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Abstract

Purpose—Deformable Image Registration (DIR) has been extensively studied over the past two 

decades due to its essential role in many image-guided interventions (IGI). IGI demands a highly 

accurate registration that maintains its accuracy across the entire region of interest. This work 

evaluates the improvement in accuracy and consistency by refining the results of Morfeus, a 

biomechanical model-based DIR algorithm.

Methods and Materials—A Hybrid DIR algorithm is proposed based on, a biomechanical 

model–based DIR algorithm and a refinement step based on a B-spline intensity-based algorithm. 

Inhale and exhale reconstructions of 4DCT lung images from 31 patients were initially registered 

using the biomechanical DIR by modeling contact surface between the lungs and the chest cavity. 

The resulting deformations were then refined using the intensity-based algorithm to reduce any 

residual uncertainties. Important parameters in the intensity-based algorithm, including grid 

spacing, number of pyramids, and regularization coefficient, were optimized on 10 randomly-

chosen patients (out of 31). Target Registration Error (TRE) was calculated by measuring the 

Euclidean distance of common anatomical points on both images after registration. For each 

patient a minimum of 30 points/lung were used.

Results—Grid spacing of 8 mm, 5 levels of grid pyramids, and regularization coefficient of 3.0 

were found to provide optimal results on 10 randomly chosen patients. Overall the entire patient 

population (n = 31), the Hybrid method resulted in mean±SD (90th%) TRE of 1.5±1.4 (2.9) mm 

compared to 3.1±1.9 (5.6) using biomechanical DIR and 2.6±2.5 (6.1) using intensity-based DIR 

alone.

Conclusions—The proposed hybrid biomechanical modeling intensity based algorithm is a 

promising DIR technique which could be used in various IGI procedures. The current 

investigation shows the efficacy of this approach for the registration of 4DCT images of the lungs 

with average accuracy of 1.5 mm.
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1. INTRODUCTION

Deformable Image Registration (DIR) has become a necessary tool in a wide range of 

image-guided interventions. Researchers have used various deformable transformation 

models and optimization strategies to achieve accurate and reliable registration results [1], 

[2]. The transformation models are typically classified as physical models (e.g., linear 

elasticity, viscous fluid flow, and optical flow) or basis functions (e.g., radial basis 

functions, B-Splines, and wavelets) [3]. Each transformation model has advantages and 

disadvantages that are specific to each clinical application. A continuum biomechanical 

model is a general method to study the complex mechanical behavior of non-linear soft 

tissues. Linear elasticity is a simplified assumption that can be used in all or in parts of a 

general biomechanical model. Previous researchers have shown promising results for 

anatomical sites such as the lungs using biomechanical models [4]–[6]. For the lung 

application, a biomechanical based DIR can efficiently model the biomechanics of 

respiration through the breathing motion, the sliding interface between the lungs and the 

chest cavity, and the nonlinearity of heterogeneous lung soft tissues. Alternatively, intensity 

based methods typically use basis functions or optical flow as their transformation models, 

and often regularize the image intensity similarity measure with a specific operator (e.g., 

Laplacian, Navier-Lamé, Huber, Lp norm, etc.) to avoid singularity in the deformation field 

in order to achieve physically plausible results [7]–[10].

Intensity based registration methods are a naturally suitable candidate for respiration 

correlated, or 4D, CT data of the lungs which contains a wealth of image signal contrast. 

Different groups have addressed the problems of local intensity changes and mass 

preservation using various methods [11], [12]. Accounting for the sliding motion of the lung 

against the chest wall often represents a challenge for these algorithms [13]. Researchers 

have attempted to address the sliding interface between the lungs and the chest cavity using 

modifications to intensity based methods. Wu et al. [13] separated the lungs from the rest of 

the images using a mask, performed the registration separately in the lungs and outside of 

the lungs, then combined the deformations. Schmidt et al. [14] developed a demons based 

algorithm by decoupling normal and tangential regularizations based on discontinuities of 

the displacement field to allow sliding in the boundary of the lungs. Vandemeulebroucke et 

al. [15] developed a fully automated segmentation of the motion mask without the need for a 

manual segmentation. Although the accuracy of the results of these works is promising, they 

do not incorporate the physical modeling of the sliding motion integrated into the 

registration.

The first biomechanical model of the lungs using Finite Element Modeling (FEM) was 

developed by West and Matthews [16]. They used canine lung material properties in their 

simple lung model. After this work, development of lung FEM was investigated by many 

researchers over the past decades [4], [6], [17]. Brock et al. [17] developed a multi-organ 

FEM algorithm, Morfeus, to register inhale and exhale MR images. The preliminary results 

of the algorithm were obtained by considering only surface based boundary conditions in the 

form of vector displacements. Al-mayah et al. extended Morfeus to include hyperelastic [5], 

heterogeneous materials [18], and modeling the sliding interface [19] between the lungs and 

the chest cavity using frictionless contact surfaces. Werner et al. [6] applied a negative 
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pressure to expand the lungs from exhale to inhale while in contact with the chest cavity 

using homogeneous models. Despite the general capability of biomechanical modeling, 

many of these implementations only consider some of the physiological aspect of respiratory 

motions with simplified assumptions.

To benefit from the capabilities of both intensity-based and biomechanical modeling 

approaches Zhong et al. [20] combined the demons algorithm with a homogeneous linear 

elastic FEM technique in low contrast regions derived based on 4DCT images. In their 

work, the boundary conditions for constructed FEMs of low contrast regions were derived 

based on the displacement field of the initial demons registration. Their method allowed 

correcting the artifacts of the demons driven deformations such as irregular curvatures with 

the help of the FEM component in low contrast regions. The accuracy of the FEM 

component was directly dependent on the demons registration, leading the authors to caution 

that the displacement of the low contrast region boundary nodes should be pre-evaluated 

before being used for FEM correction. Recently, Li et al. [21] proposed a hybrid DIR 

method for lung 4DCT images which is based on a varying intensity flow (VF) metric in a 

block matching framework and a voxel-wise heterogeneous linear elastic FEM. The 

boundary conditions for FEM were determined by spatial correspondence between the 

surfaces of the inhale and exhale lungs using the block matching registration with the help of 

VF similarity model. Moreover, the heterogeneity of the lungs was determined using a novel 

iterative approach based on the displacement field.

Both of the previous hybrid strategies utilized the intensity-based component only in a part 

of the image domain. In this work, the goal is to combine the biomechanical modeling 

approach with the inclusion of contact surfaces to model lung sliding motion and 

heterogeneous material models as presented in [22], (referred to as Morfeus hereafter) with a 

validated intensity-based method based on discrete Markov Random Field (MRF) proposed 

by Glocker et al. [23] referred to as Drop. The general idea is to perform the registration 

initially in Morfeus, and then refine the displacement field by Drop registration to improve 

registration accuracy in the entire image domain. The main motivation behind the work as 

introduced earlier is to benefit from the advantages of biomechanical modeling while 

utilizing the remarkable image signal contrast in 4DCT data by means of an intensity-based 

algorithm.

2. METHODS AND MATERIALS

Morfeus Algorithm

Inhale and exhale reconstructions of the 4D CT images of the lungs were obtained with 

voxel size of 1.0 × 1.0 × 2.5 mm from 31 lung cancer radiotherapy patients. A subset of 10 

patients were obtained from DIR-lab (http://www.dir-lab.com/) public datasets [24] while 

the remaining 21 patients were obtained through a Research Ethics Board (REB) approved 

study at the Princess Margaret Cancer Centre, Toronto, Canada. For simplicity these 21 

patients are referred to as internal patients. For each patient, the boundary of the lungs, body 

and tumor(s) were semi-automatically contoured in a treatment planning system 

(PINNACLE, Philips Radiation Oncology Systems, Madison, WI), and were exported as 

binary mask images. Triangular surface meshes were created using the binary masks by an 

Samavati et al. Page 3

Phys Med Biol. Author manuscript; available in PMC 2016 April 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.dir-lab.com/


implementation of marching cube algorithm (Interactive Data Language, IDL, Research 

Systems Inc). The volumetric tetrahedral mesh for each organ was then generated using 

HYPERMESH (version 11.0, Altair Engineering, Troy, MI). The interface of the lungs and 

the chest cavity was then modeled using frictionless contact surface allowing the sliding of 

the lungs in the pleural cavity [19]. The lungs, tumors, and body were assigned Young’s 

moduli of 7.8KPa, 78KPa, and 1.5KP, respectively and Poisson’s ratio of 0.4 with the 

assumption of linear elasticity [26]. Finally, a surface projection algorithm 

(HYPERMORPH, Altair Engineering, Troy, MI) was performed between the chest cavity 

surfaces to calculate the boundary conditions in the form of displacement vectors for the 

surface nodes of primary (inhale) model. In the contact region, the nodes of the body and the 

lung surface nodes are distributed such that each lung surface node has a duplicate body 

node. The boundary conditions are then applied to the body nodes, and thus the two sets of 

nodes are free to slide against each other [5]. After constructing the biomechanical model, a 

Finite Element Analysis (FEA) software (ABAQUS version 6.9, ABAQUS Inc, Pawtucket, 

RI) was used to find the nodal displacement vectors (U) in a linear system of equations KU 

= F, derived based on Hook’s law, with zero external force (F = 0) and known global 

stiffness matrix (K). U is essentially equivalent of a Displacement Vector Field (DVF) in the 

nodal locations rather than Cartesian grid of the images. In order to obtain the deformed 

inhale image, it is necessary to compute the inverse DVF on the Cartesian image grid of the 

exhale image. Let , i =1…N be the spatial position of the inhale FEM 

nodes. The spatial position of the image coordinates in the Cartesian system is also denoted 

by Xc. Ym and Yc are similarly defined for the exhale image. The DVF for the inhale to 

exhale registration in the FEM mesh coordinate is denoted by . It follows that

(1)

where X̃m is the displaced position of the inhale nodes. To determine the inverse DVF on the 

image grid, a GPU accelerated implementation of linear interpolation was performed on the 

negative of DVF in the exhale image coordinate to get the DVF on the Cartesian exhale 

image grid (Yc),

(2)

where the arguments of interpolation algorithm are the function evaluation points, function 

values, and the new function evaluation points, respectively. The interpolation algorithm 

first finds the corresponding Cartesian grid points inside a given tetrahedron. Using 

barycentric coordinates of the tetrahedral elements, the displacement vectors can then be 

interpolated. Next, the deformed inhale image was obtained by warping the inhale image 

using ,

(3)
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where Iin and Ĩin are the image intensities of the inhale and the deformed inhale images, and 

the arguments of the warp algorithm are the input image intensities, the location of the 

intensities in the Cartesian system, the inverse DVF in the Cartesian system, and the location 

of the deformed image intensities, respectively. Figure 1 summarizes various steps involved 

in the Hybrid registration pipeline.

Drop algorithm and the refinement step

In the refinement step. Ĩin undergoes a deformable registration in order to be more precisely 

matched with the exhale image without distorting the biomechanical properties (i.e, non-

negative Jacobians) of the original . This is ensured in the chosen intensity 

based algorithm (Drop) by setting a B-spline control point maximum displacement of 0.4 

times the grid spacing [23]. The maximum allowed displacement limit for each control point 

guarantees a non-negative Jacobian enabling a physically plausible transformation. This 

algorithm is based on discrete MRF and provides a fast and reliable B-spline based 

registration with a variety of similarity measure choices [23]. Drop does not require 

calculation of a similarity measure derivative due to its incremental deformation estimation 

functionality. It also enables a maximum displacement magnitude for the B-spline control 

points to avoid foldings (or singularities in the Jacobian matrix), and ensures a 

diffeomorphism DVF.

Optimization of the Drop parameters

Most of the parameters required for the Drop refinement step, were set to the default 

parameters according to the original settings suggested in [23]. The similarity measure was 

set as Sum of Absolute Difference (SAD) since the images were from the same modality 

(4DCT). No significant changes to the performance of SAD were noticed due to local 

intensity variations in (Hounsfield units) of the images. Three important parameters 

including spacing of the B-spline control point grid, number of image and B-spline grid 

pyramid levels in the multi-resolution optimization approach, and regularization coefficient 

were explicitly adjusted by measuring the average mean and 90th percentile Target 

Registration Error (TRE) amongst 10 randomly selected patients (out of the total of 31). 

TRE is defined as the Euclidean distance between homologous anatomical points (typically, 

bifurcation points) selected on the inhale and exhale images after registration. Interested 

readers are encouraged to refer to the original paper by Glocker et al. for more information 

on the rest of the parameters and their influence on the registration [23]. The outputs of Drop 

were , and  where the first term is the refined Morfeus-deformed inhale image 

(final deformed image using the Hybrid method) and the latter two transformations are the 

inverse of each other, and represent the DVF from the deformed inhale image (previously 

using Morfeus) to the exhale image and vice versa, respectively (see figure 1).

Evaluation metrics

As a sanity check for the final transformation of this Hybrid method in terms of any clear 

violation of the biomechanics of the lung tissue, the determinant of the Jacobian matrix for 

 and the overall  was calculated. Furthermore, a minimum of 30 pairs of 

Samavati et al. Page 5

Phys Med Biol. Author manuscript; available in PMC 2016 April 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



airway and vessel bifurcation landmark points per each lung for each patient on inhale and 

exhale images were identified by an experienced radiation therapist (MV) to quantitatively 

assess the registration accuracy by calculating TRE. The efficacy of the Hybrid algorithm 

was demonstrated by comparing TRE results between Morfeus and Drop. To avoid bias, the 

three important Drop parameters (spacing of the B-spline control point grid, number of 

image and grid pyramids, and regularization coefficient) were separately optimized for 

direct registration of inhale to exhale images, and for the refinement registration step from 

deformed image to exhale image. Also, Dice index and mean surface distance (Ds) were 

used to assess the accuracy of tumor alignment. The Dice index is defined as:

(4)

where V1 and V2 are the tumor volumes on the exhale (secondary or target) and the 

deformed images. Ds is defined as the average minimum distance between the surface nodes 

of the deformed and the secondary tumor meshes:

(5)

where N and M are the total number of nodes in tumor triangular mesh representations of the 

inhale and exhale images, respectively, and superscripts m1and m2 of Cartesian components 

of the nodes relate to the deformed inhale tumor and the exhale tumor representations.

3. RESULTS

3.1 Parameter selection

The relevant Drop parameters for both direct Drop and Hybrid registrations were optimized 

by performing a series of registrations on a subset of 10 randomly selected patients out of 

the 31 total cases. The parameters include the number of image and B-spline grid pyramid 

levels in the multi-resolution optimization approach, the B-spline control point grid spacing, 

and the regularization coefficient. Figures 2.a–c show the average mean and 90th percentile 

TRE values of all 10 patients using different parameters for the refinement step in the hybrid 

method while figures 2.d–f illustrate the results of the similar experiments for the direct 

Drop registration. The experiments were performed from left to right, and the optimized 

parameter at each step was used for the remaining set of experiments. For the first 

experiment (effect of grid spacing) a one-level pyramid was used. Based on both the average 

and 90th percentile TRE, as the grid spacing is reduced the registration accuracy improves 

(Figures 2.a and 2.d). As illustrated in figure 2.a, grid spacing of 8 mm results in improved 

accuracy in the registrations compared to the 4 mm grid spacing, as the optimization likely 

got stuck in local optima. A similar pattern is observed for the direct Drop registration with 

an optimal 16 mm grid spacing (Figure 2.d). Figures 2.b and 2.e show that the average and 

90th % TRE were generally reduced if more image and B-spline control points grid pyramid 

levels were used. This is in accordance with previous studies, which showed multi-

resolution registration leads to more accurate and robust results [27]. Based on the average 
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90th percentile, a 5-level pyramid was selected to reduce the larger uncertainties in the 

registrations (the same number was chosen based on Figure 2.e). Finally, Figures 2.c and 2.f 

indicate that regularization coefficients of 3.0 and 0.25 were the proper choices overall for 

these 10 patients (for better visualization the log scale was used for the regularization 

coefficient axis). The error bars for each mean TRE value shows the standard deviation of 

the obtained average and 90th %TRE emphasizing on the uncertainties involved in the 

process of parameter selection. The final value for each parameter is the one that resulted in 

the best average mean and 90th % TRE among these 10 patients. The standard deviations for 

regularization coefficient in the experiments of figure 2.c and 2.f were 9.5 and 4.6, 

respectively. It should be noted that in all the experiments, Sum of Absolute Differences 

(SAD) was chosen as the similarity measure. Therefore, the optimal values for 

regularization coefficient allowed suitable amount of deformations with good accuracy for 

both the Morfeus refinement and direct Drop registrations, only if SAD is used. The final 

parameter selection for both refinement and direct Drop registrations are summarized in 

Table 1. These experiments showed the sensitivity of registration accuracy with respect to a 

subset of Drop parameters.

3.2 Overall TRE results

Table 2 summarizes the overall TRE and the TRE within a 20 mm margin of the tumor 

boundary for 21 internal patients. The main purpose of reporting the TRE values in such 

tumor regions is to provide detailed information regarding the approximate alignment of the 

tumor neighborhood in addition to the tumor itself where there is a possibility of 

microscopic disease. Overall, the TRE improved using the Hybrid method compared to 

either Morfeus or Drop alone, for both the overall TRE and within 20 mm of the tumor 

boundary. The results within 20 mm of the tumor boundary should be interpreted with 

caution since on average patients had only 5 TRE points were identified in the tumor 

proximity. Figure 3 illustrates overlays of coronal slices of patient 6 with different contrast 

settings before and after all three registrations. The first row shows how the diaphragm, 

bony structures (mainly the ribs), and other major vessels and airways are registered. The 

second row displays the same slice with a differentiated contrast highlighting smaller 

airways of the bronchial trees. The third row further scales up the red rectangle area in the 

second row, showing how the Hybrid method helps such small but important structures are 

more accurately aligned.

Figure 4 illustrates the cumulative TRE curves using over 4430 landmark points indicating 

the substantial improvement in accuracy of the Hybrid method compared to Morfeus and 

Drop. It should be noted in order to avoid bias as a result of difference in number of 

identified points for each patient, the point errors are normalized per patient in the 

distribution calculations. The average mean TRE values in the Left-Right (LR), Anterior-

Posterior (AP), and Superior-Inferior (SI) directions were 0.5, 0.6, and 1.0 mm, respectively 

using the Hybrid method, compared to 1.0, 1.5, 2.0 mm by Morfeus, and 0.7, 0.9, 2.0 mm by 

direct Drop registrations. It should be noted that the average intra-observer variation in the 

point selection was 0.7±0.4 mm (mean±SD) for internal patients (#1–21) and 0.9±1.3 mm 

for DIR-lab patients [24].
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Figure 5 illustrates the result of the TRE analysis in the form of boxplots for all patients. A 

paired two-sided two-sampled Wilcoxon test were used to assess the median difference 

between Hybrid, Morfeus, and Drop mean, standard deviation, and 90th TRE results. The 

average mean±SD was 1.5±1.4 mm using the hybrid method compared to 3.1±1.9 mm and 

2.6±2.5 mm by Morfeus and Drop, respectively (p<0.00001). Furthermore, by looking at the 

90th percentile (shown using a small color circle on the whisker of each box) the hybrid 

method reduced the residual TRE values for all patients with the only exception of patient 

22. Overall, the 90th percentile TRE was 5.6 mm and 6.1 mm using Morfeus and Drop, 

respectively. This was significantly reduced using the Hybrid method to 2.9 mm 

(p<0.00001).

3.3 Tumor alignment

Dice coefficients and the mean surface distance were calculated to measure the accuracy of 

aligning tumors. Figure 6.a and 6.b illustrate the performance of each algorithm for a total of 

23 tumors across 21 internal patients. The correspondence between the tumor and patient 

numbers is presented in the last column of Table 2. Overall, the mean Dice coefficient was 

increased from 0.78 using Morfeus to 0.88 using the Hybrid method (p<0.001). The average 

increase in the Dice index between Drop (0.86) and the Hybrid method (0.88), was 

marginally significant (p = 0.05) and may not have any clinical significant. Similarly, the 

Hybrid method reduced the surface distance (Ds) between the tumor delineations from an 

average of 1.5 and 1.0 mm Morfeus and Drop respectively to 0.8 mm (p<0.01).

The computation times for Morfeus, Drop, and Hybrid, on average were 1500s, 100s, and 

2950s, respectively, on a quad core 3.0GHz Intel Xeon with 16Gb of RAM. The run time for 

Morfeus algorithm excluded the pre-processing steps such as contouring and triangular mesh 

creations.

4. DISCUSSION AND CONCLUSION

In this work, a hybrid deformable image registration combining biomechanical modeling 

and intensity-based approaches was presented. In the first step, Morfeus finds the 

approximate physical deformation of the lungs based on linear elastic materials for the lungs 

and surface matching as the boundary condition to the biomechanical model. Morfeus also 

allows a contact surface between the lungs and the chest cavity to model the sliding motion 

of the lungs in the thin pleural cavity. This provides a large displacement of the diaphragm 

and deformation in the lungs while accounting for the differential movement of the ribs. In 

the second step, the intensity based algorithm, Drop, allows reduction of the residual errors 

while preserving the desired properties of Morfeus through small magnitude B-spline 

refinements. The proposed Hybrid method significantly reduced the overall TRE compared 

to Morfeus and Drop. Considering the benefits provided by the Hybrid method, it is 

worthwhile to investigate possible solutions to increase the speed of the algorithm. Previous 

researchers have shown that GPU-based parallel programming implementation of FEM-

based and B-spline intensity-based DIR methods could significantly reduce the 

computational time from several minutes to just a few seconds [28], [29]. Thus, in the future 

the hybrid approach presented in this work could be significantly accelerated.
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Deformable image registration is an ill-posed problem [30]. However, numerous evaluation 

methods have been proposed to determine the uncertainty of the DVFs provided by various 

DIR techniques [31]. One of the most common ways of estimating the uncertainty is to 

calculate the distance of anatomical landmarks before and after registration which is known 

as TRE. In this paper, it was ensured that at least 30 anatomical points were selected for 

TRE calculations in each lung. The evaluation of the intra-observer variation indicated that 

the uncertainty in the landmark selection is within the voxel size of the images. The 

proposed Hybrid method significantly reduced the overall TRE compared to Morfeus and 

Drop. TRE results showed that Morfeus has a slightly larger mean error compared to Drop 

(mean TRE difference = 0.5 mm). However, this study shows that it registers the images 

more consistently as indicated by smaller overall TRE standard deviation compared to Drop 

(TRE standard deviation difference = 0.6 mm). Drop also tends to have more random errors 

with larger 90th % TRE values compared to Morfeus and Hybrid (in 15 patients Drop had 

the largest 90th% TRE). The Hybrid method reduced the average TRE results from Morfeus 

by at least 1.5 mm for patients with more than 20 mm deformation magnitude, which shows 

the effectiveness of the algorithm in registering large deformations. The average mean TRE 

obtained by the Hybrid method is half of voxel size in the LR direction, close to a half for 

the AP direction, and less than a half for the SI direction (voxel size = 1.0 × 1.0 × 2.5 mm). 

This is a significantly high accuracy since the half of the physical length of each voxel in the 

images is the practical limit for measuring the accuracy, and thus identifying any reliable 

lesion.

Dice index and the mean surface distance were used to illustrate the accuracy of the hybrid 

method for aligning the tumor within the images. The tumor alignment measurements 

showed that the hybrid method results in a better alignment compared to Morfeus. However, 

the differences between the direct application of Drop and the Hybrid method were subtle. 

These results are aligned with the strengths and weaknesses of the algorithms. In these 

clinical cases, the tumor presents on the CT image as a dense, spherical object of high 

intensity surrounded by a low intensity background. This makes it a prominent focus of the 

intensity based registration, as shown by the high Dice value for Drop. The complexities of 

the tumor biomechanics in the lung likely vary between patients and are not well 

understood. They are also not specifically included in the biomechanical model. The 

variation in the structural relationship between the boundary of the tumor and the 

surrounding normal lung, and the inaccuracies of the model to incorporate this, is likely 

contributing to the lower Dice value following the Morfeus alignment alone. The 

combination of Morfeus followed by Drop allows the intensity based refinement to correct 

for the unknown biomechanics of the tumor within the normal lung.

The current investigation has provided promising preliminary results for the proposed 

Hybrid DIR method. However there are still areas that can be improved to ensure 

consistently accurate registration across the entire image for all patients. For instance, in a 

small number of patients, shown in Figure 5, (e.g., patient 22) the maximum TRE using 

Hybrid method is larger than Morfeus (shown as outlier points). Visual inspection of the 

images and analysis of the TRE in LR, AP, and SI directions reveals that the biomechanical 

model based component produces inaccurate deformation in AP and SI directions in the 

interior lobes of both lungs especially within the superior region. This observation suggests 
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a potential limitation of the current implementation of the biomechanical model based 

component which does not model either the lobes or the interaction between the lobes. For 

these patients the misalignment of the deformed image using the biomechanical component 

and the exhale image is too large to be accurately recovered using the final refinement step 

in the hybrid method. For future investigations, more sophisticated biomechanical models 

could be constructed which include modified lung material models (nonlinear heterogeneity 

due to the presence of the lobes rather than linear elastic homogeneity of the current model) 

and more complex boundary condition (through modeling the interaction between the 

lobes).

Previously, Zhong et al. [20] investigated a combination of biomechanics and intensity 

based registration. In their approach, a demons registration was initially performed and was 

then further improved in low-contrast regions using biomechanical modeling to have a 

combined registration methodology. They validated their model using a single benchmark 

mathematical phantom with known deformations showing an average accuracy of 1.1 mm. 

This is within the range of average accuracy that was seen in our cohort of 31 clinical 

patients (0.8 – 3.1 mm). Our proposed method has also resulted in comparable accuracies in 

the registration of 10 publically available lung cases (patients 22–31) as achieved by 

recently developed algorithms in [9], [14], [15]. The mean±SD TRE [mm] for this subset of 

10 patients using the hybrid method was 1.8±1.6 compared to 1.4±1.1, 2.1±1.8, and 2.0±1.4 

using MRF-based ventilation model [9], direction dependent with automatic slipping 

detection [14], and motion mask [15], respectively. In this limited number of cases, the 

Hybrid method proposed here performs at the level of accuracy of other techniques. A Multi 

Institution Deformable Registration Accuracy Study (MIDRAS) [32] reported a range of 

average accuracies of 1.0 – 3.0 mm across 21 different algorithms ran independently on the 

same 4DCT lung dataset, with max errors of up to 1.2 cm observed following DIR. The 

average accuracy of 1.4 mm and average maximum error of 7.1 mm presented here indicates 

that the Hybrid technique performs as well or with some advantage (specifically in reduced 

maximum errors) compared to these established algorithms. An overview of accuracy of 

DIR algorithms for lung 4DCT provided in [33] reports a submillimeter to 3 mm range of 

average accuracies with the majority of algorithms being able to achieve less than 2 mm in 

each direction compared to the performance of the proposed hybrid method with 

submillimeter average error in each direction. Strengths of the Hybrid method are not 

limited to the 4DCT lung data. The algorithm has the potential to be a powerful tool in 

applications where there is a limited Field of View (FOV) in one imageset. For example, in 

CT to cone-beam CT (CBCT) registration which is the focus of another ongoing 

investigation in our group, parts of the lungs are often cut off in the CBCT due to the 

location of the tumor, the treatment plans, and other tradeoffs in the data acquisition. In such 

cases, the biomechanical component of the Hybrid method helps establish a reliable 

deformation model in the cut-off regions based on the biomechanical properties of the lung 

tissues and the remaining boundary conditions determined in the regions where the data is 

available. Next, the intensity based refinement increases the accuracy in the overlapping 

regions by matching any residual misalignments.
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An important application for an accurate DIR algorithm is dose accumulation, where the 

radiation dose is accumulated over the course of the treatment ranging from one to several 

weeks. An appropriate DIR adds minimum uncertainty in the process, and can subsequently 

help identify the remaining uncertainties in the treatment delivery and/or planning. 

Correlative pathology is another important example where accurate DIR plays a crucial role. 

For instance, recent studies show that there is significant deformation between the in vivo 

MRI of the prostate and the histopathology reconstructed images of the specimen after 

routine histology processes [34], [35]. A hybrid biomechanical intensity based registration 

may aid in determining an accurate deformation map between the two images which will 

then enable comparison of gold standard of pathology with in vivo imaging.
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Figure 1. 
Overview of the Hybrid algorithm.
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Figure 2. 
Parameter optimization for the hybrid refinement step (a–c) and Drop algorithm (d–f).
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Figure 3. 
Overlay of coronal (first row) and axial (second row) inhale and exhale slices before and 

after registrations. In the misalignment regions, the exhale and inhale intensities are in 

purple and green colors, respectively.
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Figure 4. 
The cumulative distribution of TRE for all the points in all the patients. The influence of 

each patient is normalized by the individual patient’s number of points.
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Figure 5. 
The boxplot representation of all patients’ baseline error and TRE using all three methods. 

The small color-filled rectangles show the 90th percentile for each box data.
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Figure 6. 
(a) Dice index of each tumor using all three algorithms. (b) Mean Surface Distance of the 

aligned tumors for each tumor using all three algorithms.
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Table 1

Selected parameters for the refinement step in the Hybrid algorithm and Drop.

Grid Spacing [mm] Number of pyramid levels Lambda (regularization coefficient) Similarity measure

Direct Drop 16 5 0.25 SAD

Hybrid-refinement 8 5 3.0 SAD
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