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Abstract
In addition to being the support cells of the central 
nervous system (CNS), astrocytes are now recognized 
as active players in the regulation of synaptic function, 
neural repair, and CNS immunity. Astrocytes are among 
the most structurally complex cells in the brain, and 
activation of these cells has been shown in a wide 
spectrum of CNS injuries and diseases. Over the 
past decade, research has begun to elucidate the 
role of astrocyte activation and changes in astrocyte 
morphology in the progression of neural pathologies, 
which has led to glial-specific interventions for drug 
development. Future therapies for CNS infection, injury, 

and neurodegenerative disease are now aimed at 
targeting astrocyte responses to such insults including 
astrocyte activation, astrogliosis and other morphological 
changes, and innate and adaptive immune responses.
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Core tip: Over the past decade, research has begun to 
elucidate the role of astrocyte activation and changes 
in astrocyte morphology in the progression of neural 
pathologies, which has led to glial-specific interventions 
for drug development. This review addresses astrocyte 
response to central nervous system (CNS) injury and 
disease in relation to astrocyte activation, immune 
response, and changes in morphology. Further discussion 
addresses potential therapeutics targeting astrocytes, 
which consider these heterogeneous responses to CNS 
insults.
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INTRODUCTION
In addition to being the support cells of the central 
nervous system (CNS), glial cells, specifically astrocytes, 
are now recognized as active players in the regulation of 
synaptic function, neural repair, and CNS immunity[1,2]. 
Astrocytes are among the most structurally complex 
cells in the brain, and activation of these cells has been 
shown in a wide spectrum of CNS injuries and diseases. 
Over the past decade, research has begun to elucidate 
the role of astrocyte activation and changes in astrocyte 
morphology in the progression of neural pathologies, 
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which has led to glial-specific interventions for drug 
development. Future therapies should look at targeting 
astrocyte responses to CNS insults including astrocyte 
activation, astrogliosis and other morphological 
changes, and innate and adaptive immune responses.

Astrocytes are the most numerous cells in the 
mammalian brain, yet much remains to be learned 
about their functional and morphological charac-
teristics. Astrocytes have well-characterized roles in 
regulating cerebral blood flow, water transport, and 
extracellular concentrations of ions, metabolites, and 
neurotransmitters[3]. Their processes comprise an 
important component of the blood-brain barrier (BBB), 
directly contacting endothelial cells with vascular end-
feet and contributing to the structural and functional 
integrity of the BBB. Importantly, astrocytes contribute 
to the CNS’s response to injury and infection[4,5]. Recent 
studies have demonstrated the importance of astrocytes 
in innate and adaptive immune responses in the CNS 
and the roles that astrocyte morphology plays in these 
functions.

Astrocyte heterogeneity: Differences between 
protoplasmic and fibrous astrocytes
Although several types of astrocytes have been identified, 
pathological studies tend to classify them as protoplasmic 
or fibrous based on their morphology and localization in 
the CNS[6,7]. Protoplasmic astrocytes are found in gray 
matter and are generally spongiform in nature. The 
processes of protoplasmic astrocytes spread radially from 
the cell body and have extensive fine branching that 
is distributed uniformly around the cell. The dense and 
complex ramifications of these fine processes extend 
from the primary processes reaching out to synaptic 
connections and contributing to metabolic, homeostatic, 
and BBB functions[8].

Fibrous astrocytes, on the other hand, are present 
in white matter and have fewer, but longer, processes 
that extend along axon bundles providing structural 
support for axonal tracts[9]. Studies indicate that both 
fibrous and protoplasmic astrocytes make contacts with 
blood vessels[10]; however, fibrous astrocytes also send 
processes that contact axons at the nodes of Ranvier[11] 
while protoplasmic astrocytic foot processes ensheath 
neuronal synapses[12]. Additionally, protoplasmic 
astrocytes occupy their own domains in relatively 
independent structural units[13], defining the micro-
architecture of the parenchyma by “tiling” the gray 
matter. These domains are most clearly defined in areas 
of high synaptic density, such as the hippocampus, which 
suggests that domain organization may be important 
for modulation of synaptic transmission[14]. Disruption 
of protoplasmic astrocytic domains is observed during 
glial scar formation in CNS trauma and infection as 
well as in the epileptic brain[15,16]. Fibrous astrocytes, 
on the other hand, show extensive intersection of their 
processes, and therefore, do not appear to have the 
same organization as protoplasmic astrocytes[17].

Astrocyte functions in the CNS
Gray and white matter astrocytes provide extensive 
metabolic support to the CNS as well as regulate water 
homeostasis and energy metabolism[18]. Through gap 
junction communication, astrocytes can relay information 
from neurons to blood vessels in order to coordinate 
oxygen and glucose delivery with the energy demands 
of the tissue[19]. Astrocytes also control extracellular 
ion concentrations; for instance, clearing extracellular 
potassium through inward rectifying channels[20] and gap 
junction coupling[21]. Furthermore, glutathione release 
by astrocytes provides antioxidant support[22] protecting 
other neural cell types against the toxicity of various 
compounds by supplying glutathione precursors to 
neighboring cells[23].

Astrocytes greatly outnumber neurons in the brain 
and play many roles essential for modulating synaptic 
formation and normal neurotransmission[24]. Astrocytes 
have the potential to release their own chemical signals, 
or “gliotransmitters,” such as glutamate, ATP, gamma-
aminobutyric acid (GABA), and D-serine through Ca2+ 
mediated exocytosis, diffusion through pore channels, 
or the cysteine-glutamate antiporter system[25]. 
Furthermore, studies have shown that astrocyte-neuron 
lactate shuttles couple synaptic plasticity and glucose 
metabolism in order to facilitate learning and memory[26]. 
By forming connections to neuronal synapses as well 
as to each other through gap junctions, astrocytes can 
modulate neuronal activity and metabolic function.

The tripartite synapse, which includes astrocytic 
processes at the synaptic cleft, has thus replaced the 
traditional concept of a synapse as a contact between 
two neurons[27]. Recently, Bernardinelli and colleagues 
demonstrated a bidirectional interaction between 
synapses and astrocytes[28]. Synaptic activity, specifically 
long-term potentiation (LTP), was shown to regulate 
plasticity of astrocytic processes. In turn, coverage and 
motility of astrocytic endfeet in hippocampal synapses 
have been shown to predict synapse stability[29]. For 
example, LTP increases the surface area of the astrocyte 
process enwrapping a synapse and the number of 
synapses receiving astrocyte coverage[30]. Dynamic 
changes in astrocyte morphology were also found in 
electron microscopy studies of the visual cortex of rats 
raised in a complex environment[31,32]. Astrocytes display 
a structural response to glutamate by increasing the 
number of astrocytic processes and surface filapodia 
contacting neuronal synapses[12]. These actin-based 
cytoskeletal arrangements are closely linked to 
transformations in neighboring neuronal and vascular 
elements and appear as motile as dendritic processes in 
neurons[33].

Research increasingly shows that astrocytes also serve 
important roles as an integral player in the brain’s defense 
system[6]. In the adaptive immune system, astrocytes 
have phagocytic and antigen presentation capabilitie[34,35], 
and summarized in Table 1. Astrocytes are able to 
express major histocompatibility complex (MHC) class 
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I and II antigens and co-stimulatory molecules when 
stimulated by IFN-γ in vitro, which are important in T-cell 
activation and antigen presentation[4]. The expression 
of MHC class II antigens in astrocytes in vivo, however, 
is controversial. Examination of post-mortem samples 
from multiple sclerosis (MS) patients showed evidence 
of MHC class II expression in astrocytes located in 
active MS lesions. Additionally, in MS lesions, reactive 
astrocytes express CD1 molecules (particularly CD1b), 
which then present lipid antigens to specialized T-cell 
subsets[36], suggesting that astrocytes can participate 
in the presentation of non-peptide antigens to T cells. 
When stimulated, astrocytes also produce a wide array of 
cytokines and chemokines, which serve as immunological 
mediators in innate immune function[1]. Glial cells may 
also perpetuate the progression and severity of brain 
pathologies associated with chronic inflammation, such 
as diabetes[37] and Alzheimer’s disease (AD)[38]. Since 
astrocytes may serve as potential therapeutic targets, 
it is important to understand their functional and 
immunological roles in the CNS.

ASTROCYTE ACTIVATION: OVERVIEW
Astrocytes respond to CNS trauma and infection 
through a heterogeneous process that occurs on a 
continuum of molecular and cellular events. Generally, 
astrocytes react to CNS disturbances with increases in 
intermediate filament expression, progressive cellular 
hypertrophy and proliferation[39,40]. Reactive astrocytes 
also respond with a diverse combination of intracellular 
and extracellular events including activation of ERK[41] 
and c-Fos[42] signaling pathways, increased production 
of cytokines and chemokines, and the recruitment 
of monocytes/microglia to the injured area[4]. Recent 
research suggests that reactive astrocytes are key 
players in a number of neurological diseases, such as 
Alexander’s disease, amyotrophic lateral sclerosis (ALS), 
and AD, underscoring the need for a better understanding 
of reactive astrocytes[43-45]. 

Accumulating evidence indicates that reactive 
astrogliosis is not a simple all or none response. Instead, 
astrocyte activation is variable in regards to changes in 
cell morphology, proliferation, and molecular expression, 
all of which can be modified in a context-specific 
manner to different CNS insults[8,16,39,46-48]. Additionally, 
these molecular and cellular changes are graded in a 

manner that coincides with the level of injury to the 
CNS[49]. Recent studies monitoring the progression of 
reactive gliosis show that a wide range of morphological 
changes occur in astrocytes and that their response 
varied depending on astrocyte subtype, type of injury 
and the location relative to the lesion site[15,50,51]. For 
instance, gray and white matter astrocytes show 
different responses in reactive gliosis, with more 
dramatic morphological changes often observed in 
the gray matter[15]. The signals that drive the reactive 
phenotype also differ with respect to the type and 
extent of injury sustained[10,39]. For example, studies 
indicate that CNS injuries, such as ischemia and stab 
wounds, produce reactive astrocytes with neural stem 
cell potential, while astrocytes in neurodegenerative 
models lack such capabilities[52,53].

Reactive astrocytes: Beneficial or harmful?
Astrocyte activation has often been classified into two 
categories: the first of which is beneficial and occurs 
soon after the CNS insult, and the second, which occurs 
later, inhibits neuronal regeneration, and contributes to 
sustained inflammation in the CNS[54,55]. Perhaps the most 
well studied astroglial reaction is the formation of the glial 
scar from proliferative reactive astrocytes. Following an 
insult resulting in neuronal damage, astrocytes surround 
and isolate dying neurons. This is thought to prevent 
contact between dying and healthy neurons, preventing 
the progression of tissue damage, but may ultimately 
impede any functional recovery[56]. Studies examining 
selectively ablated dividing astrocytes after spinal cord 
injury found that depletion of reactive astrocytes results in 
greatly expanded invasion of inflammatory cells beyond 
the lesion center resulting in a larger lesion volume and 
more extensive motor deficits[57]. This suggests that the 
glial scar prevents inflammatory processes from spreading 
to healthy tissue. The glial scar reaction also produces a 
wide range of molecules, including tenascin-C, chondroitin 
sulfate proteoglycan, and matrix metalloproteinases 
(MMP), which inhibit axonal regeneration[58,59].

Alternatively, further evidence shows that cytokine-
activated astrocytes produce energy substrates and 
trophic factors for neurons and oligodendrocytes, aid 
in antioxidant support, promote revascularization, and 
restore CNS homeostasis[60]. For instance, TGF-beta 
signaling in astrocytes limits immune cell migration 
and decreases pro-inflammatory cytokine/chemokine 
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Immunological molecules Effects Conditions

Class II MHC Autoimmune reactions MS
ICAM-1, VCAM-1 Increased expression of pro-inflammatory cytokines MS, AD
B7 (B7-1, B7-2) T cell activation and differentiation EAE
CD40 Promotes production of cytokines, chemokines, and neurotoxins MS
CD1 (CD1b) Antigen presentation to specialized T-cells MS

Table 1  Immunological molecules expressed in astrocytes and associated conditions

MHC: Major immunohistocompatibility complex; ICAM: Intercellular adhesion molecule; VCAM: Vascular cell adhesion molecule; CD: Cluster of differen-
tiation; MS: Multiple sclerosis; AD: Alzheimer’s disease; EAE: Experimental autoimmune encephalitis.
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synaptic release and impairing synaptic plasticity and 
memory function. Furthermore, studies in genetic null 
animal models can examine both benefits and detriments 
associated with gain or loss of reactive astrocytes[70]. As 
mentioned above, loss intermediate filament expression 
attenuated reactive astrocytosis resulting, in some cases, 
progression of neuronal death and inflammation, and 
in others, increased neuronal survival. Further research 
will clarify the timing and situational consequence of 
activated astrocytes. 

As such, therapeutics targeting astrocyte activation, 
like a recently developed TrkA agonist, has shown 
promise by reducing reactive gliosis and subsequent 
neural sequelae of neuroinflammation[71]. Additionally, 
in vitro studies have shown that reactive astrogliosis 
can be suppressed by up-regulation of mitofusin 2 
(Mfn2), a key protein in mitochondrial networks[72]. 
Increasing Mfn2 expression in cells attenuated injury-
induced astrocytic hyperplasia, activation-relevant 
protein synthesis, and cellular proliferation. Based on 
the impact of reactive astrogliosis in neurodegenerative 
pathologies, novel drugs targeting gliosis may be 
suitable for therapeutic applications in a wide number of 
neurological conditions.

CHANGES IN ASTROCYTE 
MORPHOLOGY
It is well established that astrocytes carry the potential 
to change their morphology in reaction to CNS injury[73] 
as well as in interactions with CNS vasculature[74] and 
neurons[12]. In the same way that neuronal dendrites 
are adaptable and respond to changes in CNS activity by 
altering their structure, astrocytic processes dynamically 
alter their morphology and interact with synapses in 
response to their environment[75]. Morphological changes 
in astrocytes have been documented in chronic stress[76], 
traumatic brain injury[77], neurodegenerative disease[78], 
CNS viral and bacterial infections[79,80], and behavioral 
and mood disorders[81,82]. Experimentally, changes 
in astrocyte morphology have been reported after 
ethanol administration[83], dietary-induced obesity[84], 
and physical exercise[85]. These structural changes can 
be detected not only at the level of their cell body and 
proximal processes, but more importantly, through their 
fine, lamellate distal processes that surround synapses 
and ensheath axonal nodes[86]. Effective regulation of 
the perisynaptic space is attributed, in part, to astrocyte 
morphology[87], and perturbations in fine morphology 
of these glial cells can ultimately contribute to synaptic 
dysfunction and disrupted neurotransmission[88]. 

Astrocyte hypertrophy
Astrocyte hypertrophy is postulated to serve many 
functions in neuronal protection and recovery and 
repair. After traumatic injury, stroke, infection, or other 
severe CNS insult, areas of focal tissue damage become 

production, limiting neuronal injury in Toxoplasma gondii 
infection[61]. Astrocytes also defend against oxidative 
stress, containing high concentrations of antioxidants[23], 
and neuroprotection by reactive astrocytes is, thus, 
thought to occur through upregulation of glutathione 
following oxidative stress[62,63].

Intermediate filaments, such as glial fibrillary acidic 
protein (GFAP) and vimentin, are upregulated in reactive 
astrocytes. While this increase aids in CNS protection 
and axonal regeneration, it has proved to be a double-
edge sword. Intermediate filaments are thought to 
assist with synaptic elimination after lesion, guidance of 
axonal regrowth, formation of neuromuscular contacts, 
and timing of recovery[64]. Conditional ablation of 
proliferating astrocytes leads to increased inflammation 
and increased neuronal death in spinal cord injury 
models and in experimental autoimmune encephalitis[10]. 
However, studies in GFAP-/-Vim-/- aged mice demo-
nstrated increased cell survival/proliferation in the 
hippocampus compared to control mice[65]. Astrocytes 
of null mice exhibit fewer morphologic changes and 
less glial scarring after CNS insult than mice devoid 
of intermediate filament deficiencies[66], indicating 
that chronically reactive astrocytes may restrict 
neurogenesis with increasing age. Furthermore, the 
absence of intermediate filament proteins has also been 
shown to decrease reactive gliosis, and subsequently, 
photoreceptor degeneration that results from retinal 
injury[67]. 

Astrogliosis can be classified as anisomorphic, where 
astrocytes surround a lesion forming a glial scar, or 
isomorphic, whereby astrocytes remain distal to the site 
of injury and promote neurite outgrowth and facilitate 
synaptogenesis[68]. Activation of astrocytes and other 
glial cells influence the rate and intensity of regeneration 
of peripheral nerves in the peripheral nervous system 
after injury[64]. Experimentally, prevention of reactive 
gliosis improved the integration of neural progenitor 
cells grafted into the rodent hippocampus[69], indicating 
that the survival and generation of new neurons may 
benefit from astroglial modifications. Overall, activation 
of astrocytes may be both beneficial and harmful in the 
setting of CNS trauma and/or disease. More research 
is needed to clarify therapeutic potential in astroglial 
responses.

Functional consequences of astrocyte activation
In the healthy CNS, astrocytes play an important 
role in maintaining homeostatic balance, directing 
the development of synapses, uptake and clearance 
of neurotransmitters, and modulation of cerebral 
blood flow[2,19]. However, the degree to which reactive 
astrocytes maintain these functions, or gain new ones, 
remains to be elucidated. Recent studies in a transgenic 
mouse model of AD observed aberrant GABA production 
in reactive astrocytes surrounding amyloid plaques in 
the hippocampus[45]. GABA, an inhibitory gliotransmitter, 
binds to neuronal GABAergic receptors inhibiting neuronal 
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filled with inflammatory, fibrotic, and other cells that 
derive from the perivascular cells, endothelia, bone 
marrow, and meninges. These tissue lesions become 
surrounded by reactive astrocytes forming glial scars 
that serve to separate necrotic from healthy tissue[10,89]. 
Astrocytes and other glial cells surround infected or 
necrotic tissue providing a physical barrier between the 
CNS insult and healthy tissue. Longer and more complex 
processes would allow the astrocytes to envelop 
synaptic terminals and influence synaptic transmission 
through gliotransmitter release and neurotransmitter 
clearance[90,91]. In experimental entorhinal lesions in 
the rat, hypertrophic astrocytes line the denervated 
outer molecular layer of the dentate gyrus, potentially 
providing trophic support for the sprouting process[92]. 
Furthermore, astrocytes with more complex morphol-
ogies could come about as a compensatory mechanism 
for neuronal and synaptic degeneration[93,94]. Studies 
have shown a significant increase in GFAP-positive 
hypertrophic astrocytes in the hippocampus in AD 
patients[95].

The hypertrophic response in astrocytes may depend 
on the type and extent of CNS injury. It is hypothesized 
that glial scars are formed in two ways: one, through 
newly proliferated, elongated astrocytes that extensively 
overlap to form scar borders and secondly, through 
hypertrophic stellate reactive astrocytes that are 
derived from local populations of mature astrocytes[51]. 
In contrast to microglia, which proliferate at a high 
frequency, reactive astrocytes proliferate very little in 
chronic disease[53,78]. In a chronic disease model, low 
degrees of astrocyte proliferation were observed in 
the presence of pronounced astrocyte hypertrophy[53]. 
Hypertrophy, but not proliferation, of GFAP-positive 
astrocytes also occurs alongside increased expression of 
proteins expressed in neural stem cells[96,97]. Clarifying 
the roles that subsets of astrocytes have in injury 
response will have important implications for future 
therapeutics.

Astrocyte atrophy
While astrocyte hypertrophy/astrogliosis serves to 
contain brain damage and assist in neuronal survival[39], 
the converse can be said about astroglial degeneration 
and atrophy. Atrophy of astrocyte processes has been 
detected in normal aging[98] and chronic stres[76] as well 
as in the early stages of various neurodegenerative 
diseases including AD[99] and ALS[44]. Atrophic astrocytes 
result in reduced support for neuronal networks, which 
may ultimately decrease neuronal connectivity and 
plasticity. We have recently shown that, in the setting 
of simian immunodeficiency virus (SIV) infection 
and SIV-induced encephalitis, gray and white matter 
astrocytes retract their processes resulting in an overall 
decreased arbor irrespective of encephalitic status[79]. 
It is hypothesized that reduced numbers of astrocytes 
is directly linked to disruptions in cognitive behavior 
and that astrocyte loss may be a primary driver of 

pathology[100,101]. Furthermore, Tynan et al[76] observed 
decreases in astrocyte morphology without concomitant 
reductions in astrocyte number in rodents exposed to 
chronic stress. We observed similar effects in macaques 
that exhibited self-injurious behavior, a classic behavior 
following social stress[81]. This suggests that atrophy 
and decreased GFAP expression, rather than reductions 
in astrocyte number, are related to neuropathological 
changes in stress and mood disorders[76].

Conversely, global CNS insults, such as ischemia/
hypoxia, induce changes in astrocyte morphology that are 
distinctly different from focal insults. Studies examining 
hypoxia/ischemia in the neonatal pig model showed 
significant decreases in astrocytic processes (length 
and number) with hypertrophy of the cell body post-
insult[102]. These changes were observed in both white 
and gray matter astrocytes and were evident as soon 
as eight hours after the insult and were concurrent with 
dysfunction in glutamate clearance[102].

Furthermore, increasing or decreasing the numbers 
and sizes of astrocytes impacts the volume and alters 
the composition of the space between astrocytes[103]. 
As a consequence of this, there would be neuronal 
dysfunction through excitotoxicity[104], homeostatic 
imbalances[105,106], damage to synapses[107,108]. For 
instance, post-mortem examinations of human brains 
following TBI show enlarged perivascular spaces, 
which potentially reflect astrocyte retraction[109]. The 
uncoupling of astrocytes and microvascular endothelium 
can interfere with homeostasis and metabolic support – 
ultimately resulting in an imbalanced energy supply to 
the brain[110]. 

Factors controlling astrocyte morphology
There are two distinct mechanisms whereby astrocytes 
can be activated in the absence of infectious agents. In 
the first, gap junction proteins are down regulated[111] 
restricting the overall syncytia of astrocytes. This would 
also alter the morphology of the astrocytes including the 
number of synapses they can form with neurons and 
the BBB. Alternatively, changes in astrocyte morphology 
can occur as a consequence of immune regulation and 
inflammation[112].

Several genes are implicated in morphological 
alterations in astrocytes. GFAP, an intermediate filament 
protein highly expressed in white matter astrocytes 
and a subset of gray matter astrocytes, is thought 
to modulate astrocyte motility and shape, providing 
structural stability to processes[113]. Studies in GFAP-
null mice have shown that GFAP as well as vimentin, 
an intermediate filament necessary to stabilize GFAP, 
are required for proper glial scar formation in the 
injured CNS[66]. Additionally, fibroblast growth factor 
(FGF) signaling has been shown to be responsible 
for alterations in astrocyte morphology during glial 
activation[114]. The blockade of FGF signaling at the site 
of reactive gliosis reduced astrocyte branch formation 
and minimized hypertrophic responses during reactive 
gliosis. Selective deletion of transcription factor, signal 

46 May 12, 2015|Volume 4|Issue 2|WJV|www.wjgnet.com

Lee KM et al . Heterogeneity of glial activation



transducer and activator of transcription 3, from 
astrocytes disrupted glial scar borders, which allowed 
the spread of inflammatory cells from the site of injury 
and increased neuronal loss[51]. Furthermore, studies 
have shown that aquaporin-4 (AQP4) is important for 
sustaining astrocyte morphology, indicating a functional 
role of AQP4 in astrocyte plasticity. Knockdown of AQP4 
in primary cultures resulted in a drastic reduction in 
membrane water permeability, impaired cell growth, 
and altered cell morphology[115] as well as the down-
regulation of three genes (glucose transporter 1, 
hexokinase, and metallothionein-1) involved in brain 
edema. 

Furthermore, changes in astrocyte morphology may 
not necessarily be permanent and can change with 
amelioration of CNS insult[116] and/or the administration 
of therapeutic medication (Lee et al, under review). 
Recovery in changes in astrocyte morphology, such 
as decreases in process hypertrophy and an increase 
in primary processes, has been observed two weeks 
after optic nerve injury[117]. We showed that changes 
in astrocyte morphology associated with self-injury in 
rhesus macaques were reversed with opioid antagonist 
treatment. Furthermore, valproate has been shown to 
reduce the overlap between adjacent astrocytic domains 
seen in epilepsy[16]. Valproate was also used to treat a 
transgenic mouse model of AD. The investigators found 
that APP/PS1 mice had markedly improved symptoms 
as well as decreased astrogliosis and microgliosis after 
valproate treatment[118]. 

ASTROCYTE ACTIVATION AND 
INFECTIOUS DISEASE
Immune function of astrocytes
The CNS is considered an immune-privileged system 
with the presence of the BBB, low levels of MHC 
molecules, and the absence of lymphatic irrigation[119]. 
Increasing evidence shows that astrocytes participate in 
local innate immune responses triggered by a variety of 
insults. 

Astrocytes are an important source of cytokines 
and have the capacity to respond to a wide variety of 
cytokines themselves[60]. In the resting state, glial cells 
express a wide variety of receptors for inflammatory 
cytokines, chemokines, pathogen-associated molecular 
patterns (PAMPs), and damage-associated molecular 
patterns (DAMPs)[120,121]. Once activated, glial cells have 
the capacity to induce numerous other receptors and 
inflammatory mediators following stimulation from 
other CNS cells, infiltrating leukocytes, and/or invading 
pathogens[1]. Additionally, both microglia and astrocytes 
display an array of receptors involved in innate immunity 
and damage detection, including Toll-like receptors 
(TLRs), nucleotide-binding oligomerization domains, 
double-stranded RNA-dependent protein kinases, 
scavenger receptors, and mannose receptors[122,123], and 
summarized in Table 2. 

These pattern-recognition receptors detect infectious 
particles and damage-associated molecules associated 
with CNS trauma and neurodegeneration[124]. TLRs, type 
I transmembrane receptors most commonly found in 
innate immune cells, are highly expressed in microglia 
and have also been observed in astrocytes[125]. Under 
resting physiological conditions, astrocytes express 
TLR3[126] as well as low levels of TLR2, TLR4, TLR5, and 
TLR9[127,128]. Binding of PAMPs to TLRs on astrocytes 
alters cytokine secretion, cytoskeletal protein expression, 
and adhesion[126]. 

Viral infection of astrocytes
Astrocytes can be targeted, as well as directly infected, 
by several pathogens and possess the ability to recognize 
structures belonging to various types of pathogens. For 
example, astrocytes display functional CXCR4 and CCR5 
co-receptors, which render them permissive to HIV-1 
infection[129,130]. Direct infection of astrocytes has also 
been demonstrated in SIV[131], group B streptococcal 
bacteria[132], Borna virus[133], and herpes simplex virus[134]. 
Furthermore, TLRs may also increase or decrease 
susceptibility to viral infection in astrocytes, depending on 
the viral agent studied. For example, in rodent models, 
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Pattern recognition receptors (expressed in astrocytes) Effects Conditions

TLRs (TLR2, TLR3, TLR4, TLR5, TLR9) Upregulation cytokine/chemokine expression, induction of 
costimulatory molecules

Viral and bacterial 
infection, DAMPs

NOD receptors (NOD1, NOD2) Upregulation of pro-inflammatory cytokines through NF-κB Bacterial CNS infections
Scavenger receptors (SR-BI, SR-MARCO, RAGE, SRCL) Mediates adhesion/uptake of A-beta in the CNS AD
Mannose receptors (expressed) Receptor-mediated endocytosis, CD4 independent HIV-1 entry HIV
Complement factors (C1q, C4, C2, C3, C3d, C5, C5b-9, C6, 
C8)

CNS inflammation, cell activation and astrogliosis TBI, synaptic plasticity, 
Pick’s disease, MS

Complement receptors (CR1, CR2, C3aR, C5aR) CNS inflammation, cell activation and astrogliosis TBI, synaptic plasticity

Table 2  Immune function of astrocytes

TLR: Toll-like receptor; NOD: Nucleotide-oligomerization domain; SR: Scavenger receptor; RAGE: Receptor for advanced glycation end products; DAMP: 
Damage-associated molecular pattern; TBI: Traumatic brain injury; CNS: Central nervous system; SR-BI: Scavenger receptor class B type I; SR-MARCO:  
Scavenger receptor - macrophage receptor with collagenous structure; SRCL: Scavenger receptor C-type lectin; CR1: Complement receptor type 1; CR2:  
Complement receptor type 2; C3aR: Complement component 3a receptor; C5aR: Complement component 5a receptor; NF-kappaB: Nuclear factor kappa-
light-chain enhancer of activated B cells; AD: Alzheimer’s disease; HIV: Human immunedeficiency virus; MS: Multiple sclerosis.
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TLR3 in astrocytes protect against herpes simplex 
virus type-2 infection[134], but has been reported to 
mediate entry of West Nile Virus into the CNS, causing 
encephalitis[135]. 

Furthermore, recent evidence indicates that TLRs are 
also capable of sensing endogenous ligands produced 
during stress or injury called DAMPs, linking TLRs with 
the host response to CNS damage[136]. Astrocytes can 
express receptors for DAMPs[137]. Endogenous DAMP 
molecules released from damaged neurons can bind 
to TLR2 on nearby glia, and in turn, activate glial cells 
during CNS trauma and infection[138]. As such, astrocyte 
and microglial activation was decreased in TLR2-
null mice[138]. Interestingly, studies in an intracerebral 
hemorrhage stroke model utilizing TLR2-null mice found 
no differences in microglial activation, indicating that 
inflammation and neurotoxicity were mediated by TLR2 
on astrocytes[124]. Since TLRs have been implicated 
in both infectious and noninfectious diseases of the 
CNS[122], understanding their potential to influence the 
course of neuroinflammation is important in developing 
new therapeutic interventions aimed at minimizing 
tissue damage during neuroinflammatory disorders.

Following infection and/or activation, astrocytes 
secrete cytokines and chemokines, such as CXC motif 
ligand 10 (CXCL10), Chemokine ligand 2 (CCL2), 
interleukin-6 (IL-6), and BAFF, which influence both 
innate and adaptive immune responses[4]. These 
responses are important in eliciting local CNS immune 
responses through inflammatory mediators and recruiting 
additional immune effector cells from the peripheral 
circulation. Increased CCL2 secretion in astrocytes 
initiates the recruitment of immune cells and activation of 
glial cells in the CNS during chronic neuroinflammatory 
disease and autoimmune inflammation[139]. Experim-
entally, astrocytes activated by heat-killed bacteria or 
lipoproteins react by secreting chemokines, proliferate, 
or enter apoptosis[140]. For instance, astrocyte infection 
by Brucella has been shown to induce MMPs, which are 
known to induce tissue remodeling[80,141]. In cultured 

astrocytes, viral mimic poly(I:C) induces the expression 
of several cytokines (TNF-α, IL-6, IFNβ, granulocyte–
macrophage colony-stimulating factor and transforming 
growth factor) and chemokines (CCL2, CCL5, CCL20, 
CXCL8 and CXCL10)[142]. Astrocytes can also express 
receptors for and respond to a wide variety of other 
growth factors and cytokines, including, but by no 
means limited to, TNF-α, EGF, FGF, endothelins and 
interleukins (for review, see[143]). Such factors can 
induce the expression of molecules associated with 
reactive astrogliosis, such as GFAP, and have also been 
implicated in astrocyte proliferation[144]. The downstream 
effects are summarized in Table 3.

Astrocyte contributions to sustained inflammation
Evidence has demonstrated that astrocytes contribute 
to sustained inflammation in the CNS after trauma 
or infection[145,146] and growing research implicates 
sustained glial inflammation in neurodegenerative 
disorders[147]. Chronically activated microglia and 
astrocytes can release reactive oxygen intermediates, 
nitric oxide, inflammatory cytokines, which are toxic to 
neurons. In AD, amyloid β-peptide (Aβ) peptides activate 
astrocytes, which increase production of inflammatory 
mediators[148]. Furthermore, astrocytes are able to 
remove and degrade Aβ, and chronically activated 
astrocytes may eventually lose their neuroprotective 
functions[149]. Furthermore, in a rodent model of multiple 
sclerosis, investigators found that the enzyme, LacCer, 
which promotes astrocyte activation and controls the 
transcription of genes related to neuroinflammation and 
neurodegeneration, is upregulated in astrocytes[150].

One mechanism by which astrocytes may contribute 
to sustained inflammation in the CNS is through 
upregulation of inflammatory pathways modulated by 
TLR expression. A single injection of LPS in aged rats, 
which mimics systemic infection in the elderly, resulted 
in sustained astrocyte activation and prolonged increases 
in cytokine expression[151]. Increases in astrocytic 
TLR2 have been implicated in sustained inflammation 
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Mediators Examples Effects on astroglial function

Cytokines IL-6, IFNβ, TNF-α, TGF-β, GM-CSF, BAFF, 
IL-1β, MCP-1, RANTES

Increase BBB permeability, astrocyte activation, endothelial cell activation, microglial and 
monocyte activation, differentiation and proliferation, immunosuppression, release of 

neuroprotective mediators
Chemokines CCL2, CCL5, CCL20, CXCL10, CXCL1, 

CXCl1, CXCl2, CX3CL1
Recruitment of monocytes and macrophages, dendritic T cells, T and B lymphocytes, and 
neutrophils/regulation of myelination and microglial activity, astrocyte proliferation and 

survival, migration of microglia and neural progenitors
Trophic Factors EGF, FGF, NGF, BDNF, VEGF, IGF1 Astrocyte activation and morphological modification, neuronal/astrocytic survival, 

differentiation, function, and regeneration, oligodendrocyte survival, remyelination, 
neurogenesis

Endothelins Et1, Et3 Inhibit gap junction coupling, disrupts direct intercellular communication in astrocytes, 
intracellular and extracellular ion homeostasis, metabolic trafficking, cellular swelling

Table 3  Mediators of astroglial function

IL: Interleukin; IFN: Interferon; TNF: Tumor necrosis factor; TGF: Transforming growth factor; GM-CSF: Granulocyte-macrophage colony-stimulating fac-
tor; BAFF: B-cell activating factor; MCP: Monocyte chemoattractant protein; CCL: Chemokine ligand; CXCL: CXC motif ligand; EGF; Epidermal growth 
factor; FGF: Fibroblast growth factor; NGF: Nerve growth factor; BDNF: Bone derived neurotrophic factor; VEGF: Vascular endothelial growth factor; IGF: 
Insulin-like growth factor; Et: Endothelin.
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by increasing the likelihood of the cells to respond to 
subsequent inflammatory insults[152]. HIV infection 
increases TLR2 expression in astrocytes, which can 
increase susceptibility to additional insults, either from 
a secondary/opportunistic infection or from a second 
round of virus entering the brain[79,153]. Additionally, 
enhanced TLR expression would upregulate the secretion 
of proinflammatory cytokines by astrocytes[154,155], 
triggering a self-sustaining inflammatory loop and long-
term glial activation.

Astrocytes can release both pro- and anti-inflam 
matory factors, contributing crucially to inflammatory 
processes in the CNS. In addition, the astrocytes 
that are part of the BBB are among the first cells to 
encounter blood-derived leukocytes entering the brain 
during certain types of neuroinflammatory insult[156]. 
Increased leukocyte migration also occurs in neurological 
conditions such as stroke or multiple sclerosis. As 
such, astrocytes are strategically located to influence 
direct interactions with leukocytes or interaction with 
endothelial cells of the BBB[157]. Under inflammatory 
conditions, the integrity and function of the BBB is 
modified and enables greater leukocyte passage 
into the CNS[158]. Recent studies examining human 
T-lymphocytic virus type-1 infection in the CNS show 
that astrocytes contribute to positive feedback loop that 
promotes chronic inflammation. Infected T cells produce 
INF-γ, which causes astrocytes to secrete CXCL10 and 
recruit more infected T cells, creating an immunological 
positive feedback loop[159]. Another study by Owens and 
colleagues demonstrate that astrocyte ablation results in 
enhanced inflammatory monocyte cell migration into the 
CNS[160,161]. Furthermore, astrocytes mediate microglial 
activation through RANTES-dependent mechanism 
in Borna disease virus infection[162], indicating that 
activated astrocytes produce soluble factors that activate 
microglia.

Therapies targeting astrocyte contributions to chronic 
inflammation
Chronic activation of the innate immune system can 
indirectly contribute to neuropathology and neuronal 
death. Sustained neuroinflammation is implicated in HIV-
associated neurocognitive disorder[163], neurodegenerative 
disease[150], and chronic pain[164], and compromises 
CNS function causing progressive neurodegeneration 
and BBB compromise[165]. In the clinical setting, 
pharmacological antagonists and immunosuppressive 
agents can used to prevent chronic CNS inflammation 
responses. Such therapies can be appropriated from 
existing medications or can be the result of new 
developments in glial-activated neuroinflammation 
research[166]. The development of novel therapeutic 
interventions targeted at glial activation pathways and 
glia-mediated inflammation appears to be promising and 
may lead to more effective prevention and treatment 
of neuroinflammation and resulting pathologies. For 
example, riluzole, the only FDA-approved treatment for 

amyotrophic lateral sclerosis (ALS), enhances astrocytic 
glutamate uptake through increased GLT-1 activity 
reducing the activation of neurons by glutamate[167]. 
Riluzole also stimulates astrocytic synthesis of NGF, BDNF 
and GDNF in culture[168] as well as increase levels of BDNF 
and TGF-1β in patients with Huntington’s disease[169]. 
Further research into novel methods for targeting 
inflammation by reducing the activity of glutamatergic 
system activation are thus necessary[112].

Generally, astrocytic function in neuroprotection is 
greatly compromised during chronic neuroinflammation. 
New perspectives for therapeutic approaches include 
the replacement of dysfunctional astrocytes or 
pharmacological treatments that specifically target 
detrimental signaling pathways while preserving their 
neuroprotective functions. Signaling pathways, such 
as JNK and p38 MAPK, were found to be relevant to 
reactive gliosis in response to a variety of cytokines 
and pathogenetic stimuli; and as such, several MAPK 
inhibitors have been characterized in vitro and in animal 
models as potential therapeutic interventions targeting 
reactive astrocytes[170,171]. 

Chronically proinflammatory astrocyte and microglia 
phenotypes, showing a reduction in genes involved 
in neuronal support and neuronal signaling, may 
contribute to neuronal dysfunction and cognitive decline 
in AD[172]. Astrocytes contribute to the clearance of 
amyloid β-peptide[173]. In sporadic AD, impaired removal 
of Aβ contributes to elevated extracellular levels 
that drive amyloid plaque pathogenesis. Enhancing 
lysosomal function in astrocytes with transcription 
factor EB, a master regulator of lysosome biogenesis, 
could promote Aβ uptake and catabolism and attenuate 
plaque pathogenesis[174]. Furthermore, reactive 
astrocytes have recently been shown to produce and 
release the inhibitory gliotransmitter, GABA, which 
impaired synaptic plasticity in a rodent model of AD[45]. 
Increased GABA synthesis and/or release may become 
a therapeutic target for treating memory impairment in 
neurodegenerative disease.

DIRECTIONS AND THERAPEUTICS
Research into the morphological changes in astrocytes 
will provide insight into the pathophysiology of the 
disease. In the future, disease models will consider 
“gliopathies” as a part of disease etiology. Further 
research on acute changes in astrocyte morphology 
would help elucidate the dynamics of astrocyte 
morphology. For example, analysis through the 
xCELLigence system provides data output in real 
time and is thought to measure cell adhesion[175]. 
Studies using the xCELLigence system have shown 
that astrocytes exposed to cytokine treatment show 
loss of cellular adhesion[176] and cell death[177]. These 
changes occurred 24-48 h prior to astrocyte cell loss, 
demonstrating the ability of xCELLigence to detect 
changes in astrocyte composition long before cell death.
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Furthermore, targets of intervention would seek to 
limit the inflammatory process where inflammatory 
environment is cytotoxic to the surrounding cells, or 
where glial cell damage would impact the ability of the 
CNS to repair itself. Reactive astrocytes have already 
emerged as an attractive target for improved recovery 
after stroke[178]. Regardless of the type of ischemic injury, 
reactive astrocytes express hyperpolarization-activated 
cyclic nucleotide-gate channels, which have potential 
as a therapeutic target in post-stroke therapy[179]. Post-
traumatic axonal regeneration can be enhanced by 
inhibition of chondroitin sulfate proteoglycans produced 
by reactive astrocytes[180]. 

Potential therapeutics targeting astrocytes should 
consider the heterogeneous responses to CNS insults 
including astrocyte activation, astrogliosis and other 
morphological changes, in addition to innate and 
adaptive immune responses. A key role in establishing 
a therapeutic intervention for astrocytes in CNS insults 
would be to clarify of the role of glial activation and the 
formation of the glial scar. A hallmark of CNS injury 
of any origin is the formation of scar tissue composed 
of activated or reactive astrocytes and microglia 
surrounding a distinctly inflammatory response. The 
cost-benefit analysis of the formation of this scar is 
debated as it restricts axonal growth within the lesion. 
However, several studies indicate that this process 
may have potential neuroprotective functions. Reactive 
astrocytes can also serve as potential sources of new 
neurons in the brain, replenishing the neurons damaged 
by neurodegenerative disease. Guo and colleagues have 
demonstrated the reprogramming of reactive astrocytes 
generated by brain injury or in a mouse AD model into 
functional glutamatergic neurons in vivo[181]. Astrocytes 
represent an important therapeutic target in a number 
of neurological conditions, specifically where astrocyte 
activation exacerbates brain injury or where astrocyte 
loss may reduce BBB integrity or neuronal support. 
While CNS research in the past decade has dramatically 
shifted its focus to include astrocytes and other glial 
cells, more research to further clarify the roles of these 
cells in CNS injury and damage is needed to produce 
effective therapeutic interventions. 
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