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Attending to a feature enhances visual processing of that
feature, but it is less clear what occurs to unattended
features. Single-unit recording studies in middle
temporal (MT) have shown that neuronal modulation is
a monotonic function of the difference between the
attended and neuron’s preferred direction. Such a
relationship should predict a monotonic suppressive
effect in psychophysical performance. However, past
research on suppressive effects of feature-based
attention has remained inconclusive. We investigated
the suppressive effect for motion direction, orientation,
and color in three experiments. We asked participants
to detect a weak signal among noise and provided a
partially valid feature cue to manipulate attention. We
measured performance as a function of the offset
between the cued and signal feature. We also included
neutral trials where no feature cues were presented to
provide a baseline measure of performance. Across
three experiments, we consistently observed
enhancement effects when the target feature and cued
feature coincided and suppression effects when the
target feature deviated from the cued feature. The exact
profile of suppression was different across feature
dimensions: Whereas the profile for direction exhibited a
‘‘rebound’’ effect, the profiles for orientation and color
were monotonic. These results demonstrate that
unattended features are suppressed during feature-
based attention, but the exact suppression profile
depends on the specific feature. Overall, the results are
largely consistent with neurophysiological data and
support the feature-similarity gain model of attention.

Introduction

Selective attention prioritizes the processing of a
small portion of information from the vast amount of

information that impinges on the visual system. The
effects of attention have been extensively studied at
both the behavioral and physiological levels, particu-
larly for spatial attention (for reviews see Carrasco,
2011; Kastner & Ungerleider, 2000; Reynolds &
Chelazzi, 2004). However, attention can also select
specific features (e.g., red color, rightward motion),
even when different features occupy the same spatial
location (Scolari, Ester, & Serences, 2014; Maunsell &
Treue, 2006). In this study, we focus on the perceptual
effects of feature-based attention, and in particular,
how attention affects the representation of visual
features.

This question has been directly assessed in single-
unit recording studies where monkey subjects attended
to directions of motion while neuronal activity in the
motion sensitive area, MT, was measured (Martinez-
Trujillo & Treue, 2004; Treue, & Martinez-Trujillo,
1999). These authors found that attending to a
direction enhanced activity for neurons preferring
similar directions, while it suppressed activity for
neurons preferring dissimilar directions, essentially
giving rise to a sharpened population activity for the
attended feature. This finding has led to the influential
feature-similarity gain model of attention, which
maintains that the amount of neuronal modulation
depends on the similarity between the attended feature
and the neuron’s preferred feature. Many studies in
humans, using both neuroimaging and psychophysics,
have found results consistent with feature-similarity
gain model (Arman, Ciaramitaro, & Boynton, 2006;
Bondarenko et al., 2012; Lankheet & Vestraten, 1995;
Liu & Hou, 2011; Liu, Larsson, & Carrasco, 2007; Liu
& Mance, 2011; Saenz, Buracas, & Boynton, 2002,
2003; Serences & Boynton, 2007; White & Carrasco,
2011; Zhang & Luck, 2008). However, these studies
typically employed only two feature values (e.g.,

Citation: Wang, Y., Miller, J., & Liu, T. (2015). Suppression effects in feature-based attention. Journal of Vision, 15(5):15, 1–15,
http://www.journalofvision.org/content/15/5/15, doi:10.1167/15.5.15.

Journal of Vision (2015) 15(5):15, 1–16 1http://www.journalofvision.org/content/15/5/15

doi: 10 .1167 /15 .5 .15 ISSN 1534-7362 � 2015 ARVOReceived August 21, 2014; published April 24, 2015

mailto:wangyix7@msu.edu
mailto:wangyix7@msu.edu
mailto:james.r.miller@email.wsu
mailto:james.r.miller@email.wsu
mailto:tsliu@msu.edu
mailto:tsliu@msu.edu


upward vs. downward motion, vertical vs. horizontal
orientation) and assessed the effect of attention by
comparing the attended versus unattended feature. As
such, these studies did not permit a systematic
assessment of the profile of attentional modulation
within a feature dimension.

A basic prediction from the neurophysiological data
(Khayat, Neibergall, & Martinez-Trujillo, 2010; Mar-
tinez-Trujillo & Treue, 2004; Treue & Martinez-
Trujillo, 1999) is that as stimulus features deviate more
from the attended feature, their representations are
monotonically modulated such that similar features are
enhanced and dissimilar features are suppressed. This
prediction has received limited investigation in the
literature. Two studies, one testing orientation (Tombu
& Tsotsos, 2008) and one testing motion direction (Ho,
Brown, Abuyo, Ku, & Serences, 2012) have found
nonmonotonic modulation of feature processing, in-
consistent with this prediction. For both direction and
orientation, these authors found the highest perfor-
mance for the attended feature, with decreasing
performance as the feature deviated more from the
attended feature, but a ‘‘rebound’’ effect such that the
most dissimilar feature (orthogonal orientation and
opposite direction) exhibited a relative increase in
performance. These studies used different designs and
tasks to measure the effect of attention. Furthermore,
certain elements in the design and data of these studies
limited the inferences drawn from their results. For
example, Tombu and Tsotsos (2008) did not include a
neutral condition, so it is difficult to assess enhance-
ment versus suppression, whereas Ho et al. (2012) used
a visual search task that likely involved shifts of spatial
attention, which could confound the interpretation of
their results. We will present more in-depth discussions
of these studies in the General discussion.

Our goal here is to measure the modulation profile
due to feature-based attention, for both the direction
and orientation features. In addition, we also examined
the modulation profile for color, an important visual
feature but with little systematic investigation in terms
of how attention affects its perceptual representation.
We used the same task for all three features, in a design
that maximized our ability to detect modulations of the
sensory representations of these features. Our results
showed clear suppression effects for all features that
were largely consistent with the predictions of the
feature-similarity gain model.

Experiment 1: Attention to direction
of motion

In the first experiment, we tested the effect of
feature-based attention to directions of motion. Par-

ticipants were cued to attend to a particular direction
and detected a coherent motion signal that could move
in various directions. This allowed us to assess how
attention modulates direction-selective mechanisms
during motion detection.

Methods

Participants

A total of six observers participated in this
experiment. All of them were graduate and under-
graduate students at Michigan State University and
were naive as to the purpose of the experiment. All
participants had normal or corrected-to-normal vision.
Participants gave informed consent and were compen-
sated at the rate of $10/hr. All experimental protocols
were approved by the Institutional Review Board at
Michigan State University.

Visual stimuli

Visual stimuli were generated using MGL (http://
justingardner.net/mgl), a set of OpenGL libraries
running in Matlab (Mathworks, Natick, MA). We used
the random dot motion stimulus, which was based on
classic studies in neurophysiology (Newsome & Pare,
1988). The motion stimulus consisted of white moving
dots (size: 0.058) in a circular aperture (68), presented
on a dark background. The circular aperture was
centered on the fixation point (white, size: 0.38), which
was surrounded by a small occluding region (0.78) of
the background luminance such that no dots would
appear too close to the fixation point. The dots were
plotted in three interleaved sets of equal number, with
an effective density of 16.8 dots/deg2/s and a speed of
48/s. Each single dot was presented on the screen for
one video frame (life time¼16.7 ms). Importantly, only
a portion of dots moved in a particular direction
between frames, while the rest of the dots were redrawn
in random locations. The stimuli were presented on a
19-in. CRT monitor refreshed at 60 Hz and set at a
resolution of 1024 · 768. Observers were stabilized
with a chinrest and viewed the display from a distance
of 57 cm in a dark room.

Task and procedures: Training

We first trained all observers to familiarize them with
the task, until their performance stabilized so that we
could choose appropriate stimulus levels for the
attention task (see below). Observers detected the
presence of coherent motion in a two-interval forced
choice (2-IFC) (Figure 1). Each trial started with a 0.5-s
fixation interval, then a 0.7-s blank interval, after which
two intervals of random dot motion stimuli were
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shown, each for 0.3 s, and separated by 0.7 s, and
finally followed by a 0.5-s feedback interval after the
responses. One interval always contained 0% coherent
motion (noise) while the other interval contained a
motion stimulus at one of seven coherence levels: 2%,
4%, 8%, 16%, 32%, 64%, and 96% (signal), via the
method of constant stimuli. The presentation order of
the signal and noise interval was randomized. Observ-
ers were instructed to judge which interval contained
the coherent motion signal by pressing the 1 or 2 key on
the numeric keypad of a standard computer keyboard.
A sound was played for incorrect interval judgments
after observer pressed the key. An intertrial interval of
1.5 s then followed.

We fit the proportion of correct data with a Weibull
function using maximum-likelihood estimation, as
implemented in psignifit (Wichmann & Hill, 2001; see
Figure 2A for an example fit). We defined threshold as
the coherence level corresponding to ;65% correct in
the 2-IFC task. Observers performed the motion
detection task in 48-trial blocks until their coherence
threshold did not show a sizeable drop in consecutive
four-block units. On average, the practice session was
27 blocks long (i.e., 1,296 trials), with a range of 18–30
blocks across observers. The training task was divided
into three to four sessions, each lasting about 60 min.

Task and procedures: Attention

The attention task was similar to the training task,
except we introduced a cueing and validity manipula-
tion (Figure 1). The strength of the motion signal was
determined by data in the training sessions. At the
beginning of each trial in the cued blocks, an arrow cue
appeared for 0.5 s (length: 0.38, center 0.658 to the
fixation). This cue accurately indicated the direction of
the signal on 69% of the trials. In the remaining 31% of
trials, the invalid trials, the signal moved in a different
direction from the cued direction, with the difference
set to one of the 12 possible offset values (6308, 6608,
6908, 61208, 61508, 61808). On each trial, the cue’s
direction was randomly sampled from 120 possible

directions ranging from 08 to 3578 (step size: 38).
Observers were instructed to attend to the cued
direction, as it would help them to detect the motion
signal. We also ran the neutral (no-cue) condition in
separate blocks, in which the fixation dot turned green
to indicate the impending motion stimuli. Signal
direction in the neutral trials was randomly sampled
from the same 120 possible directions as in the cued
trials. In both the cued and neutral condition, observers
were instructed to report which interval contained the
coherent motion signal by pressing the 1 or 2 key on the
numeric keypad. There was no feedback at the end of
the trial during the attention task.

Each session consisted of four blocks, with one
neutral block and three cued blocks. The order of these
blocks was randomized for each session. The neutral
block contained 40 trials and cued blocks contained 50
trials, and each observer completed five sessions. In
total, each observer completed 200 neutral trials and
750 cued trials, which was composed of ;520 valid
trials and ;19 invalid trials in each target offset (;38
trials when collapsed across the sign of the offset, see
Results below).

Results and discussion

The average coherence threshold was 0.10 (SD ¼
0.02) as determined in the training sessions (see
Methods). We calculated accuracy as a function of the
offset between the cue and signal direction (a signal
detection analysis using d0 as the performance measure
produced very similar results in this and subsequent
experiments). Since the clockwise and counterclockwise
offsets showed similar results, we collapsed across the
sign of the offset to produce six offset levels (308, 608,
908, 1208, 1508, 1808). Average performance showed a
U-shaped function (Figure 3). Figure 3 also shows
performance in the neutral condition (dashed horizon-
tal line), when participants had no expectation of the
signal direction. We used the neutral condition to assess
attentional effect—a higher-than-neutral performance

Figure 1. Schematic of a trial in Experiment 1. Observers detected the presence of coherent motion in a 2-IFC task.
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would indicate attentional enhancement and a lower-
than-neutral performance would indicate attentional
suppression. The U-shaped function crossed the neutral
performance level, showing both enhancement and
suppression due to feature-based attention. At the
individual level, we found five out of six participants
who showed the U-shaped function. Compared to the
neutral performance, valid cues (08 offset) yielded
significantly higher accuracy, t08(5)¼ 6.53, p , 0.01,
demonstrating an enhancement. The invalid cues
produced significantly lower accuracies in 608, 908,
1208, and 1508 offset conditions, t608(5)¼4.55, p , 0.01;
t908(5)¼ 3.04, p , 0.05; t1208(5)¼ 4.54, p , 0.01; t1508(5)
¼ 2.58, p , 0.05, but not in 308 and 1808 offset
conditions, t308(5)¼ 0.04, p¼ 0.97; t1808(5)¼ 0.22, p¼
0.83. To further characterize the shape of the modu-
lation function, we fit the average cued data with both a
linear and a quadratic function. In addition, we also fit
the same data with a linear function with an intercept
but zero slope. We refer to this function as ‘‘no-
modulation fit,’’ as it describes a scenario where
performance is not affected by the cueing manipula-
tion. We then compared the fits using Bayesian
Information Criterion (BIC), and found a quadratic fit
to be a better description of the data than a linear fit

Figure 2. Threshold data from the training sessions of the three experiments. Data from a representative subject from each

experiment is plotted. Solid lines are Weibull fits of the psychometric functions. (A) Threshold data from Experiment 1. (B) Threshold

data from Experiment 2. (C) Threshold data from Experiment 3, in which we separately measured threshold for each of the six colors,

coded by the color of the symbols and lines (see Figure 6B). Threshold data are noisier in the color experiment, presumably due to a

smaller number of trials per color.

Figure 3. Results for Experiment 1. Group averaged accuracy as

a function of the cue-to-target offset in direction. Error bars are

the estimated within-subject standard error following the

method of Loftus and Masson (1994). Asterisks indicate the

significance level in paired t tests (*p , 0.05). The solid line is a

quadratic fit of the average accuracy in the cued trials as a

function of direction offset.
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(Bayes factor ¼ 2.76 · 103) and the no-modulation fit
(Bayes factor ¼ 3.07 · 103).

These results showed a significant enhancement
effect when the cued direction was consistent with that
of the target, demonstrating that participants were
indeed utilizing the cue to orient their attention. The
attentional enhancement effect was consistent with the
idea that attending to a feature enhances its processing,
which has been supported by a large number of studies
using a variety of tasks (Arman et al., 2006; Lankheet
& Vestraten, 1995; Liu & Hou, 2011; Liu et al., 2007;
Liu &Mance, 2011; Saenz et al., 2002, 2003; Serences &
Boynton, 2007; White & Carrasco, 2011; Zhang &
Luck, 2008). Our observed attentional enhancement
thus suggests that a similar feature-enhancement
mechanism also operates in our motion detection task.
Importantly, we also systematically manipulated the
target offset from the cued direction, which allowed us
to measure how attention modulates the activity of
direction selective mechanisms. Here we observed a
suppression effect in most of the offset conditions.
Interestingly, the suppression effect exhibited a U-
shaped function such that maximum suppression
occurred for offsets close to orthogonal direction (908),
but no suppression was found for the opposite
direction (1808). Interestingly, this ‘‘rebound effect’’
was not predicted by single-unit data from monkey MT
(Martinez-Trujillo & Treue, 2004; Treue & Martinez-
Trujillo, 1999), which showed maximal suppression for
neurons tuned to the opposite direction as the attended
direction. Thus, if detection relies on the neurons most
sensitive to the target feature (Butts & Goldman, 2006;
Hol & Treue, 2001; Jazayeri & Movshon, 2006; Regan
& Beverley, 1985), one would expect a monotonic
modulation function such that the opposite direction
will exhibit the largest suppression. This was clearly not
what we observed. The implications of this finding will
be discussed in more detail in the General discussion.
For now, we note that our experiment revealed a robust
suppression effect due to feature-based attention to
motion direction.

Experiment 2: Attention to
orientation

Experiment 2 was designed to investigate whether
attention-induced suppression is a general phenomenon
or specific to motion direction. Orientation is one of the
most important visual features and has been widely
used in studies of feature-based attention. However, it
is not clear whether attention to an orientation causes a
suppression of other orientations and if such suppres-
sion also exhibits a ‘‘rebound’’ effect. Here we used a

similar experimental paradigm to test the effect of
orientation-based attention.

Methods

Participants

Six observers participated in this experiment; all
were graduate and undergraduate students at Michigan
State University and were naive as to the purpose of the
experiment. All participants had normal or corrected-
to-normal vision. Participants gave informed consent
and all were compensated at the rate of $10/hr. Four
observers also participated in Experiment 1.

Visual stimuli

The orientation stimuli were Gabor patches (spatial
frequency, 2 cycles/8) in a circular aperture (size, 68)
presented on a gray background (56 cd/m2). The
circular aperture was centered on the fixation cross
(black, size: 0.28), which was presented in the center of
the screen throughout the experiment. The mask
stimulus contained random pixel noise in the same
aperture, with pixel luminance drawn from a Gaussian
distribution (M¼ 56 cd/m2, SD¼ 28 cd/m2), truncated
at 62 standard deviations. The stimuli were presented
on a 19-in. CRT monitor (1024 · 768 pixel, 60-Hz
refresh rate, with gamma-corrected luminance levels),
and observers viewed the display at a distance of 57 cm,
with their heads stabilized via a chinrest in a dark
room.

Task and procedures: Training

Similar to Experiment 1, here we first trained each
observer on the task to select appropriate stimulus
levels for the attention task. Observers detected the
presence of a Gabor patch in a 2-IFC task (Figure 4).
Each trial started with a 0.5-s fixation interval, then a
0.5-s blank interval, after which two intervals of stimuli
were shown, separated by 0.5 s. Each interval contained
five frames of stimulus, with each frame presented for
0.017 s (one video frame). In the noise interval, all five
frames were noise stimuli (each noise stimulus was
randomly generated on each trial); in the signal
interval, the third frame was a Gabor patch while the
remaining four frames were noise stimuli (Figure 4).
The contrast of the Gabor patch was varied via the
method of constant stimuli: 0.12, 0.18, 0.24, 0.36, 0.48,
0.60. The presentation order of the signal and noise
intervals was randomized. Observers were instructed to
report which interval contained the signal (Gabor
patch) by pressing the 1 or 2 key on the numeric keypad
of a standard computer keyboard. Observers were
instructed to respond as accurately as possible. A
sound was played as feedback on incorrect trials after
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observer response, after which an intertrial interval of
1.5 s followed.

We fit the proportion correct data with a Weibull
function using psignifit (Wichmann & Hill, 2001; see
Figure 2B for an example fit) and defined threshold as
the contrast level corresponding to ;65% correct in the
2-IFC task. Observers performed the orientation
detection task in 60-trial blocks until their contrast
threshold did not show a sizeable drop in consecutive
four-block units. On average, the practice session was
18 blocks long (i.e., 1,080 trials), with a range of 16–21
blocks across observers. The training task was divided
into two sessions, each lasting about 40 min.

Task and procedures: Attention

The attention task was similar to the training task,
except we introduced a cueing and validity manipula-
tion. For the orientation signal, the contrast level was
determined by data in the training sessions (see above).
At the beginning of the trial, a line cue appeared for
0.5 s (length: 0.68, drawn through fixation), to indicate
the likely orientation of the signal. The cue was valid on
69% of trials, when the signal was in the cued
orientation. On the invalid trials (31%), the signal was
in a different orientation than the cued orientation,
with the difference set to one of six possible offset
values (6308, 6608, 6908). On each trial, the cue’s
direction was randomly sampled from 30 possible
orientations ranging from 08 to 1748 (step size¼ 68).
Observers were instructed to attend to the cued
orientation, as it would help them detect the orientation
signal. We also ran a neutral (no-cue) condition in
separate blocks, in which the fixation dot turned green
to indicate the impending stimuli. Signal orientation in
the neutral trials was randomly sampled from the same
30 possible orientations as in the cued trials. In both the

cued and neutral condition, observers were instructed
to report which interval contained the orientation
signal (Gabor patch) by pressing the 1 or 2 key on the
numeric keypad.

Each session consisted of five blocks, with one
neutral block and four cued blocks. The order of these
blocks was randomized for each session. The neutral
block contained 48 trials and cued block contained 60
trials. Each observer completed two sessions, for a total
of 96 neutral trials and 480 cued trials, which was
composed of ;330 valid trials and ;25 invalid trials in
each target offset (;50 trials when collapsed across the
sign of the offset, see Results below).

Results and discussion

The average contrast threshold was 0.20 (SD¼ 0.03)
as determined in the training sessions. We calculated
accuracy as a function of the offset between the cue and
signal orientation. The clockwise and counterclockwise
offsets showed similar results; hence we collapsed
across the sign of the offset to produce three offset
levels (308, 608, 908). Average performance showed a
monotonic decreasing function (Figure 5). Performance
in the neutral condition, when participants had no
expectation of the signal orientation, served as the
baseline to assess attentional effects. The monotonic
decreasing function crossed the neutral performance
level, showing both enhancement and suppression
effects. Compared to the neutral condition, valid cues
(offset 08) yielded significantly higher accuracy, t(5) ¼
3.83, p , 0.05, while invalid cues produced significantly
lower accuracy in the 908 offset condition, t908(5)¼3.13,
p , 0.05, but not in the 308 and 608 offset conditions,
t308(5)¼ 0.8, p¼ 0.46; t608(5)¼ 1.75, p¼ 0.14. We fit the
average cued data with a linear, a quadratic, and a

Figure 4. Schematic of a trial in Experiment 2. Observers detected the presence of an oriented grating in a 2-IFC task. In one interval,

two noise frames preceded and followed the grating; in the other interval, five noise frames were shown consecutively.
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zero-slope linear (no-modulation) function. Model
comparison using BIC revealed a linear fit to be a better
description of the data than a quadratic fit (Bayes
factor¼ 1.5) and the no-modulation fit (Bayes factor¼
625).

We found a significant facilitation in performance
when the cued orientation was consistent with the
target orientation, which validates the cueing manipu-
lation in this experiment. Again, this result suggests
that the processing of the cued orientation feature was
enhanced, consistent with previous studies of feature-
based attention. Importantly, when target orientation
differed from the cued orientation, a monotonic decline
of performance was observed, such that the orthogonal
orientation was significantly suppressed. Interestingly,
we did not observe a rebound effect as in Experiment 1
where the most dissimilar feature showed less sup-
pression than intermediate features. Thus the rebound
effect is likely not a general phenomenon in feature-
based attention, but could be specific to direction of
motion. The monotonic decline is more consistent with
the prediction of the feature-similarity gain model.

Experiment 3: Attention to color

In this experiment, we further explored attention-
induced suppression in the domain of color. Color is
another salient visual feature that has been extensively
used in studies of visual attention. However, previous

research tended to treat colors as discrete categories
(e.g., searching a red item among blue and green items),
thus making it difficult to investigate how attention
affects the underlying visual representation of color,
which is based on the continuous physical attribute of
wavelength. This is presumably caused by the com-
plexity of color mechanisms (Eskew, 2009), as well as
the technical difficulty in manipulating color stimuli.

We are inspired by recent work in visual perception
and memory using the Commission internationale de
l’éclairage (CIE) color space. For example, Brouwer
and Heeger (2009) found that fMRI response patterns
in high-level visual areas can be used to reconstruct the
CIE color space. Zhang and Luck (2008) showed that
memory representation for colors can be modeled by a
normal distribution in the CIE color space. These
results suggest that the CIE color space (specifically,
the CIE L*a*b space) can serve as a proxy of the
internal color representation, which provided a repre-
sentational space for us to investigate the effect of
attention on color representation. We devised a color
analog of the motion coherence stimulus and asked
observers to detect a color target in a 2-IFC procedure
similar to previous experiments to test the effect of
color-based attention.

Methods

Participants

Six graduate and undergraduate students from
Michigan State University participated in this experi-
ment. All participants had normal or corrected-to-
normal vision and reported to have normal color
vision. We informally assessed their color vision by
presenting them the Dvorine Pseudo-Isochromatic
Plates (Dvorine, 1963), for which all participants
correctly identified all the numbers. Participants gave
informed consent and were compensated at the rate of
$10/hr. One of the observers participated in the other
two experiments.

Visual stimuli

The color stimuli were static arrays of 240 colored
dots (dot size: 0.18), whose locations were restricted to a
48-thick annulus centered on the fixation (inner radius¼
18, outer radius¼58). The dots were drawn in one of six
possible colors, which were evenly spaced along a circle
in CIE L*a* b* color space (radius¼ 79, a¼ 25, b¼ 38,
luminance ¼ 74). The hues were selected based on a
pilot color-naming experiment, which showed that
these colors can be roughly described as orange, yellow,
green, blue, purple, and red (in order of appearance on
the circle; Figure 6B). The spatial location of each dot
was randomly assigned for each stimulus. Stimuli were

Figure 5. Results for Experiment 2. Group averaged accuracy as

a function of the cue-to-target offset in orientation. Other

notations are same as in Figure 2. The solid line is a linear fit of

the average accuracy in the cued trials as a function of

orientation offset.
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presented on a 21-in. CRT monitor with a refresh rate
of 100 Hz. The monitor was calibrated with an i1Pro
spectrophotometer (X-Rite, Grand Rapids, MI), to
derive the transformation from the CIE L*a*b space to
the monitor RGB space (Westland & Ripamonti,
2004). Participants rested their heads on a chin rest that
was positioned 57 cm away from the monitor.

We introduced a color analog of motion coherence
using the dot stimuli. Zero color coherence is defined as
equal proportion in the number of dots among all six
colors (i.e., 40 dots per color), whereas a nonzero
coherence indicates one color had a larger proportion
than the other colors. In the latter case, the color with a
larger proportion is referred to as dominant color, and
the other five colors are equally proportioned. Nu-
merically, the coherence was defined by the following
equation:

color coherence ¼ Ps� Pn

where Ps is the proportion of dots in the dominant
color, and Pn is proportion of dots in each nondom-
inant color, with the following constraint:

Pn ¼ ð1� PsÞ=5

That is, all nondominant colors are equally propor-
tioned after accounting for the dominant color.

Task and procedures: Training

We first trained each observer on the task to select
appropriate color coherence levels for the attention
task. Observers detected the presence of a dominant
color in a 2-IFC task (Figure 6A). Each trial started
with a 0.5-s fixation period, after which two intervals of
stimuli were shown, each for 0.3 s and separated by 0.4
s. One interval contained a 0% coherent stimulus where
the six colors were equal in proportion (noise), while
the other interval contained a nonzero coherent
stimulus where one color had a larger proportion than
the other five colors (signal). We used the method of
constant stimuli with six coherence levels (1%, 5%,
10%, 15%, 20%, 25%, as defined above) to train
observers on the basic color detection task. Observers
were instructed to report the interval that contained the
dominant color by pressing the 1 or 2 key on the
numeric keypad of a standard computer keyboard, and
they were instructed to respond as accurately as
possible. A sound was played as feedback on incorrect
trials after observer response, after which an intertrial
interval of 1.5 s followed.

We fit the proportion correct data with a Weibull
function using psignifit (Wichmann & Hill, 2001; see
Figure 2C for an example fit) and found the data could
be well fit by a Weibull. We defined threshold as the

Figure 6. (A) Schematic of a trial in Experiment 3. Observers detected the presence of a dominant color in a 2-IFC task. (B) Depiction

of the color wheel in the CIE L*a*b space. The circles represent the six equally spaced hues on the wheel that were used as colors for

the dot stimuli. (C) Average accuracy on neutral trials for individual colors. Error bars are the estimated within-subject standard error.
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coherence level corresponding to ;70% correct in the
2-IFC task. Separate fits were performed for each
target color to derive six color coherence thresholds.
Observers practiced the color detection task in blocks
of 72 trials (average: 18 blocks, range: 15–21). The
whole training procedure was divided into two to three
sessions, each lasting about 45 min.

Task and procedures: Attention

The attention task is similar to the training task,
except we introduced a cueing and validity manipula-
tion. For the strength of the color signal, we used
coherence levels as measured in the training sessions
(see above). Note the signal strength was different for
each target color, as determined in the training sessions.
This was done to compensate for possible differences in
sensitivity to different colors. At the beginning of the
trial, a color cue appeared for 0.6 s (radius 0.38, drawn
on fixation), to indicate the likely color of the signal.
The cue was valid on 70% of trials, when the signal was
the same color as the cue. In the remaining 30% of trials
(invalid trials), the signal had a different color than the
cue, with the difference set to one of six possible offset
values along the color wheel (6608, 61208, 61808). On
each trial, the cued color was randomly selected from
the six colors (orange, yellow, green, blue, purple, and
red). Observers were instructed to attend to the cued
color, as it would help them to detect the color signal.
We also ran the neutral (no-cue) condition in separate
blocks, in which the fixation dot turned gray to indicate
the impending stimuli. In both the cued and neutral
condition, observers were instructed to report which
interval contained the color signal by pressing the 1 or 2
key on the numeric keypad. Observers performed the
color detection task in three separate sessions, with six
neutral blocks and 20 cued blocks in total. The neutral
block contained 30 trials and cued block contained 96
trials. In total, each observer completed 180 neutral
and 1920 cued trials, which was composed of 224 valid
trials and 16 invalid trials in each target offset for each
color (;32 trials when collapsed across the sign of the
offset).

Results and discussion

The average coherence threshold across colors and
observers was 0.13 (SD ¼ 0.01). Because we measured
separate coherence threshold for each color, we first
examined performance in the neutral condition for the
six colors. Figure 6C shows average performance across
observers in the neutral condition for each of the six
colors. Although performance was around 70% (ex-
pected level given the thresholding procedure), there
were also some variations among colors. This is

probably caused by relatively small amount of data
collected for each color in the thresholding sessions,
making the estimate less accurate. Importantly, per-
formance for all colors was in an intermediate range
such that both attentional enhancement and suppres-
sion can be observed (i.e., no floor or ceiling effect in
the neutral condition).

For the cued trials, we calculated accuracy as a
function of the offset between the cued and signal
color. Because of the variation in neutral performance
among different colors, we used the difference between
each color’s cued and neutral scores as the measure of
attentional effects in all subsequent analysis. We first
examined attentional effects for individual cued colors
(Figure 7). In general, the cued colors had the highest
performance level and were consistently above zero,
whereas the uncued colors showed a decline in
performance. The decline was generally monotonic and
always reached below zero for large offsets. Given the
similarity of attentional effects across colors, we
averaged these modulation functions across colors and
collapsed across positive and negative offsets. The final
color modulation function exhibited a monotonic
decreasing shape as the cue-target offset increased
(Figure 8). Note because we plotted the difference score
between cued and neutral condition, a positive value
would indicate attentional enhancement and a negative
value would indicate attentional suppression. The color
modulation function crossed the zero point, showing
both enhancement and suppression due to feature-
based attention. We used one-sample t tests to compare
the cueing effect to 0, to assess the statistical reliability
of enhancement and suppression effects. Valid cues
(offset 08) yielded significant enhancement, t08(5)¼4.52,
p , 0.01, whereas invalid cues produced a suppression
effect at all offset values, t608(5)¼3.59, p , 0.05; t1208(5)
¼ 4.78, p , 0.01; t1808(5)¼ 5.98, p , 0.01. We fit the
average cued data with a linear, a quadratic, and a
zero-slope linear (no-modulation) function. Model
comparison using BIC found a quadratic fit to be a
better description of the data than a linear fit (Bayes
factor ¼ 4.05 · 105) and the no-modulation fit (Bayes
factor ¼ 1.67 · 107).

We found attending to a color produced facilitation
when the target color was consistent with the cued
color and suppression when target color deviated from
the cued color. The shape of the attentional modulation
followed a monotonic decreasing function such that
maximum suppression occurred for the color opposite
to the cued color on the color circle (1808 offset).
Overall, these results are consistent with predictions of
the feature-similarity gain model. Thus, the model,
although first proposed based on results from motion
direction (Martinez-Trujillo & Treue, 2004; Treue &
Martinez-Trujillo, 1999), appears to also operate in the
domain of color-based attention.
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General discussion

We conducted three experiments with a detection
paradigm and found that feature-based attention
modulated performance via both enhancement and
suppression along the feature dimension. In Experi-
ment 1, observers’ performance profiles relating the
cued and actual target direction followed a U-shape
function, with an enhancement effect when cue-to-
target separation were around 08, and a suppression
effect when cue-to-target separation were around 908,

and finally a rebound effect when that separation was
larger than 908. In Experiment 2, the performance
profile relating the cued and actual orientation showed
a monotonic decreasing trend, where suppression was
most pronounced when cue-to-target separation was
908. In Experiment 3, the performance profile relating
the cued and actual color also showed a monotonic
decreasing trend, with maximum suppression occurring
at cue-to-target separation of 1808. There was no
appreciable rebound effect in the latter two experi-
ments. These results largely support the feature-
similarity gain model by providing a perceptual
correlate for the underlying neuronal modulation due
to attention.

Relationship to previous work

Several previous studies have measured the effect of
feature-based attention on feature-selective mecha-
nisms. In addition to the Ho et al. (2012) and Tombu
and Tsotsos (2008) and studies mentioned in the
Introduction, three other studies have also reported
effects of attention on feature tuning. Using a masking
technique, Baldassi and Verghese (2005) found that an
orientation cue selectively reduced detection threshold
at the cued orientation. Paltoglou and Neri (2012) used
a noise classification image technique to measure
tuning and found feature-based attention sharpened
direction tuning but not orientation tuning. Ling, Liu,
& Carrasco (2009) measured direction discrimination

Figure 8. Results for Experiment 3, collapsed across individual

cued colors, showing cueing effect as a function of the cue-to-

target offset on the color circle. Other notations are the same

as in Figure 2. The solid line is a quadratic fit of the cueing effect

as a function of color offset.

Figure 7. Results for individual cued colors in Experiment 3.

Each panel plots the group averaged cueing effect, defined as

performance difference between cued versus neutral trials for a

particular cued color. The color of the target stimuli was shown

as the color of the plot symbol, with the color at 08 as the cued

color. Error bars are the estimated within-subject standard

error.
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threshold with an external noise technique and used a
computational model to infer that feature-based
attention both enhanced and suppressed neural popu-
lation response in a manner consistent with the feature-
similarity gain model.

These studies used similar attentional manipulations
in that observers were cued to attend to a particular
feature prior to stimulus presentation. Beyond this
commonality, however, there were many variations in
design choices across experiments in terms of stimulus,
task, and the measure of tuning. Perhaps not surpris-
ingly, the results are also divergent. Whereas two
studies (Baldassi & Verghese, 2005; Paltoglou & Neri,
2012) did not find evidence for suppression (another
study by White & Carrasco, 2011, also failed to find
suppression for the feature opposite to the cued
feature), the other three studies (Ho et al., 2012; Tombu
& Tsotsos, 2008; Ling et al., 2009) all reported some
degree of suppression. Among the latter studies, the
exact profile of attention-induced suppression also
differed. Thus there lacks a consistent picture from
these studies, and it is difficult to compare them directly
due to significant variations in the experimental
methodology.

We would like to offer that our study was optimized
to measure the effect of attention on feature-selective
mechanisms. First, we presented only one stimulus at a
time in a fixed location, unlike most previous studies
that presented multiple stimuli for which participants
had to locate the target. This type of search-like
paradigm would require shifts of spatial attention.
Thus both spatial and feature-based attention was
involved in shaping performance, which could compli-
cate the interpretation of the results. Our 2-IFC task
only presented a single stimulus at fixation, and thus
eliminated the contribution of spatial attention. Sec-
ond, the perceptual judgment in our task (determining
which interval contained the target) was orthogonal to
the cued feature. This is important because perfor-
mance was not influenced by participants’ perceived
similarity among features. Had we asked participants
to report which interval contained the cued feature, we
would be measuring perceived similarity among fea-
tures, instead of how attention affected feature
representation (see Paltoglou & Neri, 2012, for more
discussions). Lastly, our measure of attentional mod-
ulation is based on performance in a detection task,
which presumably relies most on neurons tuned to the
target feature (Butts & Goldman, 2006; Hol & Treue,
2001; Jazayeri & Movshon, 2006; Regan & Beverley,
1985). Thus performance on our task provides a close
proxy to the underlying neural activity. In contrast,
some previous studies relied on sophisticated data
processing and modeling, for example, the psycho-
physical reverse correlation, which assumes a linear
observer model (Paltoglou & Neri, 2012), or a

computational model (Ling et al., 2009), which relies on
assumptions about the neural architecture and neuro-
nal response properties. Based on these considerations,
we believe our simple protocol provides the most direct
psychophysical measure of the effect of feature-based
attention that is easy to interpret without complications
due to design and analytic factors.

Attentional modulation of motion direction

In Experiment 1, attending to a direction produced a
U-shaped modulation profile such that motion detec-
tion was enhanced for target moving in the attended
direction, but impaired for a wide range of intermediate
directions, and showed a rebound effect in the opposite
direction. The rebound effect seems to be a robust
finding, as it was also observed by Ho et al. (2012)
under a different experimental setup. This nonmono-
tonic modulation profile is unexpected given neuro-
physiological data showing a monotonic modulation of
MT neuronal activity as a function of the difference
between the preferred and attended direction (Marti-
nez-Trujillo & Treue, 2004).

One possible reconciliation between neurophysio-
logical and behavioral data is that observers voluntarily
attended to the axis of motion when cued to a direction.
We think this is unlikely because we emphasized the
distinction between direction and axis in our instruc-
tions and all participants were well-trained psycho-
physical observers. In addition, if participants always
attended to the motion axis, we should expect equal
performance in the valid (08 offset) and opposite (1808
offset) direction, which was clearly not the case.

Another possibility is the existence of neural
mechanisms tuned to the axis of motion. Direction-
selective neurons tuned to two opposite directions have
been found in both MT (Albright, 1984) and V1
(Conway & Livingstone, 2003; Livingstone & Conway,
2003). These neurons were probably not sampled in
neurophysiological studies of attention because they
constitute a minority of neurons in the visual cortex
and researchers usually record from a limited number
of neurons that reach certain inclusion criterion
(Martinez-Trujillo & Treue, 2004; Treue & Martinez-
Trujillo, 1999). However, these opposite-tuned neurons
could contribute to performance in perceptual tasks.
For example, it is possible that attention to upward
direction enhances activity in neurons tuned to upward
motion, as well as in neurons tuned to both upward and
downward motion, and the enhancement in this latter
group of neurons makes it easier to detect the 1808
offset direction in our task.

To get further insight on this issue, we assessed
participants’ ability to report motion direction in our
task without any attentional cueing. In a subset of
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training trials during Experiment 1, we asked partici-
pants to report the direction of the target (after they
had indicated which interval contained the target), by
clicking on a circle with a computer mouse to indicate
the target direction. We then calculated the angular
difference between the true target direction and the
reported direction on trials that they correctly reported
the target interval. The distributions of these direc-
tional errors were plotted in angular histograms in
Figure 9. At high coherence (32%), the vast majority of
errors centered around zero, suggesting participants
clearly perceived the correct motion direction and by
extension understood the concept of direction (as
opposed to axis or orientation). However, even at this
relatively high coherence level, there was a visible
overrepresentation in the opposite direction at 1808. At
the two lower coherence levels (8% and 16%), which
were comparable to the coherence level used in
Experiment 1 (10%), we observed a decrease in the
proportion of 08 responses and an increase in the 1808
responses. These results suggest that motions in the
opposite directions are more easily confused with each
other, and the results are consistent with the notion
that bidirectional tuning might underlie performance in
the motion detection task. Thus, we believe our results
can still be consistent with the feature-similarity gain
model, if one takes into account of the bidirectional
tuning in the visual cortex.

Attentional modulation of orientation and color

In Experiment 2, we found a monotonic attentional
modulation for orientation such that as the target
orientation deviated more from the cued orientation,
performance gradually declined. This result is directly
predicted by the feature-similarity gain model. In
contrast to a previous study (Tombu & Tsotsos, 2008),
we did not observe any rebound effect. However, this
latter study did not include a neutral condition, making
it difficult to assess any suppression effect. Further-

more, the task required participants to judge whether
stripes were straight or jagged, and attentional effect
was only observed for jagged stimuli. This may be
caused by the fact that the jagged stimuli were created
by shifting segments of the stripes in an approximately
orthogonal direction to the stripes’ main orientation
(see figure 1 in Tombu & Tsotsos, 2008), making it
easier to detect the jaggedness if participants were
attending to the 908 offset orientation. Thus we believe
the observed rebound effect in Tombu and Tsotsos
(2008) might be due to specific choices in their stimulus
and task design. Our orientation data showed a
monotonic modulation profile, suggesting that atten-
tion enhances neurons tuned to the attended orienta-
tion but suppresses neurons tuned to other orientations
with the amount of suppression scaling with the
dissimilarity between cued and preferred orientation,
that is, the principle of feature-similarity gain (Marti-
nez-Trujillo & Treue, 2004; Treue & Martinez-Trujillo,
1999). Thus, although the feature-similarity model was
based on measurement of MT neurons’ response to
motion stimuli, our data predict that orientation-tuned
neurons will exhibit similar attentional modulations
when attention is directed to orientation.

In Experiment 3, we again found a monotonic-
modulation function for attention to color. As the
target color deviated more from the cued color,
detection performance showed a gradual decline. This
result is also consistent with the feature-similarity gain
model, when applied to the dimension of hue specified
by angles in the CIE color space. This might be
somewhat surprising, as early stages of color processing
is dominated by the trichromatic mechanism on the
retina and opponent process in lateral geniculate
nucleus (LGN) and V1 (Soloman & Lennie, 2007),
neither of which exhibits tuning to hues in a continuous
fashion. However, recent work has suggested that
extrastriate areas such as V4 contain mechanisms tuned
to hues along the spectrum (Brouwer & Heeger, 2009;
Conway, Moeller, & Tsao, 2007). It is thus plausible
that attention modulates these hue-tuned neuronal
mechanisms according to the feature-similarity gain

Figure 9. Pointing results from a subset of practice sessions in Experiment 1. Distribution of errors in pointing to target direction for

three coherence levels, depicted as angular histograms in polar coordinate. Only trials on which observers correctly reported the

target interval were shown. Coherence and number of trials are shown at the top of each panel.
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principle. Our data would predict such a result in a
neurophysiological experiment.

Although the profile of attentional modulation is
quite similar for color and orientation, we also
observed a subtle difference, in that orientation
modulation is best described by a linear trend, whereas
color modulation is best described by a quadratic trend.
Basically, the suppression of orientation was propor-
tional to the orientation offset, whereas the suppression
of color was reduced at large hue offsets. This could
reflect a more uniform representation of feature
similarity for orientation than that for hues. Perceptu-
ally, it seems to be the case that orientation similarity is
proportional to differences in angle, whereas hue
similarity is less so—at large offsets, two colors will
appear quite dissimilar regardless of their separation
(e.g., both the green and blue colors appear very
different from the red color in Figure 6B, although red
is closer to blue than to green in the color space). This
implies that the modulation due to feature-similarity
gain is not strictly linear for color-tuned mechanisms.

A recent study by Stormer and Alvarez (2014)
reported a ‘‘surround suppression’’ effect in color space
in a feature-based attention task. In a behavioral
experiment, they presented colored dots in both the left
and right visual fields and asked observers to detect
brief intervals of coherent motion in both dot fields,
while varying the similarity between the dot colors. In
addition, dots of a third color were used as distracters
in both visual fields and participants were cued to
attend to two colors on each trial. They found that
detection accuracy decreased and then increased as a
function of the similarity between the two cued colors.
Using a similar paradigm in a subsequent electroen-
cephalography (EEG) experiment, they found steady-
state visual evoked potential (SSVEP) amplitude for an
ignored color in the opposite hemifield to the attended
color also showed a decrease followed by an increase as
a function of color similarity. These results are
seemingly at odds with ours, which showed monotonic
attentional modulation for color. However, there were
many differences in the tasks used between the studies,
making it difficult to directly compare the results. Here
we note two important differences between the tasks.
Stormer and Alvarez (2014) always presented a
distracter color in the same location as the cued color,
which might have encouraged a strategy to explicitly
suppress the distracter color. In addition, participants
were cued to attend to two colors in the behavioral
experiment, which showed a stronger surround sup-
pression effect than the EEG experiment. The need to
ignore the distracter color and to attend to two colors,
as well as the requirement to report on another feature
dimension (direction of motion), made the tasks
somewhat complicated, which could make it more
difficult to control strategic factors. In our task,

participants always attended to a single color in a single
location and reported about the color feature in a
standard cue validity paradigm. We believe that this
simpler design allows for more direct measures of the
effect of attention to color. Further research is needed
to reconcile these results regarding the surround
suppression effect in attention to color.

Challenges and future work

We have interpreted our findings in the framework
of attention modulating the sensory representation of
visual features. This framework is supported by
neurophysiological data showing feature-based atten-
tion can modulate neuronal responses in visual cortex
(Khayat et al., 2010; Martinez-Trujillo & Treue, 2004;
Treue & Martinez-Trujillo, 1999). However, another
prominent view in the literature is that attention
reduces uncertainty at the decision stage without
altering the sensory representation (e.g., Eckstein,
Thomas, Palmer, & Shimozaki, 2000; Palmer, Vergh-
ese, & Pavel, 2000; Verghese, 2001). Although these
theories were originally proposed in the domain of
spatial attention, in principle, selective readout of
feature detectors could also produce performance
facilitation and suppression in feature-based attention
tasks. A possible experimental remedy is to use a
postcue to indicate the target feature, thus reducing
uncertainty at the decision stage. However, postcues
further complicate the overall task and could alter task
strategy, and it is unlikely that postcues can eliminate
selective readout. Thus, based on behavioral data
alone, it would be difficult to distinguish the sensory-
based versus decision-based accounts of performance
modulation due to attention. Regardless of the precise
underlying mechanisms, however, our results still
provide a systematic characterization of how attention
affects perceptual performance in three feature dimen-
sions.

These results can be used to constrain further
development of models of attention. We believe a
promising avenue of future research would be to
construct neurally plausible, computational models of
perceptual performance (e.g., Eckstein, Peterson,
Pham, & Droll, 2009; Jazayeri & Movshon, 2006). One
can then implement the sensory- versus decision-based
mechanisms in the model and examine how well each
mechanism explains behavioral performance. Such
models will also allow us to examine how physiological
parameters (such as neuronal tuning width, attentional
gain/suppression, and decision weights) influence be-
havior. Ultimately, however, the distinction between
sensory- versus decision-based mechanisms might be
best resolved at the neuronal level. Here, it is worth
pointing out that the original neuronal data on feature-
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similarity gain (Martinez-Trujillo & Treue, 2004) were
obtained with a task that is somewhat different from
the tasks used in many other studies. Notably, the
neutral condition required attention to the central
fixation, which might not be the ideal baseline
condition (see further discussions by White & Carrasco,
2011). Thus, more neuronal level data obtained with
protocols that better isolate feature-based attention
would be highly informative, particularly if combined
with computational models that can link neuronal
activity to behavioral performance.

Summary and conclusion

We examined the profile of attentional modulation
in a cueing paradigm combined with a validity
manipulation. We found suppression effects for all
three features we tested: direction of motion, orienta-
tion, and color. The modulation profile exhibited a U-
shaped function for direction, but largely linear
functions for orientation and color. The data for
orientation and color followed the predictions of the
feature-similarity gain model, whereas the direction
data were seemingly inconsistent with the model.
However, after taking into account of neural mecha-
nisms tuned to the axis of motion, the direction results
can be reconciled with the predictions of feature-
similarity gain. Overall, these results suggest that the
feature-similarity gain principle of attention operates
across a variety of feature dimensions and can affect
the perception of features, in addition to neuronal
activity.

Keywords: attention, feature, suppression
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