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Abstract

Morphologic methods such as the Response Evaluation Criteria in Solid Tumors (RECIST) are considered as the gold standard for 
response assessment in the management of cancer. However, with the increasing clinical use of antineoplastic cytostatic agents 
and locoregional interventional therapies in hepatocellular carcinoma (HCC), conventional morphologic methods are confronting 
limitations in response assessment. Thus, there is an increasing interest in new imaging methods for response assessment, which 
can evaluate tumor biology such as vascular physiology, fibrosis, necrosis, and metabolism. In this review, we discuss various 
novel imaging methods for response assessment and compare them with the conventional ones in HCC.

Key words: Computed tomography perfusion; diffusion weighted imaging; dynamic contrast‑enhanced magnetic resonance 
imaging; hepatocellular carcinoma; positron emission tomography

Introduction

Hepatocellular carcinoma (HCC) is the sixth most common 
cancer and the third most common cause of cancer‑related 
mortality worldwide.[1] Liver transplantation and resection 
are considered curative; however, most patients do not 
meet the selection criteria.[2] Molecular targeted agents such 
as sorafenib have shown a survival benefit for advanced 
HCC.[1,3‑5] Locoregional therapies (LRTs) deliver toxic 
thermal/chemical/radioactive doses to tumors with minimal 
toxicity to the normal tissue. Among the various LRTs, 
transarterial chemoembolization (TACE) and yttrium‑90 
radioembolization are palliative, whereas thermal ablative 
methods provide results equivalent to surgical resection in 
early stage HCC.[6‑9]

Imaging plays an important role in the management of 
HCC, and the efficacy of treatment is usually monitored 
and assessed radiologically. Therapeutic response has 
been assessed by morphologic methods using various 
criteria such as the World Health Organization (WHO) 
criteria or the Response Evaluation Criteria in Solid 
Tumors (RECIST) in cancer treatment.[10‑12] These criteria 
are well established, and have been applied to response 
assessment of clinical trials in various kinds of tumors.[13] 
However, these morphologic evaluations have confronting 
limitations, including the presence of tumors that cannot 
be measured, poor measurement reproducibility, and mass 
lesions of unknown activity that persist following therapy.[12] 
Furthermore, with the increasing clinical use of molecular 
targeted agents in HCC, these criteria have confronting 
limitations in distinguishing viable tumor from necrotic or 
fibrotic tissue, and are not suitable to assess cellular death/
apoptosis, because the new molecular targeted drugs act 
differently as compared to the traditional chemotherapeutic 
drugs and result in changes in blood flow (BF) of the tumor 
and cellular death without significant tumor shrinkage.

Faced with these limitations of morphologic tumor 
assessment criteria, new reliable markers including serum 
markers, metabolic and functional imaging markers based 
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on computed tomography (CT), magnetic resonance 
imaging (MRI), or positron emission tomography (PET) 
to assess response to targeted agents or LRTs are desired 
urgently.[14‑17] Imaging for tumor response assessment has 
evolved over the past few years as a result of advances in 
imaging modalities and the introduction of new functional 
imaging.[18,19] In this review, we discuss the conventional 
and new imaging methods to assess tumor response in the 
management of HCC.

Morphologic response assessment
Clinical trials are mandatory in the evaluation of new 
tumor treatments. A common measure of the effect of 
an instituted therapy is the change of tumor size. In 
1979, the WHO criteria established the concept of an 
overall assessment of tumor response by bidimensional 
lesion measurement, which is calculated by multiplying 
the maximum diameter by its longest perpendicular 
diameter, and determined the response to the therapy by 
evaluating the change from baseline while on treatment. 
Subsequently, RECIST criteria were introduced in 2000, 
updating the WHO criteria [Figure 1],[10] and brought 
many advances and facilitated comparison of the results 
among clinical trials. After extensive experience and 
validation in several chemotherapeutic trials in solid 
tumors, it was revised as RECIST 1.1 in 2009.[12] RECIST 
1.1 is based on the measurement of a maximum of five 
target lesions, not exceeding two per organ; subsequently, 
the sum of the greatest diameters is recorded followed 
by a final classification.[12] Morphologic response criteria 
are summarized in Table 1. However, RECIST 1.1 has 
some limitations as follows: (1) it assumes that all lesions 

are spherical and that they decrease or increase in size 
uniformly; (2) necrosis is not taken into consideration 
in measuring the tumor size on the basis of RECIST, but 
recent LRTs or targeted therapies induce necrosis, which 
may indicate favorable tumor response;[20,21] and (3) RECIST 
1.1 does not define the standard phase of contrast material 
enhancement for measuring specific tumors. This criterion 
may be important if the lesion is best seen during either 
arterial or venous phase of enhancement.

Quantification of volumetric change can be a more accurate 
measure of the actual tumor size change than uni‑ or 
bidimensional measurements because volumetric analyses 
compensate for actual tumor shape rather than assuming 
it to be a sphere, an ellipsoid, or a cube. Welsh et al.[22] 
reported that volumetric analysis might be the preferred 
method to detect tumor progression, showing that RECIST 
might overestimate tumor burden compared to volumetric 
analysis. Sohaib et al.[23] demonstrated the accuracy and 
reproducibility of CT volumetric measurements in their 
phantom study. However, the optimal volumetric response 
evaluation criteria have not been defined. Volumetric 
analysis can be time consuming and laborious because 
volumetric analysis still relies on manual trace of tumor 
margins. In the future, a computerized tumor segmentation 
method with high reproducibility and reliability may allow 
for automatic lesion contouring and volumetric calculation.

Tumor viability and density assessment
Generally, targeted therapy agents induce reduction 
in tumor vascularization, provocation of necrotic area 
and sometimes cavitation in solid tumors, and these 
features have been reported in various targeted therapies 
of HCC.[3,24‑27] Furthermore, all LRTs attempt to induce 
necrosis of the tumor, which may delay tumor shrinkage 
during the early post‑treatment period. Given these 
limitations of morphologic response criteria, the European 
Association for the Study of Liver (EASL) proposed new 
response criteria in 2000 to take into account tumor 
necrosis induced by treatment.[28] Accordingly, necrosis is 
defined as non‑enhanced areas on contrast‑enhanced (CE) 

Table 1: Morphologic response criteria

Response 
category

WHO RECIST 1.1

CR Disappearance of all lesions Disappearance of all lesions 
and pathologic lymph nodes

PR ≥50% decrease in sum of the area 
(longest diameters multiplied by 
longest perpendicular diameters)

≥30% decrease in the sum 
of longest diameters of 
targeted lesions

SD Neither PR nor PD Neither PR nor PD

PD >25% increase in sum of the area >20% increase in the sum 
of longest diameters and 
≥5 mm absolute increase in 
the sum of longest diameters

CR: Complete response, PR: Partial response, SD: Stable disease, PD: Progressive disease, 
WHO: World Health Organization, RECIST: Response evaluation criteria in solid tumors

Figure 1 (A-D): According to RECIST, this patient was categorized 
as partial response [from (A) to (B), 33% reduction in tumor diameter], 
while WHO criteria categorized this patient as stable disease [from 
(C) to (D), 43% reduction in tumor area]

A B

C D
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CT/MR within the treated tumor. In 2008, the American 
Association for the Study of Liver Disease (AASLD) 
proposed the modified RECIST (mRECIST) criteria, which 
conceptualized viable tumor measurements. The major 
change is the definition of the target lesion, which is no 
longer the whole lesion but only the contrast‑enhanced 
portion of the hepatic lesion on the arterial phase image 
[Figure 2].[29,30] Previous reports demonstrated that 
EASL or mRECIST had better overall response rate than 
conventional morphologic criteria such as RECIST and 
WHO.[21,31,32] In addition, these criteria have shown a 
better correlation with survival. Gillmore et al.[20] reported 
that responses measured by EASL and mRECIST after 
2‑3 months of TACE were independently associated 
with survival, whereas RECIST 1.1 had no significant 
association with survival. In a recent retrospective 
study of HCC patients treated with sorafenib, patients 
categorized as responders according to mRECIST had a 
longer overall survival (OS) than the non‑responders.[33] 
Similarly, Shim et al.[34] reported that responses measured 
by mRECIST and EASL were independent predictors for 
OS following TACE. Prajapati et al.[32] reported significant 
associations of mRECIST and EASL with survival, and also 
suggested that the response based on mRECIST showed a 
better correlation with survival than that based on EASL. 
Therefore, response evaluation based on the enhancement 

may enable more accurate response assessment in terms 
of survival.

The tumor density analysis on CECT can be used as an 
additional method for response assessment.[35] On treating 
gastrointestinal stromal tumor (GIST) with imatinib 
mesylate, there was a decrease in density of the tumor, 
which was measured by drawing a region of interest 
(ROI) circumscribing the boundary of the tumor on the 
portal venous phase, while no change was observed in 
tumor size.[35,36] In GIST, a reduction in tumor Hounsfield 
Units (HU) greater than 15% was associated with better 
progression‑free survival (PFS; Choi criteria).[37] In a recent 
study of HCC, Faivre et al.[38] demonstrated that the tumor 
response measured by Choi criteria was more sensitive 
than that measured by RECIST in detecting patients 
with longer time to progression after sunitinib therapy 
[Figure 3]. Criteria for tumor viability and density analysis 
are summarized in Table 2.

Diffusion‑weighted imaging for response assessment
Motion of water molecules in tissue can be assessed by 
applying diffusion‑weighting gradients to T2‑weighted 
sequences. Various tissue types have unique diffusion 
characteristics, which are measured as the apparent diffusion 
coefficient (ADC) by the diffusion‑weighted imaging (DWI) 

Figure 2: Arterial phase CECT of a 72-year-old man with HCC. The 
area of central necrosis increased after a tyrosine kinase inhibitor 
therapy (dashed line), while the change in tumor size was not obvious 
(solid line)

Figure 3: Portal-phase CECT of a 73-year-old woman with HCC. Tumor 
density changed obviously after antiangiogenic therapy

Table 2: Summary of response criteria based on tumor viability and density

EASL mRECIST Choi criteria
CR

Disappearance of intratumoral arterial 
enhancement

Disappearance of all lesions and pathologic 
lymph nodes

Disappearance of all lesions

PR

≥50% decrease in the sum of the arterial 
enhancing areas (longest diameters multiplied 
by longest perpendicular diameters)

≥30% decrease in the sum of diameters of 
enhancing target lesions

≥10% decrease in the longest diameter of target 
lesion or ≥15% decrease in attenuation (HU)

SD

Neither PR nor PD Neither PR nor PD Neither PR nor PD

PD

≥25% increase in the size of the arterial 
enhancing areas or development of a new lesion

≥20% increase in the sum of diameters of 
viable target lesions recorded since treatment 
started or development of new lesions

≥10% increase in the longest diameter of target lesion 
without PR criteria or development of new lesions

CR: Complete response, PR: Partial response, SD: Stable disease, PD: Progressive disease, EASL: European Association for the Study of Liver, mRESIST: Modified response evaluation criteria 
in solid tumors
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performed with a different gradient duration and amplitude 
(b‑values). Because the movement of water molecules in the 
body tissues is restricted by various factors including cells, 
macromolecules, and fibers in tissue compartments, DWI 
can be exploited in clinical practice for indirect assessment 
of tissue properties such as cellularity, gland formation, 
perfusion, fibrosis, and cell death.[39,40] DWI has the potential 
to be an effective biomarker for monitoring the response 
to the treatment, and this potential in the management of 
cancer patients has been already discussed in a consensus 
meeting and a publication.[41]

Several studies have reported that the ADC value of 
HCC significantly increased after TACE.[42‑44] A previous 
study reported that high baseline ADC value in HCC was 
associated with poor response to TACE, and that responding 
lesions showed a significant increase in ADC values than 
the non‑responding ones after 48 h of TACE.[45] The results 
of antiangiogenic agents such as multitargeted tyrosine 
kinase inhibitors are controversial.[46‑48] Schraml et al.[46] 
reported that on treating HCC with sorafenib, the tumor 
ADC initially decreased after 2‑4 weeks of therapy and 
was followed by an increase after 10 weeks of the therapy. 
But, Lewin et al.[47] reported that the tumor ADC did not 
significantly change after sunitinib therapy. In HCC treated 
with sunitinib, significant increase in tumor ADC was 
observed after 2 weeks of the therapy with no change in 
tumor size, based on RECIST and mRECIST [Figure 4].[48]

DWI can be a desirable imaging biomarker because it needs 
no radiation exposure and no contrast material. However, 
there are several limitations. Various factors including 
magnetic field strength, technical factors (e.g. b‑value 

selection) and the ROI setting may affect accurate ADC 
assessment.[49,50] Furthermore, in the abdomen, the strong 
influence of motion due to breathing and vascular pulsation 
often results in image artifacts, which may lead to inaccurate 
ADC calculation.[51] Optimal time frame for precise response 
evaluation needs to be further studied.

Assessment of tumor vascular physiology
Because most of the targeted agents inhibit angiogenesis 
to control tumor progression, tissue perfusion analysis is a 
highly promising method to assess treatment response. In 
recent years, perfusion analysis has already been readily 
incorporated into the existing CT and MRI protocols, 
and most scanners are now equipped with sophisticated 
hardware platforms coupled with user‑friendly software 
packages.[52]

In dynamic contrast‑enhanced (DCE) CT, the temporal 
changes in attenuation following intravenous contrast 
material administration can be analyzed using the 
mathematical kinetic models such as compartmental or 
deconvolution analysis for contrast material exchange.[53,54] 
The common perfusion parameters of CT perfusion (CTP) 
are BF (flow rate through vasculature in a tissue), blood 
volume (BV, volume of flowing blood within a vasculature 
in a tissue), mean transit time (MTT, time taken to travel 
from artery to vein), and permeability surface area product 
(PS, total flux from plasma to interstitial space).[24,25,54] 
Chen et al.[55] demonstrated that in HCC treated with TACE, 
changes in CTP parameters of tumors were correlated 
with different responses of HCC to TACE. According to 
their findings, tumors of responders showed significant 
reduction in hepatic arterial perfusion and BV, while 
those of non‑responders did not show significant changes. 
Yang et al.[56] reported that the values of hepatic arterial 
perfusion, total liver perfusion, and hepatic arterial 
perfusion index in tumors significantly decreased 4 weeks 
after TACE in comparison to those before TACE. Previous 
studies reported reduction in BF or BV after 10‑12 days 
of antiangiogenic therapy without any significant change 
in tumor size based on RECIST [Figure 5].[24,25] Moreover, 
baseline CTP values have a potential to be a predictive 
biomarker for survival after antiangiogenic therapy.[25] Jiang 
et al.[25] demonstrated that HCC with higher baseline MTT 
correlated with favorable clinical outcome. A recent paper 
of CTP reported that the heterogeneity of tumor BF showed 
a good correlation with OS in HCC patients treated with an 
antiangiogenic agent.[57]

Similarly, DCE‑MRI also enables quantification of tumor 
vascular physiology. The common DCE‑MRI parameters 
are vascular permeability (Ktrans) and reverse reflux 
rate constant between extracellular space and plasma 
(Kep) and the fractional extravascular, extracellular 
space (Ve).[26,48,58‑60] Several studies have demonstrated the 
value of DCE‑MRI derived parameters for monitoring 

Figure 4 (A-D): DWI at baseline (A) and post-treatment (B), and ADC 
maps at baseline (C) and post-treatment (D) of a 68-year-old man with 
HCC (arrows). ADC showed 55.1% increase after 2 weeks of tyrosine 
kinase inhibitor therapy

A B

C D
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antiangiogenic therapies in various solid tumors.[26,48,58‑60] 
In advanced HCC, DCE‑MRI demonstrated reduction in 
Ktrans during antiangiogenic treatment and the change 
of Ktrans during treatment was related to better PFS 
and OS in clinical trials of tyrosine kinase inhibitors 
[Figure 6].[26,48,60,61] In a phase I study of pazopanib, patients 
who had either a partial response or stable disease showed 
significant reduction in Ktrans.[61] In a study of HCC 
patients treated with sorafenib and metronomic tegafur/
uracil, reduction in Ktrans on day 14 was found to be an 
independent predictor for PFS and OS.[60] In a phase II 
study of sunitinib, higher baseline Ktrans and larger drop 
in Ve correlated with longer PFS.[48]

CTP may be superior to DCE‑MRI in accessibility and 
availability.[62,63] However, CTP essentially implies two 
major drawbacks: High radiation exposure and limited 
coverage of the anatomy. Thus, several efforts are being 
made with low‑dose scanning techniques.[54] It is also 
still unclear which scanning protocol or mathematical 
model is optimal for abdominal organs. The definitions 
of the tumor ROI and the acquisition time also need 
further investigation in terms of reproducibility and 
reliability.[64,65] On the contrary, DCE‑MRI has the 
advantage in spatial resolution and soft‑tissue contrast 
without ionizing radiation. However, it is still expensive 
and technically challenging, and requires longer image 
acquisition times in comparison to CT.[62,63] DCE‑MRI also 
lacks consensus on the standard protocol or the response 
evaluation criteria. However, given the importance 
of vascularization in cancer progression, perfusion 
technique can be a potentially powerful imaging 
biomarker to predict or detect early tumor response to 
the treatment.

Metabolic assessment
I n  P E T,  va r i o u s  k i n d s  o f  t r a c e r s  i n c l u d i n g 
18F‑fluorodeoxyglucose (18F‑FDG), [66‑70] 11C‑acetate 
(11C‑Act),[71‑74] 11C‑ or 18F‑F‑choline (11C‑Cho, 18F‑F‑Cho)[75] 
and 18F‑fluorothymidine (18F‑FLT)[76] enable quantitative 
measurement of various biological features such as 
metabolism, lipogenesis, cellular membrane turnover, and 
proliferation. It is, therefore, possible to noninvasively obtain 
information on a number of different biological properties 
of HCC. Integrated PET/CT and PET/MRI instruments have 
the potential for providing unique biological information 
in a single patient examination.

18F‑FDG is the most widely available tracer, and 18F‑FDG 
PET can assess the glucose metabolism in tumor. In 
HCC treated with TACE, an increase of 18F‑FDG uptake 
in HCC was significantly associated with tumor burden 
and could provide effective information on the prognosis 
of the treatment response.[77] In addition, 18F‑FDG uptake 
after TACE might be a favorable marker to assess tumor 
viability after TACE.[73,78] Similar findings have been 
reported in detecting local tumor progression following 
radiofrequency ablation of HCC.[79] Kim et al.[80] reported 
that in HCC patients treated with chemoradiation therapy, 
low 18F‑FDG uptake was associated with longer PFS and OS 
and that the high 18F‑FDG uptake group was more likely 
to have extrahepatic metastasis within 6 months. However, 
because the expression of glucose‑6‑phosphatase enabling 
18F‑FDG to accumulate in tumor cells varies widely in HCC, 
18F‑FDG PET shows poor sensitivity for detection of HCC, 
ranging from 50 to 55%.[81‑85] Thus, the role of 18F‑FDG PET 
in assessing treatment response is still limited in HCC, and 
further investigations are needed. HCC‑specific tracers may 
be the key in the future.

Conclusion

Morphologic assessment, which has served as the gold 
standard for a long time, is confronting limitations. 
However, recent advances in imaging modalities and the 
introduction of new functional imaging pave the way to 
assess tumor response based on tumor biology in vivo. 

Figure 5 (A-D): CECT images ((A) Baseline, (B) Post-treatment) and 
perfusion (blood volume) maps ((C) Baseline, (D) Post-treatment) of a 
73-year-old woman with HCC. CTP demonstrated perfusion changes 
(−34% in blood volume) without significant changes in size and density 
after 2 weeks of antiangiogenic treatment

A B

C D

Figure 6 (A and B): Ktrans maps of a 69-year-old man with HCC at 
baseline (A) and at 2 weeks after tyrosine kinase inhibitor therapy (B). 
Ktrans of the tumor showed 79.8% reduction after the therapy, while 
the change in tumor size was not obvious

A B
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As antiangiogenic therapy and LRTs have become the 
standard of care for HCC patients, such functional imaging 
techniques for response assessment are of paramount 
importance. In this review, we suggest that the evaluation 
of tumor response should include not only the morphologic 
change but also functional changes such as enhancement, 
density, perfusion, diffusion, and metabolism. Functional 
imaging will serve as a biomarker for response assessment 
of HCC, and radiologists must become familiar with these 
new techniques.
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