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Abstract
The kidneys and the blood system mutually exert influence 
in maintaining homeostasis in the body. Because the 
kidneys control erythropoiesis by producing erythropoietin 

and by supporting hematopoiesis, anemia is associated 
with kidney diseases. Anemia is the most prevalent 
genetic disorder, and it is caused by a deficiency of 
glucose 6-phosphate dehydrogenase (G6PD), for which 
sulfhydryl oxidation due to an insufficient supply of 
NADPH is a likely direct cause. Elevated reactive oxygen 
species (ROS) result in the sulfhydryl oxidation and hence 
are another potential cause for anemia. ROS are elevated 
in red blood cells (RBCs) under superoxide dismutase 
(SOD1) deficiency in C57BL/6 mice. SOD1 deficient mice 
exhibit characteristics similar to autoimmune hemolytic 
anemia (AIHA) and systemic lupus erythematosus (SLE) 
at the gerontic stage. An examination of AIHA-prone New 
Zealand Black (NZB) mice, which have normal SOD1  
and G6PD  genes, indicated that ROS levels in RBCs 
are originally high and further elevated during aging. 
Transgenic overexpression of human SOD1 in erythroid 
cells effectively suppresses ROS elevation and ameliorates 
AIHA symptoms such as elevated anti-RBC antibodies and 
premature death in NZB mice. These results support the 
hypothesis that names oxidative stress as a risk factor 
for AIHA and other autoimmune diseases such as SLE. 
Herein we discuss the association between oxidative 
stress and SLE pathogenesis based mainly on the genetic 
and phenotypic characteristics of NZB and New Zealand 
white mice and provide insight into the mechanism of SLE 
pathogenesis.  
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Core tip: Superoxide dismutase (SOD1) deficient C57BL/6 
mice exhibit characteristics similar to autoimmune hemolytic 
anemia (AIHA) and systemic lupus erythematosus (SLE) 
at the gerontic stage. An examination of AIHA-prone New 
Zealand Black (NZB) mice indicated that reactive oxygen 
species (ROS) levels in red blood cells are originally high and 
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further elevated during aging. Transgenic overexpression of 
human SOD1 in erythroid cells effectively suppresses ROS 
elevation and ameliorates AIHA symptoms in NZB mice. 
Herein we discuss the association between oxidative stress 
and SLE pathogenesis based mainly on the genetic and 
phenotypic characteristics of NZB and New Zealand white 
mice.  
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INTRODUCTION
The kidney has multiple functions that include main­
taining the functions of homeostasis such as the 
excretion of waste, maintenance of the electrolyte 
balance of body fluids, and endocrine secretion. As an 
endocrine organ, the kidney plays an essential role in 
erythropoiesis by producing erythropoietin that supports 
hematopoiesis in bone marrow[1]. Chronic kidney 
disease causes renal anemia by reducing erythropoietin 
production, and, hence, exogenous erythropoietin is 
widely used as a potent medicine for the treatment of 
patients with renal anemia[2]. Defected iron metabolism 
due to chronic inflammation and cytokine imbalance 
is also involved in chronic kidney disease-induced 
anemia[3].

A variety of contributing factors including defected 
hematopoiesis and accelerated hemolysis are involved 
in anemic pathogenesis. Glucose 6-phosphate 
dehydrogenase (G6PD) deficiency, which is the most 
common genetic defect in the human population[4], 
causes an insufficient supply of NADPH in RBCs and 
results in anemia. Although the actual mechanism 
of anemia due to the G6PD deficiency is not totally 
understood, the involvement of sulfhydryl oxidation is 
suspected to be a contributing factor. 

Aberrant immune responses in some autoimmune 
diseases also cause anemia. Autoimmune hemolytic 
anemia (AIHA) is the pathological condition whereby 
antibodies attack RBCs, and it often precedes a 
diagnosis of systemic lupus erythematosus (SLE)[5,6]. 
Both genetic and environmental factors are involved in 
the etiology of AIHA and SLE, but molecular mechanisms 
for a majority of the diseases are largely ambiguous. 
Reactive oxygen species (ROS) are elevated and 
appear to be a likely underlying mechanism for these 
pathological conditions[7-9]. In this review article we 
discuss recent advances in the research on AIHA and 
SLE from the viewpoint of oxidative stress using animal 
models.

G6PD deficiency and oxidative stress
ROS are produced under various conditions such as 

inflammation and hypoxia-reperfusion injury, and they 
are involved in a variety of diseases including anemia 
and renal failure[10]. While reduction-oxidation (redox) 
reactions play essential roles in metabolic reactions, 
which includes oxidative phosphorylation that consumes 
respired oxygen, ROS are simultaneously produced 
as byproducts. Meanwhile, hemoglobin (Hb), which 
constitutes a major protein (5 mmol/L) in RBCs and 
contains Fe(Ⅱ)-heme. When hemoglobin is oxygenated 
(Hb-O2), a part of Hb-O2 suffers autoxidation to 
methemoglobin (MetHb), which possesses Fe(Ⅲ)-
heme and is unable to bind oxygen, and releases 
superoxide[11,12]. Calculation has shown that the rate for 
the autoxidation of hemoglobin is 2%-3% (in humans) 
and 4% (in mice) of total hemoglobin per day. Thus, 
RBCs are under oxidative stress constitutively, and 
cellular components face the risk of oxidative damage 
(Figure 1). NADPH is the principle electron donor for 
most redox systems that include antioxidation by 
glutathione peroxidase-glutathione reductase and 
peroxiredoxin (Prdx)-thioredoxin reductase axes[13] 
and reductive carbonyl detoxification by the aldo-keto 
reductase family. Under healthy conditions, the resultant 
methemoglobin is reduced back by methemoglobin 
reductase in a NADPH-dependent manner and kept at 
low levels. 

Elimination of the resultant ROS and maintaining 
the redox potential within cells are prerequisites for 
the survival for RBCs, so that antioxidative enzymes, 
such as superoxide dismutase (SOD), catalase, glu
tathione peroxidase, and Prdx, have crucial roles 
in keeping RBCs healthy. Antioxidants with a small 
molecular weight, notably glutathione and vitamin C 
(ascorbic acid), also play roles in redox homeostasis. 
Oxidative stress induced by SOD and Prdx deficiencies 
participate in the pathogenesis of anemia, as described 
below.  

Approximately 60 years have passed since the 
discovery of G6PD deficiency, but the actual mechanism of 
G6PD deficiency-triggered anemia remains undefined[4]. 
Because G6PD is the rate-determining enzyme in the 
pentose phosphate pathway and is involved in the 
production of NADPH, a G6PD deficiency shifts the 
cellular redox balance to an oxidized state[14]. Meanwhile, 
most redox proteins, excluding the ones possessing 
electron-accepting prosthetic groups, consist of reactive 
sulfhydryl residues, which are also highly susceptible 
to oxidative modification. Oxidized or aged proteins 
undergo proteolytic degradation, and RBCs lack the 
cellular organelle and protein synthesis machinery that is 
necessary for their renewal. Thus, oxidative stress appears 
to cause selective decreases in redox-sensitive proteins. 
The production of NADPH is elevated by activated G6PD 
in response to oxidative stress[15], and it supports the 
reductive detoxification of ROS and oxidized molecules, 
although its activation mechanism is still unclear.

Mouse models developing anemia, AIHA, and SLE
There are animal models that are applicable to research 
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into the etiology of anemia. For example, a direct cause 
for iron deficiency anemia is defective hemoglobin 
synthesis due to insufficient heme supply. The involve
ment of oxidative stress has been implicated in the 
pathogenesis of some types of chemically induced 
anemia, such as that induced by pheynylhydrazine[16].

Several strains of animals that spontaneously 
develop anemia have been used for pathophysiological 
examinations. New Zealand Black (NZB) mice con
stitute a strain that develops AIHA during late middle 
age, at around 40-50 wk. IgG bound to RBCs increases 
from about 3 mo of age and induces anemia from 
about 6 mo of age onward[5]. AIHA is exacerbated by 
an aberrant immune system with notably impaired 
CD4+CD25+ regulatory T cells[17] and a Th1 and Th2 
cytokine imbalance[18]. Peripheral B-1 cells appear 
to be a source of autoantibody-producing cells[19]. A 
dominant T-cell epitope in AIHA is a major glycosylated 
membrane protein of RBCs, which is also known as 
an anion transporter band 3[20]. When the AE1 gene 
encoding band 3 is deleted, the congenic NZB mice still 
produce autoantibodies against another glycoprotein, 
glycophorin, and develop AIHA[21]. Thus, a defect in 

these glycoproteins is not a primary cause, but other 
latent abnormalities remain. 

Defected genes have been identified in pathological 
model animals for SLE, MRL/lpr and MRL/gld mice[22]. 
Mutations in Fas and Fas ligand genes cause SLE in MRL/
lpr and MRL/gld mice, respectively, via malfunctioning 
apoptotic removal of self-recognizing preB cells at an 
infant stage[23]. Although mutations in FAS/APO-1 and 
Fas ligand are found in human SLE patients[24-26], the 
incidence is not high. Thus, causal factors for SLE are 
still largely unknown in the human population. (NZB 
x NZW) F1 mice are another SLE model animal and 
show characteristics similar to human SLE[27]. While 
NZB mice spontaneously develop AIHA symptoms that 
are limited to the blood system, (NZB x NZW) F1 mice 
exhibit symptoms in a systemic fashion that include 
lupus nephritis and cardiovascular abnormalities[28-30]. 
Although NZW mice possess a larval defect in the 
immune system, they show virtually normal phenotypes 
and survival times. Genetic analysis of NZW mice has 
advanced in the past decade, and the latent factor 
responsible for the onset of SLE has been unveiled.  

Anemia observed in antioxidative enzyme gene-modified 
mice
Because antioxidation plays an essential role in maintaining 
RBC function, a deficiency of antioxidative enzymes 
occasionally exerts severe damage to RBCs. Anemia 
is caused by a deficiency of antioxidative enzymes 
SOD1[31], SOD2[32], Prdx1[33], and Prdx2[34], but not by 
deficiencies of glutathione peroxidase 1[35] or catalase[36]. 
Phenotypic characteristics regarding anemia differ in 
genetically modified mice, as follows.

SOD1 DEFICIENCY 
Among three SOD isozymes present in mammals, SOD1 
is a sole superoxide-scavenging enzyme in mature 
RBCs, and its deficiency causes anemia[31]. Hemoglobin 
is a major protein in RBCs, and suffers autoxidation, 
which results in the production of superoxide[11,12]. 
Without SOD1, the radical chain reaction initiated by 
superoxide oxidatively damages RBCs, and ultimately 
accelerates their destruction. Thus, SOD1-deficient 
RBCs show a shortened life span that is approximately 
60%-70% that of the RBCs of wild-type mice[31].  

SOD1 deficiency accelerates hemolysis in the blood 
and phagocytotic removal of RBCs by liver Kupffer 
cells[37]. An elevation of ROS levels in RBCs, oxidation 
of RBC components, and augmented production of 
autoantibodies in RBCs have been observed in SOD1 
deficient C57BL/6 (B6) mice[31]. Elevated production 
of antibodies against lipid peroxidation products, 
4-hydroxynonenal and acrolein, occurs[15]. A general 
antioxidant, N-acetyl cysteine (NAC), ameliorates 
these phenotypes and suppresses anemia and AIHA 
development. Restricted expression of human SOD1 
in erythroid cells suppresses oxidative stress in RBCs, 
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-.), which may cause oxidative damage 
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potential. G6PD deficiency affects entire antioxidative/redox systems, which can 
consequently accelerate the destruction of RBCs and lead to anemia. RBCs: Red 
blood cells. NADPH: Triphosphopyridine nucleotide.
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RBCs[47]. Prdx2 functions in a dimer form with a head-
to-tail arrangement. During the peroxidase reaction 
two pairs of disulfide bonds between the catalytic 
Cys at the N-terminus and the resolving Cys at the 
C-terminus in the two subunits are formed as an 
intermediate[13]. However, Prdx2 appears to function 
as a non-catalytic scavenger of peroxides in RBCs due 
to an insufficient thioredoxin-thioredoxin reductase 
system[48,49]. Sulfenic acid is a physiological intermediate 
of sulfhydryl groups in the catalytic Cys, but excessively 
produced hydrogen peroxide hyperoxidizes it to 
sulfinic acid and then sulfonic acid during the reaction 
cycle of Prdx, which results in a loss of peroxidase 
activity[13]. The slow turnover rate of Prdx2 increases 
the chance for hyperoxidization by hydrogen peroxide 
in RBCs. Sulfinic acid in Prdx can be converted back to 
sulfhydryl by sulfiredoxin in an ATP-dependent manner 
in many cells[50,51]. However, because of an insufficient 
amount of sulfiredoxin in RBCs, hyperoxidized Prdx2 
would proceed to proteolytic removal. Although cyclic 
changes of the hyperoxidized Prdx has been shown in 
cultured RBCs[52], this phenomenon cannot be explained 
by virtue of sulfiredoxin but may be caused by the 
proteolytic removal of hyperoxidized Prdx2. Because 
Prdx2 is involved in maintaining hemoglobin stability[53], 
hemolytic anemia found in Prdx2-deficient mice may be 
related to the decrease in the life-span of hemoglobin. 

Oxidative stress as a potential cause for anemia and 
autoimmune responses in NZB mice 
SOD1-deficient mice produce anti-RBC autoantibody 
and ultimately develop lupus nephritis-like symptoms 
in the gerontic stage[15,31], so that we hypothesized 
that oxidative stress is one of the causal factors for 
some autoimmune diseases such as SLE and AIHA in 
C57BL/6 mice. However SOD1 deficiency is far from 
a physiologic condition, and we have tried to validate 
this hypothesis based on physiological conditions using 
NZB mice. 

NZB mice[54] and (NZB × NZW)F1 mice[55] are the 
established model animals that spontaneously develop 
AIHA and SLE, respectively, at around 40-50 wk of 
age. Abnormal proteolytic cleavage of the membrane 
proteins of RBCs has been proposed as a likely cause 
because the cleaved membrane proteins, such as 
band 3, are highly antigenic[56-58]. However, elevated 
proteolytic activity in the RBCs of AIHA patients or AIHA-
prone mice is unknown. Despite extensive investigation 
on the etiology of the mice, it remains unclear what 
actually triggers the autoantibody production in the NZB 
mice[5]. 

We first recognized that the ROS levels are originally 
high at a young age (4 wk) and increase as NZB 
mice age compared to control mice[38]. Increases in 
the autoantibodies against RBCs show a correlation 
with the elevated levels of ROS in RBCs. Antioxidants 
such as NAC suppress autoantibody production in the 
mice, supporting the oxidative stress theory of AIHA 
in mice. The onset of AIHA occurs prematurely and 

which rescues aberrant phenotypes related to anemia 
and autoimmune responses in SOD1-deficient B6 
mice. This substantial amount of evidence supports the 
notion that overproduced ROS due to SOD1 deficiency 
can trigger anemia. 

Superoxide is continuously produced from oxygenized 
hemoglobin[11], and hence it is regarded as one of the 
sources for ROS. Based on theoretical calculation[12], an 
approximate 200-fold elevation in superoxide results from 
SOD1 deficiency. Superoxide would conversely result 
in the conversion of hemoglobin to methemoglobin and 
enhance the oxidative modification of RBCs. A marked 
reduction in glutathione peroxidase 1 protein and its 
activity is seen in SOD1 deficiency[38], which is caused 
by an irreversible inactivation via conversion of the 
catalytic selenocysteine to dihydroalanine by elevated 
ROS[39]. However, the contribution of this low glutathione 
peroxidase 1 activity to anemia is ambiguous because a 
deficiency of either glutathione peroxidase 1 or catalase 
does not cause hematological abnormalities in mice[35,36]. 
Because thioredoxin reductase is also a selenoenzyme[40], 
inactivation by the elevated ROS due to a SOD1 deficiency 
may have a role in the destruction of RBCs. 

SOD2 DEFICIENCY 
Mice lacking SOD2, a mitochondria-specific isoform, 
in the whole body show dilated cardiomyopathy, 
hepatic lipid accumulation and early neonatal death[41]. 
Hematopoietic chimeras in which all blood cells are 
derived from the fetal liver stem cells of SOD2-deficient 
mice are employed to examine the effect of SOD2 
deficiency on hematopoiesis. The chimera mice are 
persistently anemic and characteristically similar to 
the human disorder sideroblastic anemia[32]. Enhanced 
protein oxidation and altered membrane deformation 
appear to reduce the life span of RBCs[42,43]. SOD2-
deficient reticulocytes reveal up-regulated transferrin 
receptors[44] and mitochondrial proliferation and mito­
chondrial membrane thickening[45]. It is noteworthy that 
mature RBCs, which do not possess mitochondria, show 
an elevated production of ROS, abundant iron-stainable 
granules, and oxidatively damaged proteins. These 
observations imply that the life-span of the resultant 
RBCs is reduced due to oxidative damage that is 
experienced before final maturation of the erythroid cells.  

PRDX DEFICIENCY
Among 6 Prdx family members, deficiency of either 
Prdx1[33] or Prdx2[34] causes hemolytic anemia. Prdx1-
deficient mice show increased ROS, hemoglobin 
instability, Heinz body formation, and a decreased 
erythrocyte life span[33]. Cancers develop in some 
organs of Prdx1-deficient mice, but a causal connection 
to anemia is unknown. Prdx2 is a predominant form 
of Prdx family members in RBCs[46] and its function in 
RBCs has been thoroughly characterized. Prdx2 exists 
as either a stable dimer or a hyperoxidized form in 
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mortality increases in the SOD1-deficient congenic 
NZB mice compared with control NZB mice[59]. The 
transgenic expression of human SOD1 in RBCs reduces 
oxidative stress to RBCs and oxidative modification 
of lipids and proteins and consequently rescues the 
AIHA phenotypes in NZB mice. Figure 2 provides a 
schematic mechanism for the onset of AIHA based 
on our hypothesis regarding the oxidative damage of 
RBCs. Because oxidative modification elevates during 
aging and oxidized molecules are highly antigenic, 
oxidative stress would elevate the autoantibodies by 
increasing the autoantigens, and would ultimately 
cause AIHA onset. 

Either suppression of the antioxidative/redox system 
or activation of ROS generation causes the elevated 
ROS in RBCs. As mentioned above, the mechanism 
of G6PD deficiency-induced anemia is attributed to a 
short supply of NADPH, which triggers the oxidation 
of sulfhydryls in RBCs[4]. However, no report has 
shown abnormalities in glucose G6PD in the RBCs 
of NZB mice. Regarding the antioxidative enzymes 
catalase, SOD, glutathione peroxidase, and glutathione 
reductase, nonsynonymous nucleotide polymorphisms 

have been identified in the genes in 10 inbred mouse 
strains, including NZB mice[60]. Thus, the origin of 
oxidative stress in NZB mice is unclear as of this 
writing.

Oxidative stress as a potential cause for SLE
Superoxide anion diffuses across the RBC membrane 
via the anion channel band 3 protein[61], which is a 
potent antigenic molecule in RBCs[56-58]. ROS appear to 
derive from inside the RBCs because lipid peroxides are 
high in the RBCs but about the same in plasma among 
the congenic mouse groups. Based on theoretical 
calculation, more than 100 mol/L of superoxide is 
released daily from hemoglobin autoxidation[12]. 

Involvement of oxidative stress has been implied 
in the pathogenesis of human SLE. For example, lipid 
peroxidation product 4-hydroxy 2-nonenal may modify 
Ro60, which is the 60-kDa autoantigen of autoimmunity 
in both SLE Sjögren syndrome, and differentially 
participate in Sjögren syndrome or SLE[62,63]. Children 
with SLE carry increased levels of 4-hydroxy 2-nonenal-
modified proteins in plasma[64]. Plasma concentrations 
of 4-hydroxy 2-nonenal as well as malondialdehyde 
and oxidized glutathione increase during aging in 
human plasma and RBCs[65]. Both mitochondrial 
electron transport chain activity at complex Ⅰ and 
oxygen consumption are increased in the lymphocytes 
of SLE patients[66]. On the contrary, NAC suppresses 
oxygen consumption and hydrogen peroxide levels. 
Other studies have shown the beneficial effects that 
antioxidants such as vitamin E, all-trans-retinoic acid, fish 
oil, and cystamine has on (NZB X NZW)F1 mice[67-69].

Oxidative modification is caused by relatively large 
amounts of ROS and generally causes oxidation in a 
non-specific manner. While lymphocytes are defective, 
and aberrant immune responses occur in AIHA and 
SLE, it is unclear how they are stimulated to produce 
autoantibodies. Because oxidized cells are efficiently 
phagocytosed by macrophages, there is more chance 
for the immune system to recognize the resultant 
oxidized molecules as antigens[70,71]. In fact, oxidatively 
modified albumin is well recognized by the antibodies 
from SLE patients[72], and oxidatively modified lipids 
are identified as epitopes for innate immunity and are 
responsible for diseases such as atherogenesis[73-75]. 
Lipid peroxidation products, such as 4-hydroxy 2-nonenal 
and acrolein, have been identified as bona fide 
epitopes for autoantibodies on RBC membranes[15]. 
Thus, oxidative stress participates in the formation 
of novel epitopes by oxidizing proteins and lipids. It 
is also noteworthy that anti-DNA antibodies, which 
are typically elevated in SLE patients, also recognize 
4-hydroxy 2-nonenal-bound proteins[76,77].

Hypothetical mechanism for SLE onset in (NZB x 
NZW)F1 mice
An early genetic study suggests that three genes, one 
from NZB and two from NZW mice, are involved in 
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Figure 2  Hypothetical role of oxidative stress in triggering the autoimmune 
reaction against red blood cells in New Zealand Black mice. Elevated ROS 
trigger oxidative modification of RBC components and result in the production 
of oxidatively modified compounds such as 4-hydroxy 2-nonenal and acrolein 
that are highly antigenic. During aging, the oxidation of susceptible molecules 
and the production of antibodies recognizing them occurs repeatedly, which 
results in an accumulation of epitopes and autoantibodies. The elevated levels 
of autoantibodies ultimately trigger AIHA in aged NZB mice. RBCs: Red blood 
cells; AIHA: Autoimmune hemolytic anemia; MetHb: Methemoglobin; NZB: New 
Zealand Black; ROS: Reactive oxygen species.
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the development of SLE in the (NZB x NZW) F1 mice 
and that the gene from NZB mice should function 
dominantly[78]. Recent genetic studies have indicated 
several candidate genes for AIHA and/or SLE in model 
mice[79]. Three major genomic intervals (Sle1, Sle2, and 
Sle3) have been identified on the New Zealand mouse 
strains and regarded as systemic autoimmune disease 
susceptibility loci in NZM2410 mice, which is an acute 
lupus-prone strain derived from a cross between NZB 
and NZW[28,30]. High titers of IgG autoantibodies against 
nuclear proteins and DNA are produced by B6 mice 
congenic for the Sle1 locus[80]. T cells specific for histone 
are present[81], implicating Sle1 in the loss of tolerance 
that leads to the development of antinuclear antibodies. 
The Sle1b sublocus contains the SLAM (signaling 
lymphocyte activating molecule) family (Slamf) genes 
derived from the lupus-prone NZW mice[82,83]. 

Several candidate genes for autoimmune diseases 
in humans have also been screened out by genome-
wide association studies[84]. Those genes include HLA, 
STAT4, and PTPN22. Among them, an allelic variant of 
protein tyrosine phosphatase nonreceptor 22 (PTPN22) 
shows the most promise because it has been associated 
with multiple human autoimmune diseases, such as 
type 1 diabetes, rheumatoid arthritis, and SLE. PTPN22 
encodes lymphoid tyrosine phosphatase (Lyp) which 
participates in the negative regulation of T-cell receptor 
(TCR) proximal signaling[85,86]. Lyp is also referred to 
as PEST domain-enriched tyrosine phosphatase (Pep), 
and it suppresses the activity of the Src family protein 
tyrosine kinases and inhibits T-cell activity[87]. Because 
PEST domain, which is rich in proline (P)-glutamate (E)-
serine (S)-threonine (T), undergoes rapid degradation, 
Lyp is vulnerable to proteolytic cleavage. Lyp reportedly 
negatively regulates T cell receptor signaling[88,89], and 
the decreased activity would conversely activate the 
signaling pathway. 

In the past two decades, the signaling function of 
ROS has attracted much attention in the research field 
of oxidative stress. In this aspect, ROS specifically 
inactivates susceptible molecules, e.g., phosphotyrosine 
phosphatase (PTP) families such as PTP1B, Cdc25, 
SHP1 and SHP2[90,91]. PTP has reactive cys-SH at its 
catalytic center, which is a preferred target of locally 
produced ROS. Multiple reports have indicated that PTP 
variants are linked to human hereditary disorders[92], 
which indicate that PTP activities play pivotal roles and 
hence oxidative inactivation affects a variety of cells 
including lymphocytes. 

Because Lyp/Pep is a member of the PTP superfamily 
and easily oxidized by ROS such as hydrogen peroxide, 
it may play a role in the sustained activation of 
lymphocytes, and, hence, it would also play a role in the 
autoimmune response. A Pep variant (Pep-R619W; Rep 
with substitution of arginine-619 to Tryptophane-619) 
protein linked to autoimmune disease is more rapidly 
degraded and shows greater association with, and in vitro 
cleavage by, calpain 1 than normal allele Pep-R619[93]. 
Conversely, Pep overexpression in T cells attenuates 

autoimmune diabetes in NOD mice by preferentially 
modulating TCR signaling-mediated functions in dia
betogenic T cells but not in regulatory T cells[94]. Lyp-
R620W is also involved in the breakdown of peripheral 
tolerance and in the entry of autoreactive B cells into 
the naive B cell compartment. Moreover, lymphocytes 
with a variant of Pep-R619W, corresponding to human 
Lyp-R620W, are hyper-responsive to antigen-receptor 
engagement. Thus, Pep-R619W uniquely modulates T 
and B cell homeostasis, leading to a loss in tolerance[95].

Elevated ROS would cause inactivation of Lyp/
Pep by oxidizing catalytic Cys and may accelerate its 
degradation via the PEST domain. If ROS inactivates 
Lyp/Pep, the incidence of autoimmune response would 
be elevated. This oxidative stress-triggered SLE onset 
is only hypothetical at this moment and hence requires 
direct demonstration. The crystallographic analysis of 
Lyp shows a unique disulfide bond that may play a role 
in protecting the enzyme from irreversible oxidation[96], 
and hydrogen peroxide actually inactivates the Lyp 
phosphatase to a lesser extent compared with CD45 
phosphatase[97]. Based on the literature and our own 
observations, we can propose a hypothetical model to 
explain SLE onset in (NZB x NZW)F1 mice (Figure 3). 
Because the F1 mice inherit a SLAM variant from NZW 
mice and high levels of ROS from NZB mice, which may 
oxidatively inactivate the Lyp/Pep, lymphocytes are 
hyper-activated, leading to SLE onset in aged mice. Low 
CD45 phosphotyrosine phosphatase activities that have 
been reported by two groups[98,99] may support our 
hypothesis.

Potential roles of oxidative stress in lupus nephritis
Lupus nephritis is a serious pathological condition of 
SLE. The incidence of SLE in women is nine times 
greater than in men[100], while the sex difference is not 
observed for the autoantibody production in SOD1-
deficient mice[31]. Immune complex formation and 
complement activation are major causes, but other 
pathogenic factor is involved in lupus nephritis[101]. 
Despite deficiency of the gamma chain of the Fc 
receptor in F1 mice, ameliorated glomerulonephritis, 
immune complex deposition still occurs[102]. Thus, 
glomerular deposition of C1q as immune complexes, 
complement activation, and Fc gamma receptor 
activation together appear to be required for the renal 
damage[103]. As discussed above, oxidative stress is a 
potent risk factor for the autoantibody production by 
affecting immune system and hence would be involved 
in the kidney damage by increasing the immune 
complex deposition. However, since kidney is the organ 
considerably susceptible to oxidative damage[104], 
elevated ROS may directly affect the renal function 
and be an independent risk factor for lupus nephritis in 
SLE.  

Perspectives
In addition to the results of studies on the supple
mentary administration of antioxidative compounds, 
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observations from pathological models and genetically 
modified mice support the view that ROS are one of 
the underlying mechanisms for AIHA and/or SLE. ROS 
cause opposing responses; they trigger cell growth 
arrest and accelerate cellular senescence, but stimulate 
the cellular proliferation on the other hand[90,91]. In the 
latter case, transient elevation in ROS levels occurs when 
cells are stimulated by growth factor and is involved in 
sustaining the signal transduction. Antioxidant therapy 
appears to be effective, but may be potentially adverse 
because of a possible impairment of the ROS signaling 
during proliferation of hematopoietic cells. Elucidation 
of target molecules by oxidative modification and 
pathogenesis could lead to safer forms of preventive 
and therapeutic treatment. 
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