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The human skin is an organ with a surface area of 1.5–2 m2 that
provides our interface with the environment. The molecular com-
position of this organ is derived from host cells, microbiota, and
external molecules. The chemical makeup of the skin surface is
largely undefined. Here we advance the technologies needed to
explore the topographical distribution of skin molecules, using
3D mapping of mass spectrometry data and microbial 16S rRNA
amplicon sequences. Our 3D maps reveal that the molecular com-
position of skin has diverse distributions and that the composition
is defined not only by skin cells and microbes but also by our daily
routines, including the application of hygiene products. The tech-
nological development of these maps lays a foundation for study-
ing the spatial relationships of human skin with hygiene, the
microbiota, and environment, with potential for developing pre-
dictive models of skin phenotypes tailored to individual health.
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The skin provides the interface between our internal molecular
processes and the external environment. The stratum cor-

neum (SC), the outer layer of the epidermis, is the most exposed
organ of the human body and is composed of molecules derived
from our own skin cells, our microbiota, and the environment
(1). In addition, it may be possible that personal hygiene products,
the clothing we wear, and the food we eat can affect the chemical
composition of the skin (2, 3). The chemical environment of the
skin is also critical for the development of microbial communities,
yet there are no systematic workflows that can be used to correlate
skin chemistry and microbes. Human skin microbiome inventories
are changing our views of commensal organisms and their roles in
establishing and maintaining the immune system and general ep-
ithelial health (4–7), but their role in biotransformation of skin
molecules is as yet poorly characterized.
Understanding the molecular topography of the surface of

the SC will provide insights into the chemical environment in
which microbes reside on the skin and how in turn they modify
this environment. To understand the relationship between the
chemical milieu and the microbial communities, we must de-
velop workflows that map the chemistry and microbiology of the
human skin and that determine the associations between them.
The composition of the human skin microbiota has been corre-
lated with skin anatomy, dividing into moist, dry, and sebaceous
microenvironments, and can be influenced by beauty and hy-
giene products (2–9). Regions such as the face, chest, and back,
areas with a high density of sebaceous glands, promote growth of
lipophilic microorganisms such as Propionibacterium and
Malassezia. In contrast, less exposed regions, such as the groin,
axilla, and toe web, which are higher in temperature and mois-
ture content, are colonized by Staphylococcus and Co-
rynebacterium (7, 10, 11). Previous studies have reported mass
spectrometry (MS) methods to identify compounds from human
skin (12, 13). However, these studies are based on analysis per-

formed on selected and limited areas on the skin, which do not
reflect the distinct chemical microenvironments over the entire
body. To date, the topographical distribution of skin molecules
has not been characterized. Similarly, because the paired data
were not available, skin chemistry could not be correlated to
microbial diversity. Here we have developed a general approach
to visualize the chemical composition and the microbial com-
munity composition of human skin surface through the creation
of 3D topographical maps. We anticipate the approach out-
lined in this manuscript can be readily adapted to study other
microbiome–chemistry associations.

Results and Discussion
General Workflow for Construction of High-Spatial Resolution 3D
Models. To demonstrate the feasibility of mapping the molecu-
lar nature of the human skin surface, two volunteers, a male and
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a female, were recruited for this study. We did not seek to de-
scribe general differences between men and women, which
would require a larger sample size of each sex. At the same time,
our individual-specific observations can test whether these two
individuals are the same or different in various microbiome and
chemical characteristics and provide a view of factors influencing
variation within each subject from a methodological standpoint.
We therefore refer to the male volunteer as person 1 and the
female volunteer as person 2. Each subject was sampled twice at
∼400 sites on their skin using cotton and soft foam swabs
(Materials and Methods). These swabs were subjected to MS and
16S rRNA amplicon analysis, respectively (Fig. 1). Two types of
MS were applied to each sample: Ultra-performance liquid
chromatography/quadrupole time-of-flight (UPLC-QTOF) data
were used for metabolite and peptide capture and included data-
dependent tandem MS (MS/MS), and matrix assisted laser de-
sorption/ionization TOF (MALDI-TOF) data were used for
metabolite, peptide, and protein detection. MALDI-TOF was
used to detect higher molecular weight molecules from skin
samples without any preliminary pretreatment and using ∼1/300th
of the sample volume that would have been needed for liquid
chromatography MS (LC-MS), which was advantageous due to
the limited material available. Identification of ions in 3D MALDI-
TOF maps was followed up by MS/MS identification using
linear ion trap (IT) quadrupole Fourier transform (LTQ-FT).
Such MS analysis provides richer fragmentation information
when the target is known compared with postsource decay on
the MALDI-TOF.
The 3D topographical maps visualizing distributions of me-

tabolites, peptides, and bacteria were created from UPLC-QTOF,
MALDI-TOF, as well as 16S rRNA amplicon sequence data
that allow visual comparative localization of metabolites, pep-
tides, and bacteria. The 3D mapping of both molecular and
bacterial inventories onto 3D topographical models was per-
formed on computer models of people in MATLAB. The map-
ping of sample collection spots involved assigning each sampling
location to a spot on the 3D computer graphics model (Fig. 1
and Movies S1 and S2). Then, MALDI-TOF ion masses (m/z)
and LC-MS molecular features [intervals of m/z and retention
time (RT)] were quantified by integrating spectral intensities and
modeled onto the 3D topographical maps. For 16S rRNA
amplicon data, relative abundances corresponding to each
detected genus at each body site were mapped. Using a color
scale, the 3D topographical maps were rendered, revealing the
spatial abundances of molecules corresponding to molecular
features or bacterial taxa (Fig. 1). Mapping molecular features
from the LC-MS data revealed distinct spatial distributions in

areas such as the head, navel, hands, axilla, groin, ears, and feet
in both volunteers (Fig. S1A). Mapping the MALDI-TOF data
revealed particular distributions of a complementing set of
molecules of higher molecular weights from the mass range
of peptides and proteins (Fig. S1B). This indicates the presence
of distinct and heterogeneous chemical environments on the
surface of the human skin.

Large-Scale MS Molecular Networking. To better interpret the MS
data, molecular networking (14–16) was applied to UPLC-
QTOF MS/MS data. Compounds are grouped based on their
MS/MS similarity serving as a proxy for structural similarity and
visualized in Cytoscape (16, 17) (Fig. 1). Molecular networking
allows for tractable analysis of a large number of MS/MS spectra
obtained in various experiments and highlights molecular fami-
lies of chemically similar molecules (14–17). Briefly, to reduce
the redundancy due to many spectra potentially generated for
identical molecules, MSCluster, originally designed for proteomics
experiments, was adapted to merge identical and nearly identical
MS/MS spectra (18), and the resulting consensus spectra were
further matched between each other by using a spectral alignment
algorithm that calculates a cosine score to detect pairs of spectra
with highly correlated fragmentation patterns (15, 16, 19). Cosine
similarity scores range from 0 to 1, where 1 indicates perfectly
matched MS/MS spectra. A cosine threshold of 0.65 was used to
construct the molecular network in this study. That many of the
MS/MS spectra could be matched to beauty and hygiene products
reflects the lasting impact of our daily regimes.
The resulting correlation scores were imported into Cytoscape

(17), and the network was organized using the FM3 force-
directed layout (ref. 20 and apps.cytoscape.org/apps/fm3). Be-
cause the chemistry of molecules dictates how they fragment in
the gas phase, this organization of the MS/MS data reveals
clusters of related MS/MS spectra that represent molecular
families (14–17).
To define the origin of many of the molecules and assign the

molecular features to the human, microbial, or environmental
component of the skin, LC-MS/MS data were collected on
beauty products that both individuals used, common raw mate-
rials used in the formulation of beauty products (cosmetic
ingredients), and commercially available chemical standards. In
addition, cultures of 34 different bacteria and fungi from several
genera, including Propionibacteria, Corynebacteria, Acinetobacter,
Pseudomonas, Streptococcus, Escherichia, Bacillus, Lactobacillus,
Staphylococcus, Candida, and Malassezia, which are known to be
a part of the skin microbial community, were also subjected to
LC-MS/MS (12, 21). Finally, LC-MS/MS data were collected on

Fig. 1. Creation of 3D topographical maps of molecules and microbes distributed on the human skin. Samples were collected at ∼400 distinct body sites from
each of two volunteers. For each sample, detection of molecules was performed using MS (UPLC-QTOF and MALDI-TOF) and bacteria using 16S rRNA amplicon
sequencing. After 3D modeling, a map was rendered for each molecular feature and for each taxon detected in each spot on the body sampled. The 3D maps
show body distribution of sphingosine and palmitoleic acid in person 1 and person 2, respectively. The data analysis involved integrative analysis of het-
erogeneous big data followed up by structural biochemical analysis of molecular features of interest. See also Fig. S1.
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cultured human skin cells including basal and differentiated kera-
tinocytes and human skin tissues collected from four donors, from
three locations: neck, back, and scalp. All LC-MS/MS data collected
in the study together with MS/MS spectral libraries including
Massbank (22), National Institute of Standards and Technology
(NIST) (www.nist.gov/index.html), representative data from
METLIN (23), and in-house reference spectra were then sub-
jected to molecular network analysis. Integrative analysis of skin
swab samples together with other samples and spectral libraries
allowed us to identify molecules observed in 3D topographical
maps and to make a hypothesis on the origins of the molecules.
Molecular networking of LC-MS/MS data from skin swab

samples, cosmetic ingredients, cultured cells, human skin tissues,
and chemical standards together with the MS/MS libraries re-
sulted in 15,544 nodes representing consensus of at least three
or more identical MS/MS spectra. The majority of the spectra
came from the skin swab samples; 34% of them were associated
with person 1 but not person 2, 25% with person 2 but not person 1,
and 41% matched both subjects. Moreover, 8% of the nodes
matched beauty products and/or cosmetic ingredients. Around
0.5% matched cultured keratinocytes and human skin tissues,
whereas ∼1% of nodes matched to microbial cultures. A total of
0.1% of the nodes matched to cultured skin cells and human skin
tissues, microbes, and human swabs. This result shows that a
large portion of annotated nodes could be matched to beauty
products, more than to any other origin, reflecting the lasting
impact of our beauty and hygiene products on the molecular
composition of the outermost layer of the skin that is exposed to
the environment. Less than 3% of the nodes could be correlated
to MS/MS data from MS/MS spectral libraries, suggesting that
unlike skin bacterial inventories, which are now believed to be
nearing complete sampling (24), the vast majority of metabolites
on the skin remain uncharacterized. Even when performing high-
coverage molecular networking accounting for possible molec-
ular modifications, differences in spectra due to concentration
effects (e.g., MS/MS spectra of parent ions of lower intensity may
have missing lower intensity daughter ions), temperature varia-
tions of the instrumentation during the 2-wk period of continu-
ous data collection, and other experimental considerations found
in the molecular network, more than 80% of the MS/MS spectra
remain uncharacterized. This is not unlike the situation in early
genome sequencing projects, where less than 20% of the genes
could be annotated and will require the scientific community to
develop creative strategies for the analysis and annotation of the
detected molecules analogous to the strategy for annotating
DNA sequences that has developed over the past two decades.
The sources of these uncharacterized molecules may range

from secreted dietary molecules not present in the reference
database; enzymatic, light- or air-induced modifications of mol-
ecules that would not be observed in culture; and beauty prod-
ucts used in the past but not included in the analysis. Cultured
skin cells and microbes, and excised and stored human skin tis-
sues, may not reflect the molecular makeup of in vivo and living
systems, especially if human and/or bacterial cells, produce dif-
ferent metabolites when they interact. Such interaction is likely,
given the expanded repertoire of metabolism seen in cocultured
microbes compared with individually cultured species (25, 26).
Similarly, most microbial taxa lack a representative member that
has been cultured, and these microbes and their interactions with
each other and with the host likely contribute molecules for
which we cannot yet define the origin in the network. Finally,
there are likely numerous environmental contributions from
sources not yet considered. Although significant challenges re-
main in annotating the data, the chemistry detected in this study
still provides considerable insight into the different chemical
environments of the skin.
Putative annotations were obtained by matching MS/MS spectra

to spectral libraries and then further confirmed by follow-up

manual analysis. Specific molecules, discussed in the text, were
further confirmed by follow-up manual analysis. The manual
analysis was necessary because, unlike in genomics or proteo-
mics, the statistical tools for false discovery rate estimation in
untargeted metabolomics are yet to be developed. Furthermore,
stereochemical and region-specific modifications or isomers of
related molecules are difficult to assess automatically. For the
named molecular families in this article, at least some family
members were matched standards based on the parent mass,
MS/MS, and RT. In SI Materials and Methods, we provide the
details of the level of analysis for each of the named molecules.
Fig. 2 highlights representative examples of molecular families
with one or more identified molecules.
To highlight specific molecules, members of the molecular

families of phosphatidylcholine (PC, m/z 494, 522) and phos-
phatidylserine (PS, m/z 526) were found in the skin swabs, cul-
tured keratinocytes, and the fungi Malassezia furfur and Candida
albicans (Fig. S2 A–D). Both PC and PS lipid families are im-
portant phospholipids in eukaryotes, having structural and sig-
naling functions (27, 28). Examples of molecular features that
matched to human origin including basal, differentiated cultured
keratinocytes and human skin tissues, but not to microbial
samples, are the sphingosine lipid molecular family (Fig. 2 and
Fig. S2 E and F), a sterol family that includes a match to cho-
lesterol (Fig. 2 and Fig. S2G), a PC family (m/z 496) (Fig. 2 and
Fig. S3A). A molecular family that includes a match to vitamin
D3 (Fig. S3B) as well as glycocholic acid (Fig. S3C) and
taurocholic acid (Fig. S3D) was detected from skin samples.
Cholic acids, commonly described as bile acids, are important
players of the lipid metabolism in the gut and help maintain
a healthy gut microbial community, thus representing a viable
therapeutic intervention against pathogens (29). The function of
these bile acids on the skin is unknown. Matches to phytos-
phingosines (Fig. S3E) were detected on the skin but not in the
beauty products or cultured keratinocytes. Some molecular
families were detected in both skin samples and skin bacteria
cultures, such as the fatty acids oleic acid (Fig. S3F) and palmitic
acid (Fig. S4A), which were found in Pseudomonas, and palmi-
toleic acid, which was detected in Acinetobacter, Candida, and
Malassezia cultures (Fig. S4B). Tryptamine from the skin was
identical to the molecular feature collected from the cultured
microbe Staphylococcus (Fig. S4C). Not only did some molecular
features from the human skin match molecular features from
cultures, some also matched hygiene, diet, and/or beauty products
and commonly used plasticizers for use in clothing and other
plastics such as o-formylbenzoic acid (30) and food constituents or
additives such as sinapinic acid (31, 32) (Fig. S4D) and oxidized
polyethylene (33). This illustrates that our daily routines leave
molecular traces on the skin that can be readily detected and are
a significant component of the regiospecific chemical environment
of the skin that, at the same time, can provide insight into personal
habits (e.g., application of sunscreen, lotion, and so forth or not).
The molecular family that includes the C12 lauryl ether sulfate

surfactant, a component of the shampoo used by person 1, was
found on his head but not person 2’s (Fig. 2 and Fig. S5A).
Similarly, the molecular family that includes cocoamidopro-
pylbetaine, also known as lauroylamide propylbetaine, a surfac-
tant present in both person 1’s and person 2’s shampoo, was
found on the head of both subjects (Fig. 2 and Fig. S5B) (34).
Sunscreens such as avobenzone and octocrylene (Fig. S5 C and
D), ingredients in several cosmetic formulations, were observed
mostly in the face and chest of the female. Finally, polymeric
substances that display the characteristic 58 Da difference pat-
tern (polypropylene glycol subunit, –CH2CH2CH2O), found in
beauty products, were associated with the axilla of person 2 (Fig.
S5E). Both volunteers refrained from showering and from the
application of hygiene and beauty products for 3 d before sam-
pling to increase the possibility of detecting microbially produced
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Fig. 2. Structural biochemical analysis driven by topographical maps reveals molecules from various molecular families. The molecular features were selected
based on their biogeographical localization as shown on the maps. The structural analysis was performed using molecular networking of UPLC-QTOF MS/MS
data. The full network is shown in the middle; a node corresponds to a consensus MS/MS spectrum, and an edge represents the similarity between MS/MS
spectra. The thickness of the edges (gray lines connecting nodes) indicates the level of similarity. Network has been generated using a cosine of 0.65 and then
imported and visualized in Cytoscape. Subnetworks show examples of molecular families (A–H). The network nodes were annotated with colors showing
molecular origin, and larger nodes highlight molecules coming from different known origins. CAPB, cocamidopropyl betaine; PC, phosphocholine; PS,
phosphoserine; SLES, sodium lauryl ether sulfate. See also Figs. S2–S5.
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molecules, but despite these precautions the dominant molecular
features that could be annotated, surprisingly, came from hy-
giene and beauty products. Consequently, the data suggest that,
through the creation of topographical skin maps, we may be able
to detect both past and current behaviors. The data demonstrate
that the human skin is not just made up of molecules derived
from human or bacterial cells. The external environment, such as
polymeric materials in plastics, as found in clothing, diet, hy-
giene, and beauty products, contributes significantly to the skin’s
chemical composition. These molecular signatures of behavioral
regimens remain visible on the skin and may affect our skin
microbial communities; they can now be detected and correlated
with the local microbial community.

3D Mapping of 16S rRNA Data. To identify the bacteria present on
the human skin surface and relate them to molecular local-
izations, phylogenetic analysis of bacterial and archaeal ribo-
somal 16S rRNA amplicon sequences from ∼400 sites of each
volunteer was performed, revealing 850 distinct microbial oper-
ational taxonomic units (OTUs) at the 97% identity level
(Dataset S1). Although 36 phyla were observed, some of them at
only a few locations, the most common microbial taxa observed
in this study were from the phyla Actinobacteria, Firmicutes,
Proteobacteria, Cyanobacteria, and Bacteroidetes, in agreement with
findings in the HumanMicrobiome Project (4–8) (Fig. S6A, Dataset
S1, and microbial distribution maps folder available at massive.ucsd.
edu/ProteoSAFe/status.jsp?task=6b9dcff3899e4d5f89f0daf9489a3a5e).
Topographical mapping of 16S rRNA amplicon data revealed
many distinct localizations of detected taxa (microbial distri-
bution maps are available at massive.ucsd.edu/ProteoSAFe/
status.jsp?task=6b9dcff3899e4d5f89f0daf9489a3a5e). The family
Staphylococcaceae was found in moist areas, such as on the foot
of both volunteers, under person 2’s breast and neck, and around
person 1’s nose (Fig. S6A). The genus Staphylococcus was
detected mainly on the foot of both volunteers and around the nose
of person 1 (Fig. 3). The genus Propionibacterium was found on the
sebaceous region, including the head, face, upper back, and upper
chest, of both volunteers (Fig. 3). The genus Corynebacterium was
most prevalent on the head, groin, and toe regions of both vol-
unteers (Fig. 3). In addition, organisms such as Pseudomonas,
a representative Gram-negative skin commensal, which is also
involved in some important infections such as cystic fibrosis, and
Lactobacillus, which is generally considered a member of the

skin, vaginal, oral, and gut microbiota but also previously asso-
ciated with skin, was detected over the entire skin surface of both
volunteers (Fig. S6B) (1). Streptococcus (an abundant genus in
the oral cavity), Haemophilis, and Rothia are all part of the
normal community of oral microbes (35) but are present on the
skin of both individuals, primarily around the mouth of person 1
(Fig. S6C). Finally, the phylum Cyanobacteria was found in in-
creasing amounts on the hands, knees, and lower leg of person 2
but minimally on person 1 (Fig. S6B). Our 16S rRNA maps show
that chloroplasts, which group phylogenetically within the Cya-
nobacteria and come from the plant extracts used on the hands of
the female, are localized to that subject (36). These diverse
microbes and plant materials, and their specific localization,
must, to some extent, define the molecules observed on the skin.

3D Representation of Bacterial and Molecular Diversity. To measure
and correlate the region-specific molecular diversity and bacte-
rial diversity, we used the Shannon index (37), a widely used
statistical measure of diversity that has previously been used to
define high- and low-diversity regions of the skin, and the
evenness of the microbial population (5, 38, 39). We generated
topographical maps of both molecular and bacterial diversity,
based on Shannon index measurements from n = 394 samples for
person 1 and n = 362 samples for person 2. The 3D maps reveal
heterogeneous regions of high and low molecular and bacterial
diversity on the skin surface, separately for each volunteer.
Within each subject, there was no correlation between the mo-
lecular and microbial diversity (Fig. 4). Therefore, the majority
of the features that are detected by MS do not come from
microbes, consistent with our observation that the features from
beauty products and hygiene products are prominently detected
in the LC-MS data.

Spatial Correlation Between Molecular and Bacterial Distribution.
Although the Shannon diversity revealed different spatial pat-
terns of diversity between molecules and microbes, this does not
rule out spatial correlation between localizations of individual
bacterial species and metabolites. We therefore set out to find
specific molecules and bacteria that shared the same bio-
geographical regions. The spatial correlation can be used as
a hypothesis-generating methodology. However, correlation does
not directly imply causation; rather, a correlation of spatial
localizations of bacterial phylum and molecular species enables

Fig. 3. The topographical map of representative distributions of bacteria from the genera Staphylococcus, Propionibacterium, and Corynebacterium, based
on their relative amounts at each body location, for the female and male individuals. Red is the highest percentage of each genus that was detected, and blue
is the lowest percentage; other colors are in between. See also Fig. S6.
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the formulation of testable hypotheses or provides a specific
question that can then be followed up with additional experi-
ment. Spatial correlations between all detected molecules (from
LC-MS data) and microbes were computed by calculating the
Pearson correlation (Colocalization Analysis of Microbial and
Molecular Communities). Spatially colocalized microbial taxa and
molecular species were found in both volunteers. Discovered
colocalizations were represented with a network and examined.
Cross-correlations (correlation > 0.5, P value < 0.05) between
the genus Propionibacterium (Fig. 5A) and 491 molecular fea-
tures enabled the discovery of molecular features that have
similar distributions to the bacterial taxa (Fig. 5B). Approxi-
mately 73% of these molecular features belonged to the lipid
molecular families as judged by their RTs (between 300 and 500 s,
consistent with the hydrophobic nature of lipids) (Fig. 5 C and D).
These lipids were not detected among naturally produced prod-
ucts of cultured Propionibacteria. Lipids such as oleic acid
(Fig. S3F), palmitic acid (Fig. S4A), and monoacylated glycer-
ols monoolein and monopalmitin (Fig. S7 A and B) were found
in larger amounts on the head, face, hands, chest, and back (Fig. 5D).
These are all components of acyl glycerols that make up mem-
branes of human cells. These observations highlight molecular
interrelations among the microbiota, human skin, and environ-
ment and reveal molecular microenvironments on the epidermis.
Except for the hands of person 2, the localization of oleic acid,

palmitic acid, mono-oleic, and palmitic acylated glycerols mirrors
the localization of the genus Propionibacterium (Fig. 5 A and D).
These correlations provided the hypothesis that some of these
are products of processing of human acylated glycerols resulting
from hydrolysis of triacylglycerides or diacylglycerides mediated
by Propionibacterium (40). To determine whether this organism
could hydrolyze acylglycerides, Propionibacterium acnes was
cultured in a medium supplemented with the triglyceride tri-
olein, and the resulting metabolic products were analyzed using
UPLC-QTOF MS/MS. Products of hydrolysis to oleic acid were
detected in the P. acnes cultures containing triolein but not in
controls (Fig. 5E). Furthermore, an oxidized oleic acid was ob-
served in the same cultures. Although the exact location of the

oxidation is unknown, the metabolite has the same parent mass,
MS/MS, and RT as the oxidized oleic acid that was detected on
the skin and had a similar localization in the topographical map
to the hydrolytic products such as oleic acid, palmitic acid, mono-
oleoyl, and monopalmitoyl glycerol molecular families (Fig. 5
and Fig. S7C). These results strongly support the hypothesis that
skin microbiota, especially Propionibacterium, not only contrib-
ute molecules to the chemical composition of the SC but also
alter the chemical environment on which they live. It is antici-
pated that not just human skin cell molecules but also molecules
produced by other microbes and from environmental origin, in-
cluding diet, are altered as well.
Similarly, the automatic colocalization analysis (Colocalization

Analysis of Microbial and Molecular Communities) correlated
8,122 LC-MS molecular features colocalized with seven bacteria
genera (Prevotella, Butyricimonas, Clostridium, Peptoniphilus,
Peptostreptococcus, Bilophila, and Rathayibacter), all localized
mainly in the groin area of person 1 (Fig. 6). Among the mole-
cules that colocalize with the groin bacterial community are the
human neutrophil peptides (HNPs) (Fig. S8 A and B). Similarly,
the vaginal area of person 2 contained a microbial community of
six bacterial genera, including Anaerococcus, Peptoniphilus, Pre-
votella, Sutterella, Negativicoccus, and Peptostreptococcus, which are
commonly found in oral and vaginal communities. This bacterial
community is colocalized with more than 1,800 unique molecular
features only detected in the groin of the female (Fig. S9A). Heme
and lysophosphatidylcholine (LysoPC 16:1) were found to be
localized (correlation > 0.6, P value < 0.05) in this region (Fig.
S9 B–D). HNPs and LysoPC 16:1 are usually associated with
inflammation (41–45). As more skin chemical maps become
available in the future, they will help to gain insight into the
diversity of chemistries of the skin surface and their relationship
to the colocalization of microbial communities, especially how
the chemistry changes over time upon environmental changes or
changes of skin health such as influence of infectious agents,
medications, environmental exposure, dietary, or even changes
in climate. These observations demonstrate the exciting potential
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Fig. 4. Representation of the microbial and molecular diversity using the Shannon index, comparing samples based on their microbial (16S rRNA amplicon) or
molecular (UPLC-QTOF-MS) profiles. The Shannon diversity maps showing values of the Shannon index calculated for each sample separately from microbial
(16S) and molecular (UPLC-QTOF) collections. Both molecular and microbial diversity is displayed for each volunteer, separately, highlighting regions of high
and low diversity on the skin surface. For the color scale, blue corresponds to the minimum value of the Shannon index for the individual and red corresponds
to the maximum value.
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for human molecular topographical maps to discover relation-
ships between these markers and specific bacterial communities.

Conclusion
In this study, we show the technical advance of 3D molecular
topographical maps to organize and visualize a large volume of
data, for understanding the relationships between chemistry and
microbes. This was demonstrated with creating 3D maps of the
human skin surface, together with a pipeline for defining the
origins of detected metabolites through molecular networking, to
reveal a roadmap toward understanding the interplay between
our daily routines, the molecules on our skin, and the metabo-
lism of these molecules by our skin microbiota. At the molecular
level, the skin is an enormously complex organ, in part because
of the influence of the microbiota, as well as constant exposure
to environmental factors. Metagenomic sequencing studies have
shown that the microbiota on the skin can have greater phylo-
genetic diversity than in the gut (6). Our topographical maps
show, at a high spatial resolution, that the complexity of the
molecular distribution profiles exceeds even the complexity of
the microbial profiles. This makes sense, because the chemistry
that is found on the skin has many origins, and only some of this
diversity comes from our microbes. Spatial analysis of these
molecular components can improve our understanding of factors
that drive skin microbial ecosystems. The molecular topograph-

ical maps constructed in this study represent the highest spatial
resolution available to date for both human skin chemical and
bacterial distributions. The approach developed here represents
a starting point for future investigations into specific chemical
drivers involved in the maintenance and modulation of the hu-
man skin ecosystem and how variation in this complex ecosystem
impacts human health and disease. These effects are especially
important for understanding the impact of molecules on the
modulation of skin microbiome balance and, in particular, the
influence of modern hygiene and beauty practices. Revealing
the impacts of these factors on our microbes, and onto the
metabolites they produce, may be essential for defining long-
term skin health (46). The topographical maps thus lay the
groundwork, enabling us to address such questions.

Materials and Methods
Subject Recruitment and Sample Collection. Two healthy adults were recruited
to donate samples. Both individuals signed a written informed consent in
accordance with the sampling procedure approved by the University of
California, San Diego Institutional Review Board (Approval 130537X). Skin
preparation for sampling included avoiding bathing, shampooing, or mois-
turizing for 3 days before sampling and minimizing the use of personal
hygiene products. The female subject did apply deodorant during this period.
Two collections were performed from each skin spot. Samples were collected
at roughly 400 body sites on the skin surface of each volunteer (Datasets S2
and S3), using swabs. Sampling was performed at a 2 × 2 cm area, through

A B D

C
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Fig. 5. Propionibacterium genus colocalization with lipids on person 2’s body as well as in vitro study of triolein hydrolysis by P. acnes. (A) Topographical
maps show the spatial distribution of this genus on the female and male individual. (B) Molecular UPLC-QTOF features spatially colocalized with the Pro-
pionibacterium bacterial taxon are displayed as a network, where a square node represents the Propionibacterium taxon, circular nodes represent clusters of
tightly colocalized molecular features, and a node represents colocalization between the bacterial taxon map and a molecular cluster map. The number of
tightly colocalized molecular features (having nearly identical spatial distributions) is shown inside each circle. In total, 492 molecular features were spatially
colocalized with the Propionibacterium taxon. (C) The heat map represents the RT and m/z values of colocalized LC-MS features; most of them have an LC RT
of 300–400 s and m/z 200–400 and a region that matches many hydrophobic molecules such as lipids. (D) Molecular networking of molecular families that
have similar distribution to the Proprionibacteria and highlights the colocalized MS features and structurally related molecules of the selected molecules
(green circle) found in UPLC-QTOF data. (E) In vitro analysis considering P. acnes cultures with or without triolein as well as blank growth media with triolein
demonstrate the potential of microbiota to be involved in transformation of large human lipids (e.g., the triacyl glyceride triolein) into smaller lipids and fatty
acids as those detected on the skin and colocalized with Propionibacterium (here oleic acid and oxidized oleic acid). Area under the peak calculation of oleic
acid and oxidized oleic acid was measured for RT ranges 7.5–7.8 min for m/z 283 and 6.65–6.75 min for m/z 299. The in vitro assay was performed three times
(error bars, SD) and can be interpreted as a significant (Student t test, **P < 0.01, ****P < 0.0001) increase of lipid products observed in the presence of
P. acnes supplemented with triolein. See also Fig. S7.
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half of the entire human body for both volunteers, with premoistened
cotton swabs at each site in 50:50 ethanol/water for MS analysis or 50 mM
Tris pH 7.6, 1 mM EDTA, and 0.5% Tween 20 for nucleic acid analysis. Sample
locations were noted, and swabs were placed in a deep-well 2-mL poly-
propylene 96-well microtiter plate. The absorbed material was then ex-
tracted in 500 μL of 50:50 ethanol/water (for mass spectrometric analysis) or
Tris-EDTA buffer (50 mM Tris pH 7.6, 1 mM EDTA, and 0.5% Tween 20) for
bacterial DNA extraction. After collection, samples were stored at –80 °C
until further analysis. The ethanol/water extract was submitted to MS
analysis including MALDI-TOF for metabolite, peptide, and protein detection
and UPLC-QTOF for detection of smaller molecules, including tandem MS
(MS/MS) of molecules for molecular network analysis. The second collec-
tion was subjected to prokaryotic ribosomal 16S rRNA-based sequencing
to identify the bacteria present in the same location. Samples from the
beauty products used by the volunteers were also subjected to the same
MS analysis.

UPLC-QTOF MS Analysis. The human swab sample, beauty product, cosmetic
ingredient (raw materials), chemical standard, cultured human skin cell,
bacteria strain, and human skin tissue (Datasets S2–S8) extractions were
analyzed using a UltiMate 3000 UPLC system (Thermo Scientific), controlled
by Chromeleon software (Thermo Scientific). UPLC conditions of analysis
were 1.7 μm C18 (50 × 2.1 mm) UHPLC column (Phenomenex), column
temperature of 40 °C, flow rate of 0.5 mL/min, mobile phase A of 98%
water/2% acetonitrile/0.1% formic acid (vol/vol), and mobile phase B of 98%
acetonitrile/2% water/0.1% formic acid (vol/vol). A linear gradient was used
for the chromatographic separation: 0–0.5 min 0% B, 0.5–2 min 0–20% B,
2–8 min 20–99% B, 8–9 min 99–99% B, and 9–10 min 0% B. The UPLC-MS
analysis was performed on a Maxis QTOF mass spectrometer (Bruker Dal-
tonics), controlled by the Otof Control and Hystar software packages (Bruker
Daltonics), and equipped with ESI source. MS spectra were acquired in
a positive ion mode in the mass range of m/z 80–2,000. The instrument was
externally calibrated before each run using ESI-L Low Concentration Tuning
Mix (Agilent Technologies). Hexakis(1H,1H,3H-tetrafluoropropoxy)phos-
phazene (Synquest Laboratories), m/z 922.009798, was used as an internal
calibrant (lock mass) during the run. In experiments with multiple internal
standards, the Maxis gets less than 0.5 ppm mass accuracy after calibration.
For larger scale experiments covering several days, a mass accuracy of <10
ppm is observed for all detected molecular features. Instrument parameters

were set as follows: nebulizer gas (Nitrogen) pressure, 2 Bar; Capillary volt-
age, 4,500 V; ion source temperature, 180 °C; dry gas flow, 9 L/min; spectra
rate acquisition, 3 spectra/s. MS/MS fragmentation of the seven most intense
selected ions per spectrum was performed using ramped collision-induced
dissociation energy, ranging from 16 to 48 eV, to get diverse fragmentation
patterns (Dataset S9). MS/MS active exclusion was set after 3 spectra and
released after 30 s. An MS/MS exclusion list criterion was set for a mass range
of m/z 921.5–924.5.

MALDI-TOF Analysis. Swab samples were analyzed using a MALDI-TOF/TOF
Bruker Autoflex Speed instrument (Bruker Daltonics), controlled by the flex
control software (Bruker Daltonics). Samples of 1 μL were spotted directly
from water/ethanol extracts using a multichannel pipette and convoluted to
a 384 microtiter plate format. Plates were prespotted with matrix as noted
below. Mass spectra were recorded in three distinct mass-to-charge (m/z)
ranges—m/z 0–4,000, m/z 1,000–5,000, and m/z 5,000–20,000—using 2,5-
dihydroxybenzoic acid (DHB), α-Cyano-4-hydroxycinnamic acid (CHCA), and
3,5-Dimethoxy-4-hydroxycinnamic acid (SA), respectively. Full-scan mass
spectra were acquired in positive ion reflectron mode for mass ranges m/z
0–4,000 and 900–5,000 and in positive ion linear mode for the mass range
m/z 5,000–20,000. Each mass spectrum is the result of 2,048 averaged laser
shots with the laser intensity set between 55% (linear) and 65% (reflectron)
of full laser intensity and a detector gain enhanced between 18× (reflectron)
and 27× (linear) 4GS/s (as selected within the Bruker Flex Control software).
Resulting mass spectra were analyzed using flex analysis software (Bruker
Daltonics) including smoothing and baseline correction. Spectra were cali-
brated to PepMix internal standard solutions. For the analysis of pure
compounds, with internal calibration, the mass accuracy is <25 ppm. For
large-scale experiments and external calibrations, mass accuracies of 100 ppm
can be expected.

DNA Extraction and Purification. Genomic DNA extraction from swab samples
previously stored in Tris-EDTA buffer (50 mM Tris pH 7.6, 1 mM EDTA, 0.5%
Tween 20) was performed using the MoBio PowerSoil DNA Isolation Kit
(MoBio Laboratories) in 96-well microtiter plate format as directed by the
manufacturer. Extracted DNA was stored at –20 °C.

16S rRNA Amplicon Sequencing. For each sample, PCR was completed in
triplicate using the 515/806 primer pair according to the Earth Microbiome

Fig. 6. Molecular and bacterial communities found to be colocalized in person 1. Colocalization analysis between bacteria and molecules in the male subject
reveals 8,122 molecules, which are spatially colocalized with seven bacterial genera in the groin area: Prevotella, Butyricimonas, Clostridium, Peptoniphilus,
Peptostreptococcus, Bilophila, and Rathayibacter. Antimicrobial peptides revealed by MALDI-TOF analysis (HNP-1 m/z 3,443 and HNP-2 m/z 3,372) colocalized
with bacterial communities in the groin area of the man subject, highlighting the physiological status and unique chemical and microbial composition of this
specific region of the skin. See also Figs. S8 and S9.
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Project standard protocol, and products were pooled. Each pool was then
quantified using PicoGreen (Invitrogen) and a plate reader. Once quantified,
different volumes of each of the products were pooled into a single tube so
that an equal amount (ng) of DNA from each sample was represented within
the pool and cleaned using the UltraClean PCR Clean-Up Kit (MoBIO).
Amplicons were then sequenced in a 100 bp × 13 bp × 100 bp Illumina HiSeq
run using the recently described custom sequencing primers and procedures.
We quality-filtered 16S rRNA amplicon sequences using the default values in
QIIME version 1.60-dev (47) and grouped them into “species-level” OTUs by
using the February 4, 2011 Greengenes 97% reference dataset (48), a mini-
mum pairwise nucleotide sequence identity threshold between reads of
97%, and the UCLUST reference protocol (www.drive5.com/usearch/). Se-
quences that did not match reference sequences in the Greengenes da-
tabase were dropped from the analysis. Taxonomy was assigned to the
retained clusters (OTUs) based on the Greengenes reference sequence, and
the Greengenes tree was used for all downstream phylogenetic community
comparisons. Remaining samples were rarefied to 10,049 sequences (the
largest number of sequences per sample, allowing retention of most of the
samples). Analyses of community similarity (β-diversity) were performed by
calculating pairwise distances using the phylogenetic metric UniFrac (49).
The resulting distance matrices were used for principal coordinates ana-
lyses (PCoAs).

3D Modeling and Data Visualization. To create the 3D topographical maps, we
used professional triangulated 3Dmodels of amale and a female, acquired at
CGtrader.com in the STL format, which contains coordinates of vertices of
triangles making up a 3D model. We performed 3D modeling manually with
the help of MATLAB software separately for male and female data. The 3D
modeling included finding for each sampling spot a location on the tri-
angulated 3D model that spatially fits the best. For this, we used photos and
anatomical maps with sampling spots marked and labeled. The (x, y, z)
coordinates of assigned locations were recorded. The correctness of the 3D
modeling was evaluated by adding spheres with the centers at the recorded
(x, y, z) coordinates together with their labels, by performing the manual
assignments of labels back onto photos and anatomic maps and comparing
them with original photos and anatomic maps. Moreover, a radius was
manually assigned to each location to improve visualization; smaller radii
were used in the regions with dense distribution of locations such as face,
fingers, and toes. Rendering of topographical maps corresponding to mo-
lecular features (LC-MS) (Dataset S10), m/z values (MALDI), and taxa as
assessed by 16S rRNA amplicon data were performed in the same way. We
considered the intensities corresponding to all spots, scaled them from 0 to
100%, and assigned colors to all intensities by using the “jet” color map,
encoding colors from cold shades to hot shades (blue representing lowest
intensity and red representing highest intensity). The rendering of the
models was performed in MATLAB. Before rendering each model, the 3D
scene was set, the default color was selected as RGB= (0.05, 0.05, 0.1), lights
were added, and the views were selected; for several views of shaded
regions, additional lights were added. Then, each sampling spot on the male
and female models was rendered by using the color assigned from intensity.
The color was made gradually, disappearing with the highest intensity at the
center of the sampling location and almost no intensity at the boundary of
the sphere with the selected radius. For this, a linear combination of the
default color and assigned color was used, with the coefficient exponentially
depending on the distance from the sampling spot center. The regions
outside of the sampling neighborhoods were colored with the default color.
For those sampling spots where 16S rRNA data were missing, we used the
color RGB= (0.03, 0.03, 0.06), which is similar to the default color, but slightly
darker. To visualize the data from MS analysis, spectral intensities were in-
tegrated over a given m/z interval for MALDI-TOF or the maximum was
taken over a given molecular feature (a set of m/z × RT regions corre-

sponding to isotopes of the same molecule eluting over a period from the LC
column) for UPLC-QTOF. For MALDI-TOF, the tolerances were set asm/z –0.2,
+0.3 and m/z –2, +2 for metabolic and peptide, and protein data, re-
spectively. For LC-MS, the tolerances were –10 ppm, +10 ppm along m/z and
–10, +10 s along RT.

Colocalization Analysis of Microbial and Molecular Communities. To find
communities of colocalized bacteria (those bacterial taxa whose spatial
correlation values are above a threshold and correlation P values are below
a threshold) as well as colocalized molecules (those molecular species whose
spatial correlation values are above a threshold and correlation P values are
below a threshold), we performed the following colocalization analysis
separately for the female and male individuals. The overall aim of this
colocalization analysis was to represent these big data as a tractable net-
work showing spatial colocalizations between thousands of molecular and
microbial maps that can be subsequently analyzed by a biochemist.

First, we performed reduction of data contained in all maps that we ac-
quired with the aim to simplify subsequent spatial colocalization network
analysis. The data reduction was applied separately to molecular and mi-
crobial data, separately for each individual, and was performed based on
using spatial information only. For this, we considered all 16S amplicon spatial
maps and clustered them into tight clusters (spatial correlation value > 0.5,
P value < 0.05) and then considered all LC-MS maps and clustered them into
tight clusters (spatial correlation value > 0.5, P value < 0.05); each cluster
represents almost identical maps. No additional information other than
spatial colocalization was used for clustering. The tight clustering was per-
formed with such parameters so that (i) the clustering results can be easily
interpreted and (ii) all maps inside one cluster are very similar. For clustering,
we used the agglomerative clustering with the Pearson correlation distance,
with complete linkage and distance threshold of 0.5 and P value < 0.05. This
automatically finds clusters of nearly identical maps without specifying the
number of clusters and requires all maps inside one cluster to have pairwise
correlations of 0.5 or higher. We have obtained 322/319 (subject 1, female/
subject 2, male) tight clusters for 16S data and 12,558/7,716 (female/male)
tight clusters for LC-MS data. Then, for each subject, we calculated pairwise
Pearson correlation between all maps (both 16S and LC-MS) and created
networks showing a node for a map and an edge between two nodes if the
correlation is above the threshold. The spatial correlation thresholds were
set to 0.6 for female and 0.4 for male. Then, the networks were imported
into the Cytoscape software and analyzed. To find networks of communities
shown in Fig. 5, we selected the node corresponding to the Prevotella,
Butyricimonas, Clostridium, Peptoniphilus, Peptostreptococcus, Bilophila,
Rathayibacter, Anaerococcus, Sutterella, and Negativicoccus maps and found
all nodes, which are separated by at most two edges from the Prevotella node.
Then, the layout was generated, putting all found LC-MS nodes into a circle
and 16S nodes aside.
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