporters, with spatial- and/or temporal specificity, in virtually any cell type of a transgenic 
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animal. The hematopoietic system has benefitted enormously from this approach, which 

made it possible to explore the emergence, expansion, migration and differentiation of 

progenitors for the erythroid, myeloid, and lymphoid lineages. It is now possible to label and 

track the development of distinct hematopoietic cell types in vivo and to isolate these cells 

directly, using fluorescence activated cell sorting (FACS). In this chapter, we discuss the 

steps involved in the generation and analysis of transgenic lines in which fluorescent 

reporters are expressed in hematopoietic lineages of the mouse, the most genetically 

tractable model for mammalian development.

1.1 Ontogeny of the mouse hematopoietic system

Hematopoiesis is a precisely orchestrated, stepwise process that leads to the formation of all 

lineages of the blood (5). Primitive erythroid cells (EryP) are the first hematopoietic lineage 

to detected in the mouse embryo (reviewed in ref. 6). They are generated late in gastrulation, 

in the in the blood islands of the yolk sac (YS), along with macrophages and 

megakaryocytes (7). The first definitive hematopoietic cells, comprising erythroid, 

megakaryocytic and myeloid lineages, also arise in the YS, shortly after the appearance of 

EryP (reviewed in refs. 6, 7). Hematopoietic stem cells (HSCs) form in the aorta-gonad-

mesonephros (AGM) region of the embryo, in the large arteries and placenta, and, very 

likely, in the YS(for a review, see ref. 6). They do not differentiate in these sites but instead 

seed the fetal liver (FL), where they expand and produce progenitors that give rise to 

definitive erythro-myeloid and lymphoid lineages. Late in gestation, HCSs migrate from the 

fetal liver to the bone marrow, which becomes the main blood production center in the 

postnatal animal (8). The general hierarchy of hematopoietic development is shown as a 

"snapshot" in ref. (9).

1.2 General Considerations in Designing a Transgene

Transgenic mouse lines expressing fluorescent proteins (FPs) are invaluable tools for 

studying the development of the hematopoietic system. Careful design is necessary to 

achieve the desired expression of the reporter protein. The main components of a fluorescent 

reporter transgene are the promoter (and, usually, other upstream regulatory sequences), 

sequences encoding the fluorescent protein, and splice/polyadenylation signals (Figure 1). A 

cartoon outlining the most commonly used approach for creation of a transgenic mouse line 

is presented in Figure 2.

1.2.1 Regulatory Elements—The promoter is the region of a gene from which mRNA 

transcription is initiated and is essential for controlling both the spatial and temporal 

expression of a transgene. A number of hematopoietic specific promoters have been used 

successfully to drive expression of fluorescent reporters in different hematopoietic lineages 

(see Table 1). The transgene construct should include a translational start codon (ATG), a 

Kozak sequence either upstream from or coupled to the start codon (10), and a translational 

stop codon (Figure 1). Posttranscriptional regulatory elements may be included to enhance 

mRNA stability (e.g. see ref. 11).

Additional regulatory elements should accompany the promoter to drive the desired 

transgene expression pattern. The most commonly used regulatory elements are enhancers 
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or other upstream regulatory elements (12), an intron, which provides splice donor and 

acceptor sites, and a polyadenylation signal (Figure 1). The intron may be taken from the 

same gene as the promoter. Low transgene expression may be significantly increased 

through the use of a generic intron (13).

It is well documented that prokaryotic sequences in the vector perturb the frequency and 

extent of transgene expression (14–16). Therefore, restriction enzyme sites flanking the 

transgene should be included to allow removal of the vector backbone before microinjection.

Following microinjection into the male pronucleus of a fertilized egg (Figure 2), the 

transgene is inserted randomly, and often in multiple copies, into the genome (16). The 

neighboring chromatin may influence expression of the transgene, leading to undesired 

effects such as ectopic expression or even silencing (16, 17). To avoid these effects, 

chromatin insulators can be used. These DNA elements, together with the proteins that bind 

to them, impair interactions with neighboring chromatin (18). Enhancers are used to 

stimulate transcription and may do so in an orientation- and position-independent manner 

(12). Locus control regions (LCRs) from globin or CD4 genes have been used as enhancers 

for trangene expression in erythroid- or T cells, respectively (12, 19–21). For example, a 

minimal human ε-globin promoter combined with a truncated human β-globin LCR, a 

regulatory element that controls the erythroid-specific expression of all cis-linked globin 

genes (22), have been used to generate mouse lines expressing GFP in the primitive 

erythroid lineage (23, 24) (Figure 3A).

We recommend that expression of a newly designed transgene be tested in cultured cells 

before moving forward with the generation of the transgenic mouse line. This precaution 

helps to ensure that the transcriptional regulatory elements are functional and that the 

reporter sequence is translated to a functional protein.

1.2.2 Insertion of Exogenous DNA Into the Genome—The most commonly used 

approaches for generation of fluorescent reporter mice are microinjection of DNA (plasmid 

or BAC; see below) into a fertilized egg (Figure 2) and targeted insertion ("knock-in"). 

Insertion of a transgene into the mouse genome can also be achieved by viral infection of the 

egg or injection of genetically modified embryonic stem (ES) cells into blastocysts (25).

In the “knock-in” method, DNA sequences are engineered to integrate directly into a defined 

locus within the genome, using site-specific recombination (16). The knock-in approach 

avoids problems related to random insertion, as expression of exogenous sequences is 

controlled by the endogenous regulatory elements of the target gene. A recent example of a 

knock-in transgenic mouse is the mirR-144/451-GFP line, in which GFP is expressed in 

adult and fetal liver erythroid cells (26, 27) (Figure 3). A concern for the knock-in approach 

is that it may result in haploinsufficiency, influencing not only expression of the FP reporter 

but also the phenotype of the resulting animal. For example, loss of one Runx1 allele 

affected the distribution of HSCs in the embryo (28). This problem was overcome by linking 

the sequences encoding the FP to the endogenous gene through an internal ribosomal entry 

site (IRES) (29) to create a dicistronic fusion mRNA (30).
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Conventional transgenes are often too small to accurately reproduce the endogenous 

expression of the promoter/enhancer elements. Bacterial artificial chromosomes (BAC) 

accommodate large DNA sequences, allowing cloning of all or most of the endogenous 

regulatory elements required to recapitulate the normal pattern of gene expression when 

linked to other sequences (31) such as those encoding a FP.

1.2.3 Alternative Approaches to Drive Hematopoietic Lineage-Specific 
Expression of Fluorescent Protein Reporters—Inducible expression of fluorescent 

reporters can be achieved using the CreloxP or FLP-FRT systems. For example, a mouse 

line in which the fluorescent reporter sequences are preceded by a floxed STOP cassette 

(e.g. refs. 32, 33, 34) can be mated with a deletor line designed to express Cre recombinase 

under the control of a promotor active in the cells of interest. Such targeted recombination 

approaches have been of great utility for lineage tracing studies (for a recent example, see 

ref. 35).

Depending on the system chosen, recombinase activity may be constitutive or inducible. 

Inducible recombination activity can be triggered by tamoxifen in the case of a Creestrogen 

receptor (ER) fusion gene or by doxycycline when Cre expresssion is controlled by a 

Tetracycline (Tet) responsive element (reviewed in ref. 36). The Mx1-Cre deletor line can 

be used for targeting of definitive hematopoietic lineages. In this system, Cre expression is 

activated by injection of interferon or synthetic double-stranded RNA polyinosinic-

polycytidylic acid (poly I:C) (37).

1.3 Fluorescent Protein Reporters

A wide range of FPs covering nearly the entire visible spectrum can be used for generating 

transgenic reporter mice (reviewed in refs. 2, 3, 4). Since the discovery of wtGFP (see 

Introduction), investigators have sought to generate other FPs FPs with reduced 

phototoxicity, improved brightness and phosphostability over broad ranges of pH and 

temperature (2–4). Site-directed mutagenesis of wtGFP has been employed not only for the 

generation of FPs with improved functionality but also with diverse spectral characteristics, 

for example cyan FP (CFP), blue FP (BFP), and yellow FP (YFP) (2–4).

FPs with emission peaks in the red and far-red spectra have been especially useful for to 

live-cell or whole-animal imaging, owing to their long wavelength emission and, 

consequently, reduced phototoxicity (2, 38). Initially, the tetrameric DsRed was cloned from 

the nonbioluminescent sea anemone Discosoma striata but was found to be toxic to cells 

(39). Subsequently, the monomeric variant mRFP was engineered and could be expressed 

ubiquitously in mice without deleterious effects on development (40).

Directed mutagenesis of mRFP was used to create several variants, including the orange 

mTomato and the red mStrawberry and mCherry FPs (38). Far-red fluorophores such as 

mPlum, genetically engineered from a blue chromoprotein of the sea anemone Actinia 

equina (41), offer deep tissue penetration and reduced autofluorescence. Spectral properties 

of various FPs are discussed in detail in refs. (2–4).
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1.3.1 Fluorescent Fusion Proteins—FPs can be engineered for localization to specific 

subcellular regions (42). For example, to localize the FP to the nucleus, a nuclear 

localization signal is incorporated into the construct or the FP is fused to histone H2B 

sequences. Histone H2B fusion-FPs bind to chromatin and are present through all phases of 

the cell cycle (43, 44). Unlike cytoplasmic GFP, which is diluted during subsequent cell 

divisions, H2B-FPs are stably expressed and permit monitoring of both the cell cycle and 

apoptosis (44). A histone H2B-GFP expressed under the control of a human epsilon-globin 

promoter and truncated LCR has been used for labeling the nuclei of primitive erythroid 

cells (24) (Figure 3A). Cell morphology and migration can also be observed by labeling the 

outer or inner leaflet of the cell membrane with lipid-tagged FP fusions (e.g. containing a 

glycosylphospatidylinositol (GPI) anchor or a myristoylation sequence, ref. 45).

1.3.2 Photomodulatable FPs—Photoactivatable fluorescent proteins (PAFP) are 

stimulated by lights of specific wavelengths, intensities and durations, allowing for 

spatiotemporal labeling of live cells, organelles and molecules (2–4). There are two types of 

PAFP functions: photoactivation (PA) and photoswitching. Photoactivators convert from a 

non-fluorescent to a bright fluorescent state and can be either irreversible or reversible. PA-

GFP is a GFP variant that is irreversibly converted to an anionic form, resulting in a 100-

fold increase in its emission intensity (46). Tetrameric kindling FP (KFP) can be reversibly 

or irreversibly photoactivated, depending on the intensity of the activating light (4, 47). It 

converts to a red fluorescent state following exposure to green light and returns to a non-

fluorescent state in the absence of stimulation (47). Photoswitchers change their fluorescent 

state and emit at a different wavelength (such as cyan-green for PS-CFP or green-red for 

EosFP, Kaede and Kikume Green-Red, KikGR) upon exposure to transient but intense light 

(3).

1.3.3 General Consideration for Choosing Fluorescent Protein Reporters—
When choosing an FP reporter protein, the investigator should consider whether it will be 

used for multi-color analysis in combination with other FPs or in immunofluorescence 

studies with a fluorophore of a different color. The availability of fluorescent variants allows 

the researcher to select combinations that minimize spectral overlap. For example, the 

combinations of GFP/CFP and GFP/YFP exhibit significant emission overlap, whereas 

CFP/YFP does not (48). Bright reporters in the red or far-red spectra increase the 

possibilities of combining different reporters to mark cells of different lineages or to mark 

different regions of the same cell. Due to the lower phototoxicity of the excitation light 

required by red or far-red fluorophores, these reporters are more suitable for live imaging 

studies (49). While imaging or flow cytometric analysis of double transgenic mice 

expressing FPs with overlapping spectra can be challenging (48), the judicious choice of 

excitation light and filters will allow optimal separation of reporter signals, as observed for 

the simultaneous imaging of erythroid cells expressing ECFP and myeloid cells expressing 

EGFP (50).

1.4 Confirmation and Analysis of Transgene Expression

1.4.1 Mouse background—The choice of genetic background should be carefully 

considered in planning the generation of a transgenic mouse line. For microinjection, 
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zygotes of mixed or outbred background are often used (16). Microinjection of zygotes from 

inbred mice is more difficult and embryo viability is lower (16).

Only a relatively small number among the many available inbred strains (e.g. C57BL/6 or 

129/Sv) are routinely used to create transgenic or knockin mice. In the context of the present 

discussion, inbred strains would be desirable if the transgenic animals will be mated with 

knockout mice known to have a background dependent phenotype or if tissue from the 

genetically modified animals will be used for HSC or other transplantation studies (51). 

Genetic background effects (variable penetrance or expressivity) are caused by modifier 

genes (51). ICR (CD1) mice are the most widely used outbred mouse strain. Unlike inbred 

mice, ICR mice display inter-individual genetic variation. However, ICR mice are 

inexpensive, have excellent reproductive and maternal characteristics, and yield relatively 

large litter sizes (16).

1.4.2 Breeding—Once founders are identified (see section 3.2), the colony should be 

expanded. Female founders should be bred so that they can give birth to at least one litter 

before being sacrificed. Male founders should be placed in a cage with two nontransgenic 

females and plugs checked daily. Ideally, the male founder should plug 6–8 females in the 

first few weeks (16). The gold standard for assessing transgene integration is germline 

transmission to the F1 generation. By this metric, founders should transmit the transgene to 

50% of their progeny. If transmission is not observed, the founder genotype should be 

reanalyzed. If the founder is positive for the transgene and germline transmission does not 

occur, it is likely that the founder is mosaic for the transgene and, therefore, either transmits 

the transgene through the germline at very low levels or not at all. In certain scenarios, 

transgenes will integrate at multiple loci resulting in progeny that inherit the transgene at 

unusually high frequencies (52).

In contrast with mouse lines created by gene targeting, each transgenic founder is distinct 

because of the random nature of transgene integration. Therefore the decision to eliminate a 

transgenic mouse line from a colony will be irreversible. To reduce costs, the investigator 

may choose to maintain an active colony of a few mating pairs or a small number of males 

that can be mated periodically to produce a younger generation. This is a relatively 

inexpensive approach but carries the risk that transgene expression may decrease in later 

generations or as the animals age; this phenomenon has often been seen for globin 

transgenes (53). Transgene silencing may be avoided through preserving the line as frozen 

embryos or sperm (so that in vitro fertilization can be performed at a later date) (51). 

Cryopreservation services are provided by some institutional core transgenic mouse 

facilities and by mouse suppliers such as Taconic Farms and Charles River Laboratory.

1.5 Analysis of Fluorescent Protein Expression using Microscopy

The fluorescence of embryos, tissues or cells from transgenic reporter mice can be analyzed 

using epifluorescence or confocal laser scanning microscopy. Confocal microscopes offer 

several advantages over epifluorescence microscopes. Whereas in epifluorescent 

microscopy, the entire field is illuminated by light emitted by a mercury or xenon UV lamp, 

in confocal microscopy, light emitted by the laser is focused through a pinhole, creating 
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point illumination. Out-of-focus signals are thereby eliminated and resolution is increased 

(54). The confocal microscope images thin sections of the specimen that can be combined 

using the microscope’s software into accurate 3D reconstructions of the sample. Confocal 

microscopes also have an increased level of sensitivity due to light detectors that can 

amplify the signals received from the specimen. Another advantage of confocal microscopy 

is that it is less invasive, resulting in reduced photobleaching (54). The illumination 

provided by high-power lasers, combined with their reduced light scattering properties, 

allows imaging of thick, semitransparent sections, live tissues or embryos (54). Newer 

model epifluorescent microscopes use LED light sources that are more suitable for live 

imaging than are classical mercury lamps.

For live imaging of explanted embryos or tissues, temperature and gas composition must be 

carefully controlled using an environmental chamber. Inverted microscopes are typically 

used to image live material. For a discussion of imaging mouse embryos using confocal 

microscopy, see refs. (55–57).

Regardless of the type of microscope used, it is essential to select the appropriate light 

source and filters for analysis of the fluorescent specimen (54). The identity of the cells 

expressing the FP may be determined using immunofluorescence, by staining for cell type-

specific markers. The staining can be performed on live or fixed cells in solution or on fixed 

cells deposited on microscope slides. The fixation and permeabilization method should be 

carefully optimized for each cell type. An overview of different fixation and 

permeabilization options is reviewed in ref. (54).

1.6 Analysis of Fluorescent Protein Expression using Flow Cytometry

Analytical flow cytometry is a fundamental technique for assessing fluorescence in cells 

from transgenic FP reporter mice. Once tissues have been dispersed into single cell 

suspensions, fluorescent reporter expression from a transgene, combined with antibody 

staining for specific cell surface markers, can be analyzed using a flow cytometer to identify 

the cell surface characteristics of the component cell populations. Fluorescence Activated 

Cell Sorting (FACS) is a specialized type of flow cytometry that permits the physical 

separation of a heterogeneous sample into distinct cell populations based on their 

fluorescence. The ability to isolate labeled cell populations in a single step provides a 

valuable tool for elucidation of their developmental potentials, cell cycle and other 

properties, and for culture ex vivo. For detailed protocols and reviews, see ref. (58).

2. Materials

DNA purification for microinjection

1. Agarose (Invitrogen; Cat # 16500).

2. Ethidium bromide (Sigma Aldrich; Cat # E7637).

3. Injection buffer: 10 mM Tris, pH 7.4, 0.2 mM EDTA.

4. QIAquick Gel Extraction Kit (Qiagen; Cat # 28704).

5. Restriction enzymes.
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Isolation of genomic DNA

1. DirectPCR Lysis Reagent (mouse tail) (Viagen; Cat # 102-T).

2. Proteinase K (Invitrogen; Cat # 25530). Stock solution prepared at 10 mg/ml in 

TrisHCl 20 mM, pH 8. Aliquots are stored at −20°C.

Polymerase chain reaction (PCR)

1. Plastic tubes for PCR, 0.2 ml (Denville Scientific, Cat. # C18063).

2. TaKaRa ExTaq DNA polymerase, supplied with 10X ExTaq buffer and dNTP mix 

(Clontech, e.g. Cat. # RR001A).

3. Thermal cycler (available from a variety of companies).

4. For agarose gel electrophoresis: agarose, gel casting tray, comb with desired 

number of teeth, power supply, ethidium bromide, DNA size ladder.

Dissecting tools

1. Dissecting scissors (Roboz Surgical Instrument Inc., Gaithersburg, MD; Cat # 

RS-6702 and RS-5882) and forceps (Sigma Aldrich, St. Louis, MO; Cat # F4267).

2. Watchmaker’s forceps, Dumont #5 and #55 (Roboz, FST).

3. Sterile plastic transfer pipettes, 3 ml (VWR; Cat # 414004-037).

4. Stereomicroscope with transmitted and reflected light sources (Zeiss, Leica or 

Nikon).

Glassware and Plasticware

1. Nunclon tissue culture plates, 24 well (Nunc, Thermo Fisher Scientific; Cat # 

142475).

2. Circular coverslips, 12 mm, no. 1 (Thermo Fisher Scientific; Cat # 12-545-80).

3. 3 and 5 ml syringes (BD Biosciences; Cat # 309657 and # 309646).

4. Syringe needles, 20G and 25G (BD Biosciences; Cat # 305176 and # 305122).

5. Polypropylene tubes, 15 and 50 ml (Corning, Lowell, MA; Cat # 430766 and # 

430291).

Embryo dissection and cell preparation for flow cytometry

1. Phosphate buffered saline (PBS) pH 7.4 (GIBCO Invitrogen, Carlsbad, CA; Cat # 

10010-023).

2. Iscove’s Modified Dulbecco’s Medium (GIBCO Invitrogen; Cat # 12440-079).

3. Fetal Bovine Serum (FBS; Hyclone, Thermo Fisher Scientific).

4. Dissection medium: IMDM +10% FBS.

5. Heparin (Sigma Aldrich, St. Louis, MI; Cat # H3149): Dissolve in PBS to 12.5 

mg/ml to produce a stock solution (100X).
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6. BD Falcon 40 μm and 70 μm cell strainers (BD Biosciences, San Jose, CA; Cat # 

352340 and # 352350).

7. Cell Dissociation Buffer (GIBCO Invitrogen; Cat # 13150-016).

8. Collagenase (Sigma Aldrich; Cat # C2674): Stock solution prepared at 100 mg/ml 

in medium supplemented with 20% serum. Aliquots are stored at −20°C.

Flow cytometry

1. FACS buffer: heat-inactivated FBS diluted in PBS (see Note 1).

2. DAPI (4',6-diamidino-2-phenylindole dihydrochloride; Sigma Aldrich; Cat # 

D9542);

3. Propidium iodide (Sigma-Aldrich; Cat. # P4170). Dilute powder in distilled water 

to prepare 1000X stock solution.

Immunostaining and microscopy

1. 4% Paraformaldehyde (PFA) obtained by dilution of 16% PFA (Electron 

Microscopy Sciences, Cat # 15710) in PBS.

2. Washing buffers: PBS with 0.05% Tween-20 (v/v) (Sigma Aldrich; Cat # P1379)

(PBST); PBST with 0.05% no-fat skim milk powder (Carnation)(PBSMT).

3. Vectashield with DAPI (Vector Labs, Burlingame, CA; Cat # H-1500) or without 

(Vector Labs, Burlingame, CA; Cat # H-1400).

4. Primary and secondary antibodies of choice.

5. Triton X-100 (Sigma Aldrich; Cat # T8787).

6. Bovine serum albumin (BSA) (Sigma Aldrich; Cat # B4287).

7. Blocking buffer: 2% BSA, 0.1% Triton X-100 in PBS.

3. Methods

3.1 DNA Preparation for Microinjection

Transgenes are designed so that the gene to be microinjected can be excised and purified 

away from plasmid sequences. Prokaryotic sequences from the plasmid do not appear to 

influence the efficiency of transgene integration but they may impair expression from 

eukaryotic sequences (14, 15, 16). Therefore, the plasmid backbone sequences should be 

excised from the transgene construct. It is important to include a final purification step to 

remove particulate material that may clog the injection needle. The following protocol yields 

clean DNA for microinjection from plasmids smaller than 20 kb. Plasmids larger than 20 kb 

require a different purification procedure (59), that will not be discussed here.

1FACS buffer is PBS containing proteins (e.g. FBS). The proteins in FBS reduce cell loss by decreasing their interaction with plastic 
during the antibody staining procedure and, more importantly, the plastic tubing of the fluidics system of the flow cytometer. During 
antibody staining, we routinely use PBS containing 10% heat-inactivated FBS (10% FACS buffer). After the last washing step, the 
cells are resuspended in PBS containing 3% heat-inactivated FBS (3% FACS buffer).
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1. Digest plasmid DNA to completion with the appropriate restriction enzyme(s).

2. Separate the restriction fragments by electrophoresis through an agarose gel (see 

Note 2).

3. Using an ultraviolet transilluminator, identify and isolate the band containing the 

transgene to be microinjected.

4. Extract and purify the DNA according to the manufacturer’s protocols for the 

QIAquick Gel Extraction Kit (QIAGEN).

5. Elute the DNA from the QIAquick column using injection buffer (see Materials 

section) and measure the DNA concentration using a NanoDrop spectrophotometer 

(Thermo Scientific).

6. Pronuclear injection is typically performed in an institutional core transgenic 

mouse facility. For a detailed protocol, see ref. (60).

At our institution, the purified DNA (1–2 μg, 50–100 ng/μl) is submitted to the Mouse 

Genetics and Gene Targeting Shared Resource Facility. Filtration and final dilution of the 

DNA to be used for microinjection is performed by the facility, as is transfer of the injected 

zygote into pseudopregnant females(16).

3.2 Genotyping

Offspring born from injected zygotes are termed "founders" and are usually screened for the 

presence of the transgene. Genomic screening is most commonly performed using 

polymerase chain reaction (PCR) analysis of DNA from biopsied tissue (for comments on 

primer design, see Note 3). In most cases, the microinjected DNA will be stably integrated 

at the one-cell stage. However, the foreign DNA may integrate at a later (e.g. 4- or 8-cell) 

stage, resulting in mosaic expression of the transgene and disruption of germline 

transmission (16). In addition, silencing of the transgene may occur following integration 

into or near heterochromatin (see Note 4).

It may be possible to identify founders by microscopic analysis of biopsied tissues (see Note 

5).

Preparation of Tissue Samples for Genotyping

1. Tail tips <0.5 cm may be biopsied from pups ≤ 21 days old without the use of an 

analgesic. Adult mice must be anesthetized according to federal and Institutional 

2Some investigators prefer to stain the DNA with crystal violet to avoid toxicity of ethidium bromide.
3PCR sequences for common fluorescent reporters such as GFP are available in the literature (refer to Table 2 for primer sequences 
used in our laboratory). If more than one FP transgenic reporter mouse line is maintained in the colony, it is advisable to use a primer 
specific for sequences outside the FP coding region. For example, one primer would hybridize with a sequence in the FP coding 
region while the second would hybridize with an external sequence such as the promoter or 3'-UTR.
4Microinjected DNA can be transcriptionally silenced as a result of integration in or near heterochromatin, a process called 
variegation. Variegation is a heterocellular pattern of gene expression sometimes observed in transgenic mice. It is commonly age-
dependent and also results from progressive breeding of the mice (53). This phenomenon is often seen with both the alpha- and beta-
globin genes. Variegation may be suppressed if the transgene is linked to certain globin gene enhancer elements (67, 68).
5Identification of founders may be possible using direct microscopic analysis of tissue biopsies from pups (up to 21 days old) if 
transgene expression is sufficiently bright. For example, we genotype Flk1-H2B-YFP transgenic mice (69) by examining ear clips 
from 10 day-old newborn mice. The Flk1 promoter is active in endothelial cells of the skin at this stage. This simple genotyping 
approach can be applied to other transgenic fluorescent reporters that are expressed in tissues that are easily collected by biopsy.
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Animal Care and Use Committee (IACUC) regulations. Using scissors cleaned 

with 70% ethanol, cut a 1cm section of the tail tip of the founder mouse. Be sure to 

wipe the scissors with 70% ethanol before cutting the next tail, to prevent DNA 

cross-contamination between samples. Place the tail tip samples into labeled 1.5 ml 

eppendorf tubes. Samples can be stored frozen at −80°C and DNA isolated at a 

later date.

2. For DNA isolation, add 195 μl of DirectPCR Lysis Reagent (mouse tail) to each 

tube, followed by 5 μl Proteinase K (10 mg/ml).

3. Incubate the tubes at 55°C using mild agitation for 4 hr or overnight.

4. Heat inactivate the samples at 85°C for 45 min.

Genomic PCR

1. For PCR, pipette 1 μl DNA into a clean 0.2 ml tube containing 0.5 μl of 10 μM 

stocks of forward and reverse primer (see Table 2); 2 μl of 10X ExTaq Buffer 

containing MgCl2 (supplied with the polymerase), 1 μl of 2.5 mM dNTP mix, 0.2 

μl TaKaRa ExTaq DNA polymerase (Clontech), and water to a total volume of 20 

μl. For multiple reactions using the same forward and reverse primers, it is 

advisable to prepare a master mix containing all components except for the 

genomic DNA. See Table 2 for fluorescent reporter primer sequences used in our 

laboratory.

2. Conditions for PCR in a standard thermal cycler: (a) initial denaturation at 95°C for 

5 min; (b) 35 cycles of: denaturation at 95°C for 30 sec, annealing at 55°C for 30 

sec, and extension at 72°C for 1 min; (c) final extension at 72°C for 5 min. Samples 

are then maintained at 4°C until ready for analysis using standard agarose gel 

electrophoresis (e.g. ref. 61). Annealing temperature is generally close to the 

melting temperature for the primers and may need to be optimized. The extension 

time may also need to be optimized according to the length of the PCR product.

3.3 Dissection

Following identification of founders using genomic PCR, expression of the reporter is 

examined in whole embryos, dissected tissues, peripheral blood or bone marrow using 

microscopy or flow cytometry.

3.3.1 Embryo dissection—Typically the analysis of hematopoietic lineages in the 

embryo/fetus is performed from E7.5 through E16.5. Below we present a general protocol 

for dissection of E9.5 to E14.5 embryos. For more detailed information about dissection of 

earlier stage embryos, see refs. (16, 62).

1. Euthanize pregnant mother by CO2 asphyxiation followed by cervical dislocation.

2. Spray the abdomen of the mouse with 70% ethanol. Pinch the fur on the abdomen 

and make a midline incision to open the abdominal cavity and expose the uterine 

horns.
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3. Use a forceps to lift up the ends of the uterine horns and carefully remove the 

attached connective tissue and fat. Wash off the maternal blood in a 10 cm Petri 

dish containing PBS supplemented with 5% FBS.

4. Carefully cut each conceptus and transfer it to a 10 cm Petri dish containing PBS. 

Rinse thoroughly with PBS to remove maternal blood and then transfer to a Petri 

dish containing dissection medium.

5. Using a pair of #5 or #55 watchmaker’s forceps, peel away the uterine tissue, 

starting from the incision created in step 4.

6. Gently detach the Reichert’s membrane by holding the embryo with one pair of 

forceps and removing the membrane with a second pair of forceps.

7. The embryo is visible inside the yolk sac, with the placenta attached. The placenta 

can be separated using forceps or fine scissors. Once the placental vessels are cut, 

the embryonic blood will be released into the medium. Placental dissociation is 

performed as described in section 3.3.4. The YS can be removed from the embryo 

by carefully peeling it away using forceps.

3.3.2 Isolation of Peripheral Blood from Embryos—Peripheral blood can be 

obtained from ~E9.5 onward (63), when the embryonic circulation is well established (64).

1. Each embryo (YS and placenta intact) is transferred to a well of a 24-well dish 

containing dissection medium with 0.5% heparin. Fluorescence can be easily 

evaluated using a fluorescence stereomicroscope.

2. After selection of the desired embryos, peripheral blood can be collected. Grab the 

region between the embryo and the placenta using a #5 watchmaker’s forceps and 

cut umbilical and vitelline vessels with another #5 forceps. Peripheral blood cells 

will be released into the medium in large numbers.

3. Allow the embryos to exsanguinate (~10 min). Blood cells will collect at the 

bottom of the well.

4. Remove the embryos and debris from each well and resuspend the blood cells in 

dissection medium, using a P1000 Pipetman.

5. Filter the blood cell suspension through a 40 μm cell strainer and then collect the 

cells by centrifugation at 1200 rpm (100 × g) in an Eppendorf microcentrifuge.

6. Resuspend the cells at the desired concentration in a buffer appropriate for the 

intended application.

3.3.3 Dissection of Fetal Liver—The FL does not develop a tightly adherent epithelial 

structure and can be easily dispersed mechanically, allowing simple isolation of 

hematopoietic cells through ~E16.5.

1. Carefully dissect the FL from the embryo using a pair of #5 watchmaker’s forceps.

2. Transfer the FL to a 1.5 ml eppendorf tube containing 0.5 ml dissection medium.
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3. Disperse the FL by pipetting in dissection medium using a P1000 Pipetman until 

obtaining a homogeneous suspension.

4. Filter the cell suspension through a 70μm cell strainer, collect the cells by 

centrifugation at 1200 rpm (100 × g) in an Eppendorf microcentrifuge and 

resuspend in PBS for cytocentrifugation or in FACS buffer for flow cytometry.

3.3.4 Dissection of Yolk Sac and Placenta—YS and placenta contain endothelial cells 

with adherent junctions and endodermal cells with tight junctions, therefore requiring more 

vigorous dissociation steps than for FL prior to isolation of hematopoietic cells.

1. Dissect the YS (62) and placenta (65) from each embryo at the desired stage.

2. Place each tissue into an individual 1.5 ml eppendorf tube containing 1 ml 

collagenase. If two or more YSs or placentae will be collected from embryos at the 

same stage, they can be pooled in a 15 ml conical tube containing 4 ml collagenase. 

Dissociation to single cells is more efficient if narrow dissection scissors (Roboz 

RS-6702) are used to macerate the YS or placental tissue.

3. Incubate at 37°C for at least 20 min. Shake vigorously every 5 min. until a uniform 

cell suspension has been obtained (no large clumps remain). Filter the sample 

through a 70μm cell strainer, collect by centrifugation in an Eppendorf 

microcentrifuge at 1200 rpm (100 × g) and resuspend in PBS or FACS buffer, as 

described above.

3.3.5 Isolation of the AGM Region—Dissection of the AGM region has been described 

in detail, and presented in a video, by others (66).

3.3.6 Isolation of Adult Bone Marrow

1. Euthanize the adult mouse by CO2 asphyxiation followed by cervical dislocation.

2. Spray the abdomen of the mouse with 70% ethanol. Make a midline incision to 

open the abdominal cavity and expose the hind legs.

3. Remove all the muscle and connective tissue from the bones using scissors and 

then cut the tibia and femur from the joints.

4. Cut the ends of the bones and flush the bone marrow with 1 ml buffer of choice 

(according to the subsequent analysis) into a collection tube stored on ice, using a 

25G needle and a 5 ml syringe.

5. Homogenize the bone marrow suspension by pipetting up and down and pass the 

cell suspension through a 70 μm cell strainer.

3.4 General Immunofluorescence Protocol

1. Fix and permeabilize the cells using the appropriate reagents (e.g. 4% PFA in PBS; 

see Note 6). Wash the cells twice for 5 min in PBS.

2. Block the cells for 15–30 min in blocking buffer.
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3. Dilute primary antibody in blocking buffer and add 100 μl per slide. Incubate for 1 

hr at room temperature.

4. Wash 3 times for 5 min with PBS + 0.01 % (v/v) Triton X-100.

5. Dilute secondary antibody in blocking buffer and add 100 μl per slide. Incubate for 

45 min.

6. Wash 3 times for 5 min with PBS + 0.01 % (v/v) Triton X-100. Rinse in PBS and 

then in water to avoid crystallization of the salts from PBS.

7. Mount coverslips using Vectashield mounting medium with or without DAPI (see 

Note 7).

3.5 Flow Cytometry

3.5.1 Labeling of Cells for Flow Cytometry

1. Count cells using a hemacytometer and dispense 1×106 cells into a 1.5 ml 

eppendorf tube. Collect by centrifugation at 1200 rpm (100 × g) in an Eppendorf 

microcentrifuge and aspirate supernatant.

2. Dilute fluorescently conjugated antibody into 10% FACS buffer (see Note 1). We 

generally use 2 μg of antibody per 100,000 cells; however, each antibody should be 

titrated for optimal results. Antibodies conjugated to different fluorochromes 

should be combined in the same "cocktail" to minimize cell loss due to additional 

incubation and washing steps.

3. As EryP do not express Fc receptors, they exhibit low background binding to 

antibodies. We have not found that treatment of cells with normal mouse serum or 

FcBlock is necessary. Cells expressing the Fc receptor should be treated with 

normal mouse serum or purified anti-mouse CD16/CD32 to prevent non-specific 

binding.

4. Resuspend cells in a 1.5 ml Eppendorf tube containing 100 μl of the antibody 

cocktail and incubate on ice in the dark for 20 min, inverting the tubes every 5 min.

5. Wash with 1 ml 10% FACS buffer and collect cells by centrifugation at 1200 rpm 

(100 × g) in an Eppendorf microcentrifuge.

6. If primary antibodies are unconjugated or biotin-conjugated, treat cells with 

fluorescently conjugated secondary antibodies or streptavidin antibodies in a final 

volume of 100 μl in 10% FACS buffer. Resuspend the cell pellet in 100 μl of 

diluted streptavidin. Incubate on ice in the dark for 20 min., inverting the tube 

every 5 min.

6Exposure of the FPs to fixation reagents (e.g. formaldehyde, glutaraldehyde, methanol, acetone) denatures protein, leading to loss of 
fluorescence. Therefore, the fixation method (reagent and time of exposure) must be optimized. When using PFA or glutaraldehyde as 
fixative, quenching for 15 min with 0.1M glycine (final concentration) following fixation will help to reduce FP denaturation. If 
fluorescence is lost during the fixation step, the FP can be detected by immunofluorescece after staining with an FP specific antibody.
7The use of Vectashield mounting medium with DAPI may result in increased background fluorescence. This may present a particular 
problem when the intensity of reporter fluorescence is weak. It may, therefore, be desirable to stain with DAPI, followed by washing 
of the slide and mounting the coverslip using Vectashield without DAPI.
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7. Wash with 1 ml 10% FACS buffer and collect cells by centrifugation at 1200 rpm 

(100 × g) in an Eppendorf microcentrifuge..

8. Resuspend the cell pellet in 400 μl of 3% FACS buffer containing DAPI (see Note 

8) if a UV laser available or PI if a UV laser is not available. Transfer the cell 

suspension to a 5 ml round bottom tube (see Note 9).

9. Analyze using a flow cytometer.

3.5.2 Preparation of Cells for Sorting by FACS

1. Label cells for FACS as described above in section 3.5.1.

2. Prepare collection tubes for sorted cells. If the sorted cells are to be cultured, 

collect into a 5 ml round bottom tube containing 1 ml sterile medium.

3. FACS instruments are typically operated by trained personnel. The investigator will 

advise the operator regarding the populations to be sorted.

4. Tubes containing sorted cells are kept briefly on ice until the cells can be collected 

by centrifugation. Cell pellets can be stored frozen at -80ºC prior to isolation of 

RNA.
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Figure 1. Basic design of a fluorescent transgenic construct
"R" marks the restriction enzyme sites used for removal of the bacterial backbone before 

transgene injection. s/pA represents the splicing and polyadenylation signals. A stop codon 

(denoted by "X") should also be included in the construct design. The enhancer may be 

positioned upstream or downstream from the promoter and sequences encoding the FP and 

regulatory signals. For additional details, see text.
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Figure 2. Basic steps in the generation of a fluorescent transgenic reporter mouse line
Pronuclear injection of the transgene is shown in this cartoon but transgenic mouse lines can 

also be generated by blastocyst injection or embryo aggregation with genetically modified 

ES cells (see text).
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Figure 3. Tagging of primitive and definitive erythroid lineages using GFP reporters
(A) GFP expression in the primitive erythroid cells of an embryonic stage (E)8.5 ε-globin-

H2B-GFP embryo (24) (left panel, whole embryo, scale bar 200 μm; right panel, magnified 

view of yolk sac, scale bar, 50μm). Embryos were photographed on a Zeiss Lumar V12 

stereomicroscope equipped with epifluorescence illumination and a NeoLumar S 1.5X FWD 

30 mm objective. (B) Wet preparation of green fluorescent erythroid cells from the bone 

marrow (BM) and peripheral blood (PB) of an adult miR-144/451-GFP knock-in mouse 

(26). The cells were photographed on a Zeiss Axio Observer Z1 inverted microscope with 

epifluorescence illumination and a Plan-Apochromat 20X/0.8 objective. Scale bar, 20μm.
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Table 1

Transgenic mouse lines expressing fluorescent reporter proteins in the hematopoietic system.

Gene Reporter Lineage labeled Reference

Gata2 GFP (Ki) HSC (70)

Hoxb4 YFP (Ki) HSC (71)

Ly-6A GFP (Tg) HSC (72)

Bmi1 GFP (Ki) HSC§ (73)

Abcg2 IRES-GFP (Ki) HSC, erythroid (74)

c-Kit GFP (Tg) HSC, progenitors (75)

c-Kit GFP (CKO) HSC, progenitors (76)

Runx1 GFP (Tg) HSC, progenitors (77)

Pu.1 IRES-GFP (Ki) HSC, lymphoid and myeloid progenitors (78)

CD41 farnesyl-YFP (Tg) HSC, progenitors, megakaryocytes, platelets (79)

Gfi1B GFP (Ki) HSC, erythroid and myeloid progenitors (80)

Etv2 GFP (Tg) Hematopoietic and endothelial progenitors (81)

Etv2 EYFP (Tg) Hematopoietic and endothelial progenitors (82)

Gata1 GFP (Tg) Hemangioblast, EryP, EryD, megakaryocytes (83)

EpoR GFP-Cre (Ki) Erythroid progenitors, endothelial (84)

Lysozyme M EGFP (Ki) Myelomonocytic cells, including macrophages and granulocytes (85)

MafB GFP (Tg) Myelomonocytic lineages of hematopoietic cells, peritoneal macrophages (86)

c-fms EGFP (Tg) Macrophages, dendritic cells, myeloid cells (87)

β-globin ECFP (Tg) MEP, EryD (50)

miR-144/451 EGFP (Ki) EryD (26)

Eklf GFP (Tg) EryD (88)

ε-globin KGFP (Tg); H2B- GFP (Tg) EryP (23, 24)

γ-globin
β-globin

EGFP
DsRed

EryP
EryD

(89)

Langerin IRES-EGFP (Ki) Langerhans cells (90)

TCRb GFP (Tg) Lymphoid progenitors (91)

Runx1 IRES-GFP (Ki) Lymphoid, myeloid, lower levels in erythroid (29)

CD2 EGFP (Tg) T lymphoid cells (92)

Rag2 GFP (Ki) T and B lymphoid cells (93)

FoxP3 GFP (Ki) T regulatory lymphoid cells (94)

Ror(gT) EGFP (Ki) T helper 17 lymphoid cells (95)

Pax5 EGFP (Ki) Pre-B, B lymphoid cells (96)

Rag1 GFP (Ki) B lymphoid cells (97)

Blimp1 IRES-EGFP (Ki) B lymphoid cells, plasma cells (98)

CX3CR1 GFP (Ki) Macrophages, monocytes, NK cells, dendritic cells, microglia (99)

CD45 YFP (Ki) Widespread hematopoietic (100)
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Abbreviations: Tg, Transgenic; KI, Knock-in; CKO, Conditional Knock-out; GFP, Green fluorescent protein; IRES, Internal ribosomal entry site; 
EGFP, enhanced GFP; YFP, Yellow Fluorescent Protein; CFP, Cyan Fluorescent Protein; HSC, hematopoietic stem cell; EryP, primitive erythroid; 
EryD, definitive erythroid; MEP, Megakaryocyte-erythroid progenitor; NK, Natural Killer cells.

§
GFP expression is highest in hematopoietic stem cells (HSCs) and is downregulated during lineage commitment and differentiation.
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Table 2

PCR primer pair sequences for commonly used fluorescent reporters

Reporter Primer Sequences Tm Product size

GFP Forward - 5’-CAT GAG CAA GGG CGA GGA ACT-3’
Reverse - 5’-CAG CAG CGG TCA CAA ACT CC -3'

55°C 750 bp

ExFP (for GFP, CFP,YFP) Forward - 5'-CAC CAT CTT CTT CAA GGA CGA C-3'
Reverse - 5'-TTC TCG TTG GGG TCT TTG C-3'

53°C 350 bp

mCherry Forward -5’-GAT ACT CGA CC AAG CAA GGG CGA GG-3’
Reverse -5’-CATA ACT CGA GTT ATG TAC AGC TCG TC-3’

53°C 720 bp

tdTomato Forward -5’-ATG GAG GGC TCC ATG AAC G -3’
Reverse - 5’-CCC ATG GTC TTC TTC TGC -3’

50°C 370 bp

Abbreviations: bp, base pairs; Tm, annealing temperature
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