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The aim of this study was to assess the differences in correlation of PPARGC1A polymorphisms with type 2 diabetes (T2D) risk
in adults of African origins: African Americans and Haitian Americans. The case-control study consisted of >30 years old, self-
identified Haitian Americans (𝑛 = 110 cases and 𝑛 = 116 controls) and African Americans (𝑛 = 124 cases and 𝑛 = 122 controls)
living in South Floridawith andwithout T2D.Adjusted logistic regression indicated that both SNP rs7656250 (OR=0.22,𝑃 = 0.005)
and rs4235308 (OR = 0.42, 𝑃 = 0.026) showed protective association with T2D in Haitian Americans. In African Americans,
however, rs4235308 showed significant risk association with T2D (OR = 2.53, 𝑃 = 0.028). After stratification with sex, in Haitian
Americans, both rs4235308 (OR = 0.38, 𝑃 = 0.026) and rs7656250 (OR = 0.23, 𝑃 = 0.006) showed protective association with
T2D in females whereas in African American males rs7656250 had statistically significant protective effect on T2D (OR = 0.37,
𝑃 = 0.043). The trends observed for genetic association of PPARGC1A SNPs, rs4235308, and rs7656250 for T2D between Haitian
Americans and African Americans point out differences in Black race and warrant replicative study with larger sample size.

1. Introduction

Peroxisome proliferator activated receptor, gamma, coac-
tivator 1 alpha (PPARGC1A) gene encodes a well-known
protein, PGC-1𝛼 [1–5]. PGC-1𝛼 interacts with a wide array of
nuclear receptor factors (NRFs) that further regulate several
mitochondrial genes responsible for maintaining energy
metabolism, mitochondrial function, and biogenesis [1–5].
In addition, PGC-1𝛼 regulates fatty acid oxidation as well
as oxidative phosphorylation by interaction with peroxisome
proliferative activated receptor alpha (PPARA) and estro-
gen receptor-related receptor (ESRR) [1–6]. Upregulation
of glucose transporter-4 (GLUT-4) by PGC-1𝛼 increases
glucose uptake in skeletal muscle cells and increases phos-
phoenolpyruvate carboxy-kinase and glucose-6-phosphatase
activities [7, 8]. This versatility of PGC-1𝛼 as a master
coactivator of various metabolic processes has put it on

a center stage for variety of human metabolic diseases such
as type 2 diabetes (T2D) [9].

Reduced expression of PGC-1𝛼 has been reported not
only in individuals with T2D, but also in individuals who
are unaffected, who have a family history of T2D [10].
Ethnic heterogeneity observed in genetic associations of
PPARGC1A polymorphisms with T2D could be due to the
presence of causal or other polymorphisms in strong linkage
disequilibrium (LD) with the polymorphism in question [11–
14]. Differences in LD or gene to gene interactions among
ethnicities could also be a possible explanation for such
observed differences. Moreover, the environment in which
populations live varies around the world. This variation in
the interaction of environment with gene of interest could
also be instrumental in different associations of PPARGC1A
polymorphisms with T2D across ethnicities.
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Differences in genetic variations and environmental fac-
tors (diet, lifestyle, and physical inactivity) between ethnic-
ities have in fact been identified to be associated with T2D
[11–14]. Compared to non-Hispanic Whites, the risk of T2D
is 77% higher among non-Hispanic Blacks [15]. Although the
adipogenic diet puts African Americans at high risk for T2D,
the role of genetics cannot be ruled out. African Americans
received “thrifty gene” from their African ancestors that
helped them survive in case of unavailability of food [16].The
“thrifty gene” along with diet with poor nutrition has made
African Americans the high risk population for T2D [16].
Quite often, the lines that separate various subpopulations
within the “Black” community are blurred in research studies,
which make association studies difficult, due to presence of
genetic heterogeneity within the sample. Haitian Americans
are generally grouped together with other populations of
African origins but the prevalence of T2D in Haitian Ameri-
cans is nowhere close to African Americans [17]. Apart from
African descent, populations in Haiti also have lineage from
France and Spainmaking themunique [18]. In 2010, the Inter-
national Diabetes Federation estimated the T2D prevalence
in Haiti to be 7.2% for 20 to 79 year olds [17] yet the official
data for Haitian Americans are not available. The latest US
Census Bureau data (2008) indicates the presence of 546,000
Haitian immigrants in the United States, 46% of total Haiti-
born population resides in Florida, and more specifically
34.2% reside in the Miami-Dade and Broward Counties, FL
[19]. Therefore, genetic association studies are important for
PPARGC1A gene, which is implicated in energy metabolism
and T2D in populations with African origins. However,
there is lack of data on the relationship between PPARGC1A
polymorphisms and T2D outcomes in Haitian Americans.
Therefore, the principle focus of this study was to investigate
the differences in genetic association of PPARGC1A polymor-
phism with phenotype such as T2D between Haitian Ameri-
can and African American adults residing in south Florida.

2. Materials and Methods

2.1. Study Population. Self-identified Haitian Americans and
African Americans living in South Florida, ages >30 years,
were recruited at the Human Nutrition Laboratory, Depart-
ment of Dietetics and Nutrition, Robert Stempel College of
Public Health and SocialWork, Florida International Univer-
sity, for a case control cross-sectional study. Recruitment of
participants was done using invitational flyers, community-
based sources, and advertisements in English and Creole.
The presence of T2D was self-reported by the participants
and was confirmed with laboratory tests using American
Diabetes Association criteria (fasting plasma glucose concen-
tration ≥126mg/dL or use of insulin or diabetes medication).
Individuals with any other chronic condition, pregnancy or
lactation, were excluded from the study.The research purpose
and protocol were explained in English aswell as Creole to the
participants and voluntary informed consent was procured.
Institutional Review Board (IRB) approval was received from
Florida International University prior to study initiation.

2.2. Sociodemographics, Anthropometrics, andMedical Assess-
ment. The information on demographics such as age, gender,
T2D medication use, and smoking history was collected
using questionnaire to match cases and controls for both
ethnicities by trained research staff. Height as well as weight
were measured using SECA balance scale (Seca Corp., USA).
Body mass index (BMI) was then calculated in kg/height in
m2. A nonstretchable measuring tape measured waist cir-
cumference (WC) to the nearest 0.1 cm by placing it midway
between the 12th rib and iliac crest at minimal respiration.
After 15-minute rest, sphygmomanometer (Tycos 5090-02
Welch Allyn Pocket Aneroid Sphygmomanometer, Arden,
NC, USA) and a stethoscope (Littmann Cardiology, 3M, St.
Paul, MN, USA) were used to measure blood pressure (BP).

2.3. Blood Collection and DNA Isolation. Twenty mL of
venous blood was collected from each individual after an
overnight fast (at least 8 hours) by a certified phlebotomist
using standard laboratory techniques. Genomic DNA was
then isolated from the whole blood using QIAamp DNA
Blood Mini Kit (Qiagen, Hilden, Germany), according to the
vender’s recommended protocol. Quality and quantity of the
isolated DNAwere tested using 2000c nanodrop spectropho-
tometer (Thermo Scientific, USA).

2.4. Single Nucleotide Selection and Genotyping. The
PPARGC1A gene is located in 4p15.1 region spanning ∼110 kb.
The rationale behind SNP selection was to give equal empha-
sis to functionality, already knowndisease associations, statis-
tical power, and cost. The four SNPs were selected for geno-
typing (Table 1) using HapMap (http://www.hapmap.org/)
genotype data from Africans, taking into account their rela-
tionshipswith each other. These SNPswere tested for interrela-
tionships using linkage disequilibrium (LD) plots. TAGGER
on Haploview was used for selection of haplotype tagging
SNPs. The independence of each SNP from others is evident
in the LD plot (Figure 1). The values shown in this plot are
𝑟
2 values showing the correlation between any pair of SNPs.
The highest 𝑟2 value for any pairwise comparison for the four
selected SNPs is 0.38 as shown in Figure 1. An integrated
selection on the basis of genetic associations and human
genome epidemiology was done using HuGE Navigator and
dbSNP. Functionality of SNPs was assessed bioinformatically
on F-SNP website (http://compbio.cs.queensu.ca/F-SNP/).
Thus, seventy-five SNPs were narrowed down using mathe-
matical, biological, and bioinformatics approach to four that
have high minor allele frequencies (MAF), robust disease
associations, high functionality, and no correlation with one
another.

The main characteristics for the selected PPARGC1A
gene SingleNucleotide Polymorphisms (SNPs) genotyped are
shown inTable 1. Genotyping for all four SNPswas performed
by real-time PCR amplification on BioRad CFX96 real-time
PCR instrument (Hercules, CA) using commercially available
TaqMan allelic discrimination assays (LifeTech, Foster City,
CA). PCR amplification (20 𝜇L) was performed in 96-well
plates using Bio-Rad SsoFast Probes Supermix as the reaction
buffer with the TaqMan Assay. To ensure reproducibility and
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Table 1: Characteristics of PPARGC1A SNPs.

NCBI ref SNP number* Chromosome nucleotide position‡ MAF† Disease risk associations 𝐹-score
rs8192678 23815662 0.291 T2D, CVD, Obesity 0.50
rs7656250 23866016 0.265 T2D, CVD 0.27
rs4235308 23864412 0.396 CVD 0.28
rs11724368 99418507 0.106 CVD 0.25
Note: *National Center for Biotechnology Information (NCBI) reference single nucleotide polymorphism (SNP) number (http://www.ncbi.nlm.nih.gov/).
‡Genome Reference Consortium Human Build 37 patch release 13 (GRCh37.p13) used for nucleotide position (http://www.ncbi.nlm.nih.gov/SNP/).
†Minor allele frequencies are from a global population genotyped in HapMap project.
MAF: minor allele frequency; T2D: type 2 diabetes; CVD: cardiovascular disease; 𝐹-Score: functionality score.
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Figure 1: Haploview plot showing linkage disequilibrium (LD) with
𝑟
2 values for four selected SNPs of PPARGC1A gene. Note: black
coloring displays strong LD, dark grey displays less strong LD, light
grey displays intermediate LD, and white displays weak LD.

reliability of genotyping method, 10% of the DNA samples
were duplicated during genotyping. Bio-Rad CFX Manager
software (version 3.0) was utilized for both data acquisition
and assignment of genotypes for each SNP.

2.5. Statistical Analysis. The statistical analyses were done
using SPSS version 20 (SPSS Inc., Chicago, IL, USA). All sta-
tistical tests were two-tailed, and the threshold for statistical
significance was set at 𝑃 ≤ 0.05. Sample size calculation was
performed prior to the initiation of the study. Sample size of
𝑛 = 62 was calculated for significance threshold of 0.05 and

odds ratio of 1.5 for equal case and control, to have statistical
power of 80%. Genotype counts in each SNP were checked
for Hardy-Weinberg equilibrium (HWE) in controls using
the Chi-squared goodness-fit test. Demographic and clinical
information between cases and controls was compared using
Student’s 𝑡-test for continuous variables and Chi-squared
test for categorical variables. All genetic associations were
assessed by using the recessive genetic model to detect reces-
sive effects, often overlooked by other genetic models. Logis-
tic regressionmethods were used to calculate unadjusted and
adjusted odds ratios (OR) and 95% confidence intervals (CIs)
to assess the relationship of all SNPs simultaneously with
binary outcome for case-control status (T2D=Yes/No) before
and after adjusting for potential confounding factors such as
age, sex, smoking status, and BMI.The analysis also included
interaction term for SNPs and sex. Due to heterogeneity
among two ethnicities, these two groups were analyzed sepa-
rately. Stratified analysis by ethnicity and sex was performed,
to assess their effect modification on the relationship of poly-
morphismswith the phenotype, that is, T2D.The analysis was
then repeated adjusting for age, BMI, and smoking status.The
multiple linear regression analysis was employed to test the
association of insulin plasma concentration and the presence
of polymorphisms in controls of both Haitian American and
African American participants separately. The analysis was
adjusted with confounders: age, sex, BMI, and smoking sta-
tus. The insulin values were log transformed before analysis.

3. Results

A total of 226 Haitian Americans (𝑛 = 110 cases, 𝑛 = 116
controls) and 246 African Americans (𝑛 = 124 cases and 𝑛 =
122 controls) comprised the study population for his study.

3.1. General Characteristics. Table 2 shows the general char-
acteristics of the individuals in the study. In brief, individuals
with T2D (cases) were older than those without T2D (con-
trols) in both Haitian Americans (𝑃 = 0.001) and African
Americans (𝑃 = 0.022). Cases in Haitian American (𝑃 =
0.019) as well as African American group (𝑃 < 0.001)
had higher waist circumference than controls. However, BMI
was significantly higher for cases as compared to controls in
AfricanAmericans only (𝑃 < 0.001).Therewas no significant
difference between cases and controls in Haitian American
group for either SBP or DBP, whereas, SBP was significantly
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Table 2: Descriptive characteristics of individuals by ethnicity and T2D status.

Variables Haitian Americans African Americans
Cases (𝑛 = 110) Controls (𝑛 = 116) 𝑃 value Cases (𝑛 = 124) Controls (𝑛 = 122) 𝑃 value

Age, yr. 58.55 ± 10.15 54.03 ± 11.05 0.001 54.31 ± 10.07 51.20 ± 8.65 0.022
Sex (male) 48 (44) 54 (46) 0.484 59 (48) 61 (50) 0.704
Waist circumference (cm) 100.25 ± 12.16 95.97 ± 12.72 0.019 114.15 ± 18.12 102.02 ± 14.98 <0.001
BMI (kg/m2) 29.50 ± 5.45 28.96 ± 5.157 0.628 35.86 ± 8.28 31.21 ± 6.77 <0.001
Smoke (Yes) 7 (6) 5 (4) 0.490 44 (35) 49 (40) 0.532
Blood pressure (mm of Hg)

SBP 148.24 ± 25.76 144.63 ± 26.206 0.276 140.85 ± 20.11 133.15 ± 18.41 0.006
DBP 90.82 ± 13.22 90.44 ± 13.55 0.853 89.76 ± 11.59 88.37 ± 12.97 0.399

Diabetes meds (Yes) 98 (89) 0 (0) NA 96 (77) 0 (0) NA
Note: values are unadjusted mean ± SD for continuous variables or𝑁 (%) for categorical variables. Diabetes medication is only for cases. So statistical test is
not necessary and the 𝑃 value is not available (NA). Cases: with T2D; controls: without T2D; BMI: body mass index; diabetes meds: diabetes medications; SBP:
systolic blood pressure; DBP: diastolic blood pressure.

higher in cases as compared to controls in African American
group (𝑃 = 0.006).

The cases in Haitian American group included 48 males
(44%) and 62 females (56%) and the controls included 54
males (47%) and 62 females (53%). The cases in African
American group constituted 59 males (48%) and 65 were
females (52%). The African American controls comprised of
equal males and females (𝑛 = 61, 50%).

3.2. Frequency of PPARGC1A Polymorphisms. All cases and
controls were genotyped for the four candidate SNPs. Geno-
type call rates were higher than 95% for cases and controls in
both ethnicities. None of the four PPARGC1A SNPs showed
any deviation from Hardy-Weinberg equilibrium in controls.
Table 3 shows genotype distribution of all four PPARGC1A
SNPs in the case-control sample for both ethnicities. The
minor allele frequency (MAF) for rs8192678, rs7656250,
rs4235308, and rs11724368 SNPwas 0.145 and 0.060; 0.118 and
0.090; 0.414 and 0.327; 0.072 and 0.069 for cases and controls
of Haitian Americans, respectively. In African American
group, the MAF for rs8192678, rs7656250, rs4235308, and
rs11724368 for cases and controls was 0.093 and 0.074; 0.165
and 0.110; 0.343 and 0.336; 0.093 and 0.069, respectively
(Table 3).TheMAF seen in the study was very close toNCBI’s
genotyped data validating our study (http://www.ncbi.nlm
.nih.gov/SNP/).

3.3. Correlations between PPARGC1A Polymorphisms and
Type 2 Diabetes. In total, four PPARGC1A SNPs were exam-
ined simultaneously for their genetic associations with T2D
using logistic regression analysis. Results including unad-
justed odds ratios and odds ratios adjusted for covariates
(age, sex, BMI, and smoking status) and interaction terms
between SNPs and sex are shown in Tables 4(a) and 4(b).
Two out of four SNPs showed significant association with
T2D in Haitian Americans. However, only one SNP was
significantly associated with T2D in African Americans
(Table 4(b)). The SNP rs7656250 showed protective associa-
tionwithT2Dwith adjustedORof 0.22 (𝑃 = 0.005) inHaitian

Americans (Table 4(a)). This association was not signifi-
cant for African American group but when adjusted for
confounders, rs7656250 showed risk association with T2D
with OR of 1.02 (𝑃 = 0.940) though it did not reach
statistical significance (Table 4(b)). The interaction between
sex and rs7656250 was found to be significant only in Haitian
Americans (𝑃 = 0.008). InHaitianAmericans, rs4235308 had
an unadjusted odds ratio (OR) of 0.53 (𝑃 = 0.033) as shown
in Table 4(a).The adjustment for age, BMI, sex, smoking, and
interaction terms for SNPs and sex lowered the effect (OR =
0.42,𝑃 = 0.026).This SNP showed significant risk association
with T2D in African Americans (OR = 2.53, 𝑃 = 0.028)
(Table 4(b)).

Effect modification of sex on PPARGC1A SNPs asso-
ciation on T2D was also explored by stratification by
sex adjusted for age, BMI, and smoking status, as shown
in Tables 5(a) and 5(b). In Haitian Americans, rs4235308
showed protective association with T2D both in females
(OR = 0.38, 𝑃 = 0.026) and in males (OR = 0.62, 𝑃 = 0.326),
though not statistically significant. In Haitian Americans,
rs7656250 also had a protective effect on T2D in females
(OR = 0.23, 𝑃 = 0.006) and but risk association in males
(OR = 1.62, 𝑃 = 0.409). The association in males was statisti-
cally insignificant. In African American females, rs7656250
showed risk association though statistically nonsignificant
(OR = 1.14, 𝑃 = 0.788), whereas in males, it had statistically
significant protective effect on T2D (OR = 0.37, 𝑃 = 0.043).
In African American females, rs4235308 had stronger risk
association with T2D (OR = 2.69, 𝑃 = 0.029) but not inmales
(OR = 1.16, 𝑃 = 0.723).

The association of insulin plasma concentration and
presence of these polymorphisms in either Haitian American
or African American controls was analyzed. The results in
Haitian Americans were not significant for any of the SNPs
(results not shown). However, in African American controls,
the presence of rs4235308 C allele (CC + CT) increased the
likelihood of higher log insulin by 0.140 times than those
with TT genotype (𝑃 = 0.008). All other SNPs showed no
significant association with log insulin.
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Table 4: (a) PPARGC1A SNP association with T2D in Haitian Americans. (b) PPARGC1A SNP association with T2D in African Americans.

(a)

Variables Haitian American
Unadjusted OR 95% C.I. 𝑃 value Adjusted OR 95% CI 𝑃 value

rs8192678 TT + CT versus CC 0.66 0.30 1.42 0.285 0.49 0.15 1.60 0.228
rs7656250 CC + CT versus TT 0.66 0.34 1.30 0.231 0.22 0.07 0.64 0.005
rs4235308 CC + CT versus TT 0.53 0.30 0.95 0.033 0.42 0.17 0.93 0.026
rs11724367 CC + CG versus GG 1.14 0.52 2.52 0.745 1.73 0.55 5.49 0.353
rs8192678 ∗ sex — — — — — 1.77 0.34 9.27 0.490
rs7656250 ∗ sex — — — — — 7.53 1.66 34.15 0.008
rs4235308 ∗ sex — — — — — 1.56 0.46 5.34 0.444
rs11724367 ∗ sex — — — — 0.54 0.09 2.95 0.483
Note: the statistically significant results are in bold. Controlled variables included in the logistic regression analysis for adjusted OR were age, sex, BMI, and
smoking status. The interactions between sex and individual SNP were also included in logistic regression analysis for all the SNP. 𝑃 is considered significant
at 0.05. OR: odds ratio; CI: confidence interval; PPARGC1A: peroxisome proliferator activated receptor, gamma, coactivator 1 alpha.

(b)

Variables African American
Unadjusted OR 95% C.I. 𝑃value Adjusted OR 95% CI 𝑃 value

rs8192678 TT + CT versus CC 0.90 0.45 1.87 0.777 0.55 0.19 1.56 0.269
rs7656250 CC + CT versus TT 0.62 0.34 1.13 0.117 1.02 0.43 2.43 0.940
rs4235308 CC + CT versus TT 1.29 0.75 2.21 0.356 2.53 1.08 5.92 0.028
rs11724367 CC + CG versus GG 0.69 0.33 1.25 0.329 0.29 0.08 1.14 0.073
rs8192678 ∗ sex — — — — — 1.46 0.38 5.60 0.585
rs7656250 ∗ sex — — — — — 0.36 0.11 1.13 0.079
rs4235308 ∗ sex — — — — — 0.48 0.15 1.59 0.220
rs11724367 ∗ sex — — — — — 3.78 0.82 17.31 0.082
Note: the statistically significant results are in bold. Controlled variables included in the logistic regression analysis for adjusted OR were age, sex, BMI, and
smoking status. The interactions between sex and individual SNP were also included in logistic regression analysis for all the SNP. 𝑃 is considered significant
at 0.05. OR: odds ratio; CI: confidence interval; PPARGC1A: peroxisome proliferator activated receptor, gamma, coactivator 1 alpha.

Table 5: (a) Associations of the single nucleotide polymorphisms of PPARGC1Awith type 2 diabetes by ethnicities in males. (b) Associations
of the single nucleotide polymorphisms of PPARGC1A with type 2 diabetes by ethnicity in females.

(a)

Male
Variables Haitian American African Americans

OR 95% CI 𝑃 value OR 95% CI 𝑃 value
rs8192678 TT + CT versus CC 0.89 0.25 3.10 0.854 0.86 0.29 2.53 0.786
rs7656250 CC + CT versus TT 1.62 0.51 5.09 0.409 0.37 0.14 0.97 0.043
rs4235308 CC + CT versus TT 0.62 0.24 1.61 0.326 1.16 0.50 2.68 0.723
rs11724368 CC + CG versus GG 0.84 0.23 3.08 0.790 1.11 0.42 2.94 0.829
Note: the statistically significant results are in bold. Controlled variables included in the logistic regression analysis for OR (adjusted) were age, sex, BMI, and
smoking status. OR: odds ratio; CI: confidence interval; PPARGC1A: peroxisome proliferator activated receptor, gamma, coactivator 1 alpha.

(b)

Female
Variables Haitian American African Americans

OR 95% CI 𝑃 value OR 95% CI 𝑃 value
rs8192678 TT + CT versus CC 0.51 0.15 0.16 0.257 0.48 0.15 1.49 0.205
rs7656250 CC + CT versus TT 0.23 0.08 0.65 0.006 1.14 0.43 3.07 0.788
rs4235308 CC + CT versus TT 0.38 1.59 0.89 0.026 2.69 1.11 6.52 0.029
rs11724368 CC + CG versus GG 1.41 0.45 4.40 0.555 0.32 0.07 1.54 0.155
Note: the statistically significant results are in bold. Controlled variables included in the logistic regression analysis for OR (adjusted) were age, sex, BMI, and
smoking status. OR: odds ratio; CI: confidence interval; PPARGC1A: peroxisome proliferator activated receptor, gamma, coactivator 1 alpha.
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4. Discussion

High prevalence of T2D in populations with African origins
is well established [20–22]. Recently, only few studies have
documented existing metabolic differences in the subpop-
ulations of African ancestry [23–25]. Despite being well
established, the ethnic disparity is not always addressed in
genetic association studies. There exists an assumption that
ethnic groups within a race are homogenous and obvious
differences among different members of the ethnic group and
many times subgroups with the ethnicity are overlooked.This
study revealed such differences among Haitian Americans
and African Americans, often grouped together with other
populations of African origins.This study also provides some
confirmation of minor allele frequencies of previously dis-
covered genetic markers associated with T2D, furthermore
validating our case-control study.

Of the four PPARGC1A SNPs, rs4235308 showed sig-
nificant overall association with T2D, while rs8192678,
rs7656250, and rs11724368 did not show any associations
in African American group. However, in Haitian American
group, both rs7656250 and rs4235308 showed overall asso-
ciation. Ling et al. (2008) reported association of reduced
PPARGC1A mRNA expression with rs8192678 SNP, making
some to speculate it as a functional SNP [26].The association
of rs8192678 SNP with T2D has also been reported in
Danish [27], Japanese [28], Southern Chinese [29, 30], and
North Indians [31], but no such association was reported
in Pima Indians [32] or in French Caucasians [33]. These
discrepancies in genetic associations in different populations
could merely be due to different genetic admixture or due
to errors in sampling, low statistical power, population not
being homogenous, confounding by gene-environment inter-
actions, and stringency for genome wide studies (GWAS).
On the other hand, these conflicting results suggest ethnic
differences in distribution of the SNPs in different pop-
ulations and thus differences in susceptibility for T2D in
various ethnicities. It is often seen that a genetic association
is rather with a nearby SNP than the SNP being tested due to
confounding by locus. We made sure that the SNPs selected
for the study were independent and the associations were not
due to linkage disequilibrium between these gene variants.

An interesting finding in the study was the protective
association of rs7656250 as well as rs4235308 with T2D in
Haitian Americans whereas risk association observed for
rs4235308 in African Americans. Further, we found the
association of rs4235308 SNPwith higher log insulin values in
African American controls.The findings could partly explain
the prevalence of insulin resistance in African Americans,
which is a powerful predictor of T2D.The genetic implication
of these polymorphisms on insulin resistance in African
Americans could also bolster results from a previous study
reporting the ethnic differences in insulin resistance and
other indicators of glucosemetabolism amongHaitianAmer-
icans and African Americans [25]. Further, a risk association
was observed for SNPs rs7656250 and rs4235308, in females
of African Americans in the study, whereas, both rs7656250
as well as rs4235308 exhibited protective effect in females
of Haitian American group. Haitian Americans have poor

diabetes control but lower prevalence than African Ameri-
cans [34].The collective protective effect of PPARGC1A poly-
morphisms rs7656250 and rs4235308 in this study in Haitian
Americans could be just a glimpse of why such a difference
exists. One study pointed out the differences between both
ethnicities of South Florida in diet quality [35]. Although
both ethnicities were found to have lower than optimal diet
quality, Haitian Americans had better diet quality scores in
general but not in women [35]. The prevalence of T2D has
been reported to be higher in Haitian females than males in
one study [36] although the study population is comprised of
only themembers of the households present at the time of the
visit.This selection bias could have resulted in overestimation
of diabetes prevalence in females. Additionally, the gender
differences in prevalence of T2D in Haitian Americans are
not well known due to lack of literature. The poor access
to health care, educational status, exposure to gestational
diabetes, and diet quality often seen in ethnicities of African
origins may increase the lifestyle burden on physiological
functioning and thereby increasing prevalence of T2D in
females [37]. According to a recent study published in Journal
of AmericanMedical Association, African American females
had 2.4-fold greater diabetes incidence per 1000 person
as compared to 1.5-fold greater in men than their White
counterparts [38]. The strong risk association for rs4235308
in African American females observed in this study follows
the trend. However, the risk association of rs7656250 in
African Americans could not reach statistical significance,
probably due to insufficient sample size. In African males,
the association of rs7656250 was marginally protective for
T2D; probably it can explain why African American males
have lower T2D prevalence than African American females.
As there is lack of genetic association studies in African
American population and virtually nonexistent in Haitian
American population, further research is warranted.

There are few limitations of this study. Although, the
sample size of the study had sufficient statistical power
(>80%) to detect odds ratio of 1.5 or more, for equal case
and control at significance threshold of 0.05, it may have been
inadequate to detect association of SNPs with amodest effect.
As with any case-control approach, bias exists for genetic
association studies, due to unacceptable designation of cases
and controls. In this study, participants were classified as
cases or controls (T2D = Yes/No) with the use of medical
history and the standard criteria described by American
Diabetes Association. Self-reported ethnicity is a common
method with population based association studies and due
to population stratification it may increase the false positive
results. In this study, both cases and controls were selected
from the same population pool and geographic area, with
information on ethnicity up to two generations, for each
respective ethnicity. The heterogeneity however within the
African American and Haitian American population and
thus residual confounding is still a concern.

Despite the low 𝑃 values, the likelihood of true disease
associations mostly depends on the biological plausibility.
Polymorphisms located within the PPARGC1A gene with
strong associations with T2D have been reported in multiple
genetic association studies [39–43].The PPARGC1A gene has
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been identified as a transcriptional coactivator of a series
of nuclear receptors, which regulate processes that impact
cellular energy metabolism, thermogenesis regulation, glu-
cose metabolism, adipogenesis, and oxidative metabolism
via protein PGC-1𝛼 [4, 44, 45]. Acetylation of PGC-1𝛼 is
in fact essential for its transcriptional coactivator functions
[46] and any hindrance in acetylation-deacetylation process
may adversely affect its functioning. PGC-1𝛼 dysregulation is
often associated with insulin resistance and T2D [47], which
suggest that variations within the PPARGC1A gene may
influence transcriptional homeostasis of the genes involved.

5. Conclusions

In summary, this is the only study that successfully examined
differences in genetic associations of PPARGC1A with T2D
between Haitian American and African Americans. As T2D
is a complex disease with strong environmental influence,
the contribution of differences in ancestry may be behind
the ethnic disparities observed in risk of type 2 diabetes
development in this and other populations.
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