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ABSTRACT
The Paleozoic–Mesozoic transition is characterized by the most massive extinction
of the Phanerozoic. Nevertheless, an impressive adaptive radiation of herbivorous
insects occurred on gymnosperm-dominated floras not earlier than during the Mid-
dle to Late Triassic, penecontemporaneous with similar events worldwide, all which
exhibit parallel expansions of generalized and mostly specialized insect herbivory on
plants, expressed as insect damage on a various plant organs and tissues. The flora
from Monte Agnello is distinctive, due to its preservation in subaerially deposited
pyroclastic layers with exceptionally preserved details. Thus, the para-autochthonous
assemblage provides insights into environmental disturbances, caused by volcanic
activity, and how they profoundly affected the structure and composition of her-
bivory patterns. These diverse Middle Triassic biota supply extensive evidence for
insect herbivore colonization, resulting in specific and complex herbivory patterns
involving the frequency and diversity of 20 distinctive damage types (DTs). These
DT patterns show that external foliage feeders, piercer-and-suckers, leaf miners,
gallers, and oviposition culprits were intricately using almost all tissue types from
the dominant host plants of voltzialean conifers (e.g., Voltzia), horsetails, ferns
(e.g., Neuropteridium, Phlebopteris, Cladophlebis and Thaumatopteris), seed ferns
(e.g., Scytophyllum), and cycadophytes (e.g., Bjuvia and Nilssonia).

Subjects Ecology, Paleontology
Keywords Plant–animal interactions, Plant fossils, Italy, Longobardian, Southern Alps, Volcanic
activity

INTRODUCTION
Continental arthropods and vascular plants have been major elements of terrestrial

ecosystems worldwide for nearly 400 million years, and their varied ectophytic and

endophytic associations can provide a unique and direct record of the plant–insect
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interactions in the past (e.g., Labandeira & Currano, 2013). In 2006, Labandeira proposed

four pulses of herbivore expansion, where the observed Palaeozoic arthropod herbivory

patterns—covering the first two phases—are mainly expressed by damage patterns caused

by mites and apterygote and/or basal pterygote herbivores on pteridophyte and basal

gymnospermous plant hosts and are profoundly different from those that originated after

the end-Permian mass extinction (Labandeira, 2006a; Labandeira, 2006b). Preliminary

work on plant–insect interactions from early to late Permian floras of the Southern Alps

indicates a moderately diverse pattern of damage occurring in a variety of habitats prior

to the P-Tr crisis (T Wappler, pers. obs., 2013), penecontemporaneous with similar events

in US Southwest (e.g., Schachat et al., 2014), Gondwana (Adami-Rodrigues et al., 2004;

Adami-Rodrigues, Iannuzzi & Pinto, 2004; Cariglino & Gutiérrez, 2011; Gallego, Cúneo

& Escapa, 2014; Iannuzzi & Labandeira, 2008; Prevec et al., 2009; Slater, McLoughlin &

Hilton, 2012), or Cathaysia (e.g., Glasspool et al., 2003). Nevertheless, herbivory expansion

2 was profoundly disrupted by environmental perturbations at the P-Tr boundary. The

Early Triassic has been traditionally viewed as an unusual time marked by suppressed

origination rates and low diversity (e.g., Benton & Emerson, 2007) generally attributed to

the effects of extreme environmental conditions inflicted on Early Triassic ecosystems

(e.g., Looy et al., 1999; Grauvogel-Stamm & Ash, 2005; Roopnarine et al., 2007; Tong

et al., 2007) but taphonomical biases cannot be excluded at least for European floras

(Kustatscher et al., 2014). In general, records of Early Triassic insects or of insect damage

on plants are scant worldwide (comp. Table 1), so little is known about the mechanics and

timing of diversification of this ecologically important group following the end-Permian

mass-extinction event (Kustatscher et al., 2014; Labandeira & Currano, 2013). Shcherbakov

(2008a) even concluded that the entire class of insects was strongly reduced in diversity

at the P-Tr boundary but following the end-Permian biotic crisis insect faunas already

contained many elements common to modern insects (e.g., Aristov et al., 2013; Béthoux,

Papier & Nel, 2005; Shcherbakov, 2008b; Lukashevich et al., 2010; Żyła et al., 2013; Haig

et al., 2015) building the nucleus for the onset of the third pulse of herbivore expansion,

coupled with an impressive adaptive radiation of herbivorous insects. Their associations

with plants became significantly diverse being major elements for keystone communities

in terrestrial ecosystems worldwide (e.g., Ash, 2014; Grauvogel-Stamm & Kelber, 1996;

Kustatscher et al., 2014; Labandeira, 2006a; Labandeira, 2006b; Labandeira & Currano,

2013; McLoughlin, 2011; Moisan et al., 2012; Pott et al., 2008; Scott, Anderson & Anderson,

2004). Simultaneously, a major three-phased floral change has been proposed for Europe

and probably worldwide (e.g., Grauvogel-Stamm & Ash, 2005). The first stage lasted from

the Induan to early Anisian, which in Europe is characterized by a “survival” interval

dominated by the lycopsid Pleuromeia Corda ex Giebel (1853) and conifers coupled

with relatively low levels of plant–insect interactional diversity (Kustatscher et al., 2014);

this is followed by a “recovery” interval characterized by the resurgence of lycopsids,

sphenophytes, ferns, cycadophytes, conifers, ginkgophytes and seed ferns. The second stage

occurred from the late Anisian to the Carnian. The third covers the Norian and Rhaetian
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Table 1 Arthropod damage on Triassic plants. List of published records of arthropod damage on Triassic plants.

Study Age Formation and locality Damage type

Nathorst (1876); Nathorst (1878) Rhaetian (Late Triassic) Pålsjö, Scania, Sweden • Possible oviposition scars on

Podozamites

Ghosh, Kar & Chatterjee (2015) Norian/Rhaetian (Late Triassic) Parsora Formation (Dhaurai Hill beds); South

Rewa Gondwana Basin, central India

• Disc-like galls on Dicroidium

hughesii

Walker (1938); Ash (1997); Ash (1999); Ash (2000); Ash

(2001); Ash (2005); Ash & Savidge (2004); Ash (2014);

Creber & Ash (2004)

Norian (Late Triassic) Chinle Formation, Petrified Forest National Park,

Arizona, USA

• Marginal and non-marginal feeding

traces on Cynepteria, Marcouia,

Zamites, Sphenopteris, Macrotae-

niopteris, Dechellyia, Nilssoniopteris

• Possible oviposition scars and insect

eggs on Dechellyia, ?Equisetites

• Coprolite-bearing borings in

Itopsidema, Araucarioxylon, Schilderia

Adami-Rodrigues, Gnaedinger & Gallego (2008) Norian (Late Triassic) El Tranquilo Group, Laguna Colorada Forma-

tion; Santa Cruz, Argentinia

• Specific and complex herbivory

patterns of several FFG’s

Feng et al. (2014); Hsü et al. (1974) Keuper (Late Triassic) District Yungjen, Yunnan, China • Crescent-shape bite

marks on Mixopteris

• Intense skeletonization Dictyophyl-

lum nathorstii

Gallego et al. (2003); Gallego et al. (2004); Gnaedinger,

Adami-Rodrigues & Gallego (2007); Gnaedinger, Adami-

Rodrigues & Gallego (2008); Gnaedinger, Adami-Rodrigues

& Gallego (2014)

Carnian-Norian (Late Triassic) La Ternera Fm. (Quebrada La Cachivarita

locality; La Ternera hill area, Copiapó Province),

and the Las Breas Fm. (Punta del Viento locality,

Vicuña, Elqui Province), Chile

• Oviposition scars on Heidiphyllum,

Pseudoctenis, Taeniopteris

Strullu-Derrien et al. (2012) Carnian (Late Triassic) De Geerdalen Formation; Hopen Island, Svalbard

Archipelago

• Aggregations of pellets or copro-

lites within bennettitalean roots

• Gall-like structures within the

cortical or pith tissues of the larger

(probable bennettitalean) axes

Rozefelds & Sobbe (1987); Tillyard (1922); Webb (1982) Carnian (Late Triassic) Blackstone Formation, Ipswich Coal Measures

Group; Sydney Basin, New South Wales, Australia

• Possible oviposition scars and

insect eggs on Nilssoniopteris

• Possible galls or eggs

on Dictyophyllum

• Mining structures on Heidiphyllum,

Ginkgoites

Meller et al. (2011); Pott et al. (2008); B Aschauer & T

Wappler, 2012, unpublished data

Carnian (Late Triassic) Lunz Formation; Lunz am See, eastern Northern

Calcerous Alps, Austria

• Possible oviposition scars and

insect eggs on Nilssoniopteris

• Possible mining struc-

tures on Nilssonia

• Marginal and non-marginal feeding

traces on Nilssoniopteris, and other

bennettitalean leaves

(continued on next page)
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Table 1 (continued)

Study Age Formation and locality Damage type

Moisan et al. (2012) Carnian (Late Triassic) Madygen Formation; Turkestan Mountains,

southwestern Kyrgyzstan, Central Asia

• Oviposition scars on Isoetites

Anderson & Anderson (1983); Anderson & Anderson

(1985); Anderson & Anderson (2003); Labandeira &

Anderson (2005); Scott, Anderson & Anderson (2004)

Carnian (Late Triassic) Molteno Formation; Karoo Basin, KwaZulu-

Natal, Eastern Cape and Northern Cape, South

Africa

• Specific and complex herbivory

patterns involving the frequency and

diversity of 79 distinctive damage

types (DTs) on about 220 whole-plant

species (liverworts, lycopods,

horsetails, ferns, cycads, peltasperms,

corystosperms, hamshawvialeans,

ginkgoaleans, voltzialean conifers,

bennettitaleans, gnetophytes)

Linck (1949); Roselt (1954) Carnian/Ladinian (Upper/Middle Triassic) Bedheim, Germany • Borings in Dadoxylon

• Possible oviposition scars on

Equisetites

Geyer & Kelber (1987); Kelber & Geyer (1989) Upper Ladinian (Middle Triassic) Lettenkohle of Alsace, France; Lower Keuper of

Franconia, Germany

• Crescent-shape bite marks

on Schizoneura, Taeniopteris

• Possible oviposition scars and insect

eggs on Equisetites

Heer (1877) Ladinian (late Middle Triassic) Neuewelt, Lettenkohle, Switzerland • Possible oviposition scars on

Equisetites

Minello (1994) Ladinian (Middle Triassic) Xinigua, Rio Grande do Sul, Santa Maria

Formation (Rosario do Sul Group), Brazil

• Coprolite-bearing borings in

Araucarioxylon

Grauvogel-Stamm & Kelber (1996) Early Anisian (Early Middle Triassic) Grès à Voltzia Formation; Grès-à-Voltzia,

northern Vosges Mountains, France

• Crescent-shape bite

marks on Neuropteridium

• possible eggs entangled in plant

debris

McLoughlin (2011) Anisian—Ladinian (Middle Triassic) Wivenhoe Hill, Esk Trough, Esk Formation;

Queensland, Australia

• Oviposition scars on Taeniopteris

McLoughlin (2011) Olenekian—Anisian (late Early to early Middle

Triassic)

Turrimetta Head, Sydney Basin; New South

Wales, Australia

• Gall on Dicroidium

Kustatscher et al. (2014) Olenekian (Lower Triassic) Solling Formation; Bremke and Fürstenberg,

Germany

• Specific herbivory patterns involving

the frequency and diversity of 8

distinctive damage types (DTs)

• External feeding dam-

age on Tongchuanophyllum.

Neuropteridium, Pelourdea

• Mid-vein gall on

Tongchuanophyllum

• Linear series of lenticular or ovoidal

oviposition scars on Tongchuanophyl-

lum
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stages, which is pivotal to understanding the evolution of trophically modern ecosystems

(e.g., Benton, 2010; Labandeira, 2006b; Labandeira & Currano, 2013).

Thus, the late Middle Triassic (Ladinian) floras of the Dolomite Region in the Southern

Alps of northeastern Italy provide an intriguing window into the early evidence for

Herbivore Expansion 3. Ladinian floras from the Dolomites have been extensively studied

in recent years (e.g., Kustatscher, Dellantonio & Van Konijnenburg-van Cittert, 2014;

Kustatscher & Van Konijnenburg-van Cittert, 2005 and references therein), evidencing

a dominance of conifers (Voltzia, Pelourdea), while cycadophytes, seed ferns, ferns,

horsetails, and lycopsids are much rarer. Nevertheless, the flora from Monte Agnello is

markedly distinct from other Ladinian floras of the Dolomites by its higher diversity and

abundance in cycadophytes, seed ferns and ferns. It is currently the best documented

and most diverse late Middle Triassic biota in the Alps documenting a rich vascular plant

record, including moderate levels of external foliage feeding, piercing-and-sucking, galling,

and ovipositional damage.

Of particular importance, from a taphonomic viewpoint, the Dolomites were subject

to significant volcanic activity, beginning in the late Ladinian. Consequently, conditions

for exceptional preservation were high. Although most of the volcanic complexes were

submarine, locally, such as in the area of Predazzo, subaerial eruptive centers existed

(Hoernes, 1912; Leonardi, 1967), which alter the natural environment to variable extents

and initiate very different effects on community composition, structure, function, and

successional turnover on local and regional scales (e.g., Walker & Wardle, 2014). This

makes the Monte Agnello ideal for examining the response that such environmental

perturbation had on community structures and offers the possibility to study the

ecological expansion of interactional diversity recorded from the varied habitats.

Geological and paleontological setting
Monte Agnello (Fig. 1) represents an area that was marginally influenced by the Ladinian

volcanic activity of the Predazzo volcano and is characterized by a well-preserved strati-

graphic succession (e.g., Kustatscher, Dellantonio & Van Konijnenburg-van Cittert, 2014).

The 250 m thick volcanic succession is composed of “explosion breccia” at the base, fol-

lowed by lava breccia, and alternations of lava flows and tuffs (Calanchi, Lucchini & Rossi,

1977; Calanchi, Lucchini & Rossi, 1978; Lucchini, Rossi & Simboli, 1982). The “explosion

breccia” comprises lithic fragments (calcareous, volcanic and metamorphic fragments,

clastic rocks, isolated crystals), related to the Permo-Triassic volcano-sedimentary

succession and the metamorphic basement (Vardabasso, 1930). The lithic fragments of

the breccia are bound by carbonate and/or chlorite-serpentine cement (Calanchi, Lucchini

& Rossi, 1977). The thickness of this “explosion breccia” varies between 25 m at Monte

Agnello and 10 m at Censi. The volcanic succession accumulated mostly in a subaerial

environment, and is related to explosive phreatic activity (e.g., bomb sags, antidunes,

accretionary lapilli; Calanchi, Lucchini & Rossi, 1977; Lucchini, Rossi & Simboli, 1982).

The flora is preserved in the tuff lenses at the base of the “explosion breccia” of the

volcanic succession at Predazzo (Kustatscher, Dellantonio & Van Konijnenburg-van Cittert,
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Figure 1 Simplified geological map of the Monte Agnello area (Dolomites, N-Italy), modified from
Vardabasso (1930). MA1–MA8, fossil sites.

2014), which hinders an appropriate stratigraphic correlation between the diffrerent sites.

Considering that they are related to one or perhaps a few phreatomagmatic events within

the restricted time frame of late Ladinian volcanism the possible time difference between

the single localities is however very reduced. The flora is composed of a large number of

fronds, stems and reproductive organs of sphenophytes, ferns, seed ferns, cycadophytes

and conifers. Due to the preservation in tuff layers, the organic material is missing and

sometimes the remains are preserved only as impressions. Several stem fragments belong

to the sphenophytes. The ferns are represented by Osmundaceae (Neuropteridium elegans

(Brongniart) Schimper in Schimper & Schenk, 1879), Matoniaceae (Phlebopteris fiem-

mensis Kustatscher, Dellantonio & Van Konijnenburg-van Cittert, 2014) and Dipteridaceae

(Thaumatopteris sp.). For the latter two families, it is the oldest fossil occurrence to date for

the Northern Hemisphere. Additional ferns of unknown botanical affinity are Cladophlebis

ladinica Kustatscher, Dellantonio & Van Konijnenburg-van Cittert, 2014, Cladophlebis sp.

(Osmundaceae and/or the Dicksoniaceae) and Chiropteris monteagnellii Kustatscher,

Dellantonio & Van Konijnenburg-van Cittert, 2014 (Dipteridaceae?). The seed ferns are

represented by leaf fragments of Scytophyllum bergeri Bornemann, 1856. The cycadophyte

leaf fragments probably belong to the genera Bjuvia Florin, 1933, Taeniopteris Brongniart,

1828 and/or Macrotaeniopteris Schimper, 1869 as well as Nilssonia Brongniart, 1828 and

Apoldia Wesley, 1958. The conifers are represented by shoots of Voltzia Brongniart, 1828 and

Pelourdea Seward, 1917 leaves. These plants grew probably during a humid spell, recently

proposed for the late Ladinian of the Dolomites (Preto, Kustatscher & Wignall, 2010 and

references therein).
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MATERIAL AND METHODS
Data collection
Fossil plant assemblages were quantitatively censused from multiple sites at the base of the

“explosive breccia,” that crops out on the northwestern slope of Monte Agnello—Censi,

overlying a carbonate platform of late Anisian to Ladinian age (Sciliar Dolomite). About

684 specimens have been collected from eight distinctive sites denoted by the prefixes MA

1–MA 8 (Fig. 1 and Table 2). Sample size ranges from 2 to 244 plant remains, depending

primarily on the quality and accessibility of the fossils. For the quantitative study, each

identifiable plant fossil was counted. Of the plant fossil specimens collected at Monte

Agnello, all that were adequately preserved and exceeded a minimum size of 0.5 cm2 were

examined for insect damage. Parts and counterparts were matched whenever possible to

avoid duplication. When possible, all specimens were assigned to a known species or plant

morphotype. All analyzed specimens are housed at the Museo Geologico delle Dolomiti,

Predazzo. Specimens occurring on the same rock slab are identified by different letters

following the catalogue number whereas capital letters indicate parts and counterparts of

the same specimen.

The most recent approach toward understanding the patterns of herbivory in the fossil

record involves quantification of both the richness and intensity of insect damage (Wilf &

Labandeira, 1999; Labandeira, Johnson & Lang, 2002; Labandeira et al., 2007; Kustatscher

et al., 2014). The richness of herbivory is determined first by establishing a classification

system of distinctive, diagnosable damage types, or DTs, that can be used generally in

studies of herbivore damage to plants. DTs then are grouped into functional feeding groups

(FFG). Eight functional feeding groups are present in the Monte Agnello flora ((i) external

foliage feeding, subdivided into hole, margin, surface feeding and skeleotization; (ii)

piercing and sucking; (iii) oviposition, though not truly a feeding interaction but rather

egg-laying that leaves a significant record of plant damage; (iv) mining and (v) galling). To

date, over 290 fossil DTs have been identified (CC Labandeira, pers. comm., 2014). Finally

the DTs are ranked by their host specificity (HS), ranging from 1 for generalists to 3 for

high host-plant specialization, which then allows non-generalized DTs (e.g., those with HS

of 2 and 3) to be analyzed separately.

Each foliar element was photographed using a Canon EOS 30D camera with a Canon

EF-S 60 mm f/2.8 macro lens or a Nikon Coolpix E4500. All photographs were optimized

using Abobe Photoshop CS6 and Adobe Lightroom 5.

Quantitative analysis
Quantitative analyses of insect damage were done using R version 3.1.0 (www.r-project.

org). For damage diversity analyses, sample size was standardized by selecting random

subsets of foliar elements without replacement and calculating the damage diversity

for the subsample. Subsets of the data were subjected to rarefaction using an analytic

method detailed below, which extends the solution found by Wappler et al. (2012) to cases

where individuals may belong to multiple classes and allows the explicit reconstruction of

probability distributions for the rarefied sample (Heck, van Belle & Simberloff, 1975). This
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Table 2 Floral and insect damage composition late Ladinian flora from Monte Agnello, Dolomites, Italy.

Species #
Leaves

%
DMG

%
Spec

%
Gall

%
Mine

%
External

%
PS

%
Ovi

DTs #
FFGs

DTO
all

DTO
spec

DTO
external

DT
numbers

Bjuvia cf. dolomitica 113 15.93 0.89 0.89 14.16 0.89 9 5 21 1 18 1;2;3;12;14;
17;29;80;100

Chiropteris montagnellii 12

Cladophlebis ladinica 24 4.17 4.17 1 1 101

Cladophlebis sp. 4

Cone indet. 3

Elatocladus sp. 1

Equisetoid stem fragment 1

Indet. 5

Neuropteridium elegans 3

Nilssonia cf. neuberi 40 10.00 10.00 1 1 4 4 12

Nilssonia sp. 34 23.53 2.91 20.59 2.94 6 3 10 1 9 1;2;7;12;
13;128

Pelourdea sp. 4 25.00 25.00 1 1 1 1 12

Phlebopteris fiemmensis 6 33.33 16.67 16.67 16.67 2 2 2 1 1 2;80

?Podozamites sp. 17 17.65 17.65 2 3 72;100

Pterophyllum sp. 1

Radicites sp. 1

Schizoneura paradoxa 6

Scytophyllum bergeri 55 54.55 7.27 3.64 1.82 49.09 8 4 37 4 34 3;5;12;13;
14;40;63;80

Seed 2

Sphenozamites sp. 37 13.51 2.70 13.51 3 2 5 1 5 2;8;12

Stem indet. 6

Taeniopteris sp. 8 25.00 25.00 2 1 2 2 12;14
(continued on next page)
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Table 2 (continued)

Species #
Leaves

%
DMG

%
Spec

%
Gall

%
Mine

%
External

%
PS

%
Ovi

DTs #
FFGs

DTO
all

DTO
spec

DTO
external

DT
numbers

Thaumatopteris sp. 3

Voltzia sp. 1 84 3.57 1.19 2.38 1.19 2 2 3 1 48;121

Voltzia sp. 2 41 2.44 2.44 1 1 1 121

Voltzia sp. indet. 170 2.94 2.35 0.59 2 2 5 1 12;121

Wood 3

Total 684 12.14 1.32 1.61 0.15 9.36 0.29 0.73 20 7 95 9 75 1;2;3;5;7;
8;12;13;14;
17;29;40;48;
63;72;80;100;
101;121;128

Notes.
DMG, percentage of damage; Spec, Specialized damage; PS, Piercing and sucking; Ovi, Oviposition; FFG, Functional Feeding groups; DTO, Damage type occurrence.
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process was repeated 5,000 times, and the results were averaged to obtain the standardized

damage diversity for the bulk flora and four single sub-localities (MA1, MA5, MA7, MA8).

The remaining sub-localities were removed from the census because the target sample size

of at least 40 specimens was not reached. The standard deviations (SD) for the resamples

were calculated to provide sample error bars.

RESULTS
Damage on the bulk Monte Agnello flora
Of the 684 plant remains examined from the Monte Agnello flora, 83, or 12.13%, exhibit

some sort of damage represented by 20 different damage types. The taxa or morphotypes

examined were represented by foliage, axes, stem fragments, fructifications, and dispersed

seeds (Table 2). A total of 95 damage type occurrences were observed throughout the bulk

flora: 45 on cycadophytes (representing 36.5% of all specimens), 37 on seed ferns (8.0%),

ten on conifers (44.3%), and three on ferns (7.6%) (Table 3), suggesting that selective

feeding by insect herbivores preferentially targeted particular seed plants. This pattern

of selectivity was also recognized within the early late Permian (Wuchiapingian) of the

Gröden/Val Gardena Sandstone from the Bletterbach Gorge of the Dolomites (Northern

Italy) (T Wappler, pers. obs., 2013). Herbivory recorded for the Monte Agnello sites

represents nearly all of the fundamental modes of herbivory, excluding fungal infection,

which was not observed (see Gunkel & Wappler, 2015). Multiple DTs or functional feeding

groups were only recorded in 1.6% of the plant remains whereas the majority were only

damaged in one way (∼11%). Seven distinctive functional feeding groups have been

detected on the foliar elements from Monte Agnello, most of which occur on particular

plant hosts. Types of the external foliage feeding constitute 78.9% of all DT occurrences

and preferentially occurred on the seed fern S. bergeri and consists of the exophytic

consumption of live plant tissues, subdivided into skeletonization and margin-, hole- and

surface feeding; this is the most common ensemble of Triassic damage types (Labandeira &

Prevec, 2014; T Wappler, pers. obs., 2013) (Fig. 2). Those of the galling FFG provided 11.5%

of all DT occurrences and are more or less evenly distributed among conifers, ferns and

seed ferns (Figs. 3C–3D and 3G). Galling represents the most biologically complex of all

major interactions, and represents arthropod-induced abnormal cell proliferation that can

occur on all major plant organs (e.g., Kustatscher et al., 2014; Scott, Anderson & Anderson,

2004); examples are widely known (e.g., Stone & Schönrogge, 2003). Oviposition, though

not a feeding interaction, comprised 5.2% of all DT occurrences; examples are common

(Ghosh, Kar & Chatterjee, 2015; McLoughlin, 2011) (Figs. 3E–3F and 1). Minor levels of

insect damage were present for piercing-and-sucking (2.1% of all DT occurrences; Fig.

3J) and mining (1.1%; Fig. 3H) FFGs. Leafminers construct distinct leaf mines, most of

which are quite conspicuous and represent a form of endophagous herbivory in which a

herbivore targets and feeds on fluid tissues such as phloem, mesophyll or epidermal cell

protoplasts (Sinclair & Hughes, 2010); examples are uncommon and the possible mining

structure on the pteridosperm Scytophyllum bergeri (Fig. 3H) indicates that the origin

and diversification of the leaf-mining habit occurred about 92 million years before the
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Table 3 Floral and insect damage composition of the late Ladinian flora from Monte Agnello, Dolomites, Italy on higher classification level.

Plant groups #
Leaves

%
DMG

%
Spec

%
Gall

%
Mine

%
External

%
PS

%
Ovi

DTs #
FFGs

DTO
all

DTO
spec

DTO
external

DT numbers

Conifer 303 1.00 0.33 2.31 0.66 0.33 3 3 10 1 2 12;48;121

Cycadophytes 250 16.00 1.20 0.40 13.60 0.40 1.60 14 6 45 3 38 1;2;3;7;8;
12;13;14;17;29;
72;80;100;128

Indet. 16

Ferns 52 5.77 1.92 1.92 1.92 1.92 3 2 3 1 1 2;80;101

Seed ferns 55 54.55 7.27 3.64 1.82 49.09 8 4 37 4 34 3;5;12;13;14;
40;63;80

Sphenophytes 8

Total 684 12.13 1.32 1.61 0.15 9.36 0.29 0.73 20 7 95 9 75 1;2;3;5;
7;8;12;13;
14;17;29;40;
48;63;72;
80;100;101;
121;128

Notes.
DMG, percentage of damage; Spec, Specialized damage; PS, Piercing and sucking; Ovi, Oviposition; FFG, Functional Feeding groups; DTO, Damage type occurrence.
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Figure 2 Examples of external foliage feeding at Monte Agnello (Dolomites, N-Italy). (A), Scytophyl-
lum bergeri Bornemann, 1856 with intensively consumed leaf margins (DT12, 14) (MGP63/97). (B) Hole
feeding indicated by leaf removal on both sides of the primary veins (DT63) on S. bergeri Bornemann,
1856 (MGP196/39A-B). (C)–(D) Hole feeding on a Sphenophyte (DT8) (MGP194/106), enlarged in (D)
(E) Marginal feeding on the cycadophyte Nilssonia cf. neuberi Stur ex Pott, Kerp & Krings, 2007 (DT12)
(MGP191/6A). (F) Excision of leaf to primary vein (DT14) on Bjuvia cf. (continued on next page...)
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Figure 2 (...continued)

dolomitica Wachtler & Van Konijnenburg-van Cittert, 2000 (MGP181/11A). (G) Removal or abrasion of
surface tissues with a weak reaction rim (DT29) indicated by the dotted lines on B. cf. dolomitica Wachtler
& Van Konijnenburg-van Cittert, 2000 (MGP196/43). (H) Cuspate excision (DT81) on S. bergeri Borne-
mann, 1856 (MGP171/28), enlarged in (I). (J)–(L), External foliage feeding on B. cf. dolomitica Wachtler
& Van Konijnenburg-van Cittert, 2000 (MGP195/69A), deep excision of leaf margin enlarged in K (DT12)
and interveinal tissue removed in L (DT17). Scale bars: striped, 10 mm; solid, 5 mm; dotted, 1 mm.

first appearance of fossil angiosperms (Ash, 1997; Gnaedinger, Adami-Rodrigues & Gallego,

2014; Kustatscher et al., 2014; McLoughlin, 2011; Moisan et al., 2012; Pott et al., 2008).

Damage on individual species
Among the 28 taxa represented at Monte Agnello less than half indicate some kind of

damage, whereas, three—Scytophyllum bergeri, Bjuvia cf. dolomitica and Nilssonia sp.—are

the most herbivorized taxa (71,6% of all DT occurrences) but only representing one-third

of the flora (Table 2). The most abundant plant species are the conifers Voltzia sp. (Fig.

3C) and Voltzia sp. 2, which have the lowest damage frequency (2.44–2.94%) of the

common Monte Agnello taxa. Ferns are nearly equally as diverse as the seed ferns but

damage frequency is at least ten times less abundant than among the seed ferns (Table 3

and Fig. 3D). Sphenophytes displayed no signs of insect-mediated herbivory but the small

number of sampled leaves open the possibility that more collecting and study may yet

reveal damage to this group also.

Damage at distinct sub-localities
Plant material is generally preserved at the base of the “explosion breccia” at an angle to

the bedding rather than compacted into a single horizon. Transport distance, therefore,

must have been short, and burial was likely rapid. Thus, the fossil leaf assemblages must

be considered as para-autochthonous (e.g., Hanley et al., 2007). Minimal transport allows

us to document considerable changes in species composition and insect folivory over

short distances and recognize possible heterogeneity in the structure and composition of

the source plant communities and their associated herbivores. Large-scale disturbances

may profoundly alter the composition and structure of plant communities and are rarely

uniform in their influence on vegetation (Kustatscher, Dellantonio & Van Konijnenburg-van

Cittert, 2014). Variations of floral composition and insect herbivore damage at the four

sub-localities (MA1, MA5, MA7, MA8) censused are shown in Fig. 4 and Table 4. MA1 has

the highest floral diversity (22 ssp.), followed by MA5 (16 ssp.) and MA7 (15 ssp.). MA8 is

an extremely low-diversity flora (7 ssp.). Interestingly, all sites are strongly dominated by a

single plant group representing in all cases over half of the characteristic plant material at

that site. The most abundant plant lineage at MA5–MA8 is conifers, whereas at MA1 57%

of the taphocoenosis is composed of cycadophytes. However, when analyzing herbivory

on individual host groups at the four sub-localities, total damage frequency and external

foliage feeding is overwhelmingly found on seed-fern hosts (Fig. 4), except MA7 where the

preferred host-plants are cycadophytes.
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Figure 3 Examples of internal foliage consumption at Monte Agnello (Dolomites, N-Italy). (A)–(B)
Elliptical piercing and sucking punctures on the conifer Voltzia sp. 1 (MGP196/35), enlarged in (B)
(DT48). (C) Ellipsoidal, sessile bud gall from branchlet (DT121) on the unaffiliated Voltzia sp. 1
(MGP171/81). (D) Small, hemispherical, thoroughly carbonized structures (DT80) on Phlebopteris
fiemmensis Kustatscher et al., 2014 (MGP181/57C), indicated by arrows. (E) Fern Speirocarpus sp.
(MGP197/69B) showing lenticular-ovoidal foliar oviopsition scars (DT101), (continued on next page...)

Wappler et al. (2015), PeerJ, DOI 10.7717/peerj.921 14/24

https://peerj.com
http://dx.doi.org/10.7717/peerj.921


Figure 3 (...continued)

indicated by arrows. (F) and (I) Lenticular-ovoidal foliar oviopsition scars (DT100) on the unaffiliated
cycadophytes (MGP196/6; MGP196/7A). (G) Undifferentiated galling structures (DT80) on a seed-fern
(MGP63/94), indicated by arrows. (H) Semilinear, frass-laden, mining structure with a smooth and
rimmed margin (DT40) on Scytophyllum bergeri Bornemann, 1856 (MGP63/98A), asterisk indicates
initial place of oviposition. (J) Ellipsoidal scale impressions with roughened surface (DT128) on the
cycadophyte Nilssonia cf. neuberi Stur ex Pott, Kerp & Krings, 2007 (DT128) (MGP194/72A). Scale bars:
striped, 10 mm; solid, 5 mm; dotted, 1 mm.

Figure 4 Plant and damage composition within the single sub-localities. Pie charts showing the
frequency specimen data by (A). Host plant abundance (pooled in higher taxonomic ranks). (B)–(D)
Damage composition. MA1, MA5, MA7, MA8, fossil sites.

Table 4 Floral diversity and evenness.

Flora N S Rarefied species
diversity at 40
leaves

Rarefied external damage
diversity at 40 leaves

Rarefied specialized
damage diversity at 40
leaves

Pielou‘s J Simpson D

MA1 244 22 12.89 ± 1.52 2.30 ± 1.13 0.63 ± 0.69 0.89 1.89

MA5 236 16 9.03 ± 1.41 3.19 ± 1.08 0.68 ± 0.75 0.73 1.83

MA7 125 15 9.38 ± 1.47 1.29 ± 0.49 na 0.63 1.70

MA8 44 7 6.85 ± 0.36 0.93 ± 0.25 na 0.75 1.71
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DISCUSSION
Volcanogenic deposits can preserve spatio-temporal biotic patterns at levels of resolution

not commonly represented in the fossil record. Consequently, the plant–insect assemblages

recognized in this study appear compositionally and ecologically unique (Currano et al.,

2011; Dale, Swanson & Crisafulli, 2005). The para-autochthonous early late Ladinian

flora of the Monte Agnello (Dolomites, N-Italy) offers insights into the patterns of

arthropod herbivory during the beginning of the third pulse of herbivore expansion

(sensu Labandeira, 2006a; Labandeira, 2006b; Labandeira & Currano, 2013: Fig. 1). It

also provides insights into the way herbivores responded to environmental perturbation

and the reorganization of community structure. Even though our data are preliminary, the

palaeoecological and temporal setting of the early late Ladinian flora of the Monte Agnello

in the Dolomites supports three major conclusions that parallel those drawn from data

known from intensively studied Gondwanan sites.

(1) Dominance of seed plant herbivory. The dominance of seed plant herbivory by local

arthropod herbivores, particularly that known since the Permian across western

Euamerica (e.g., Schachat et al., 2014), Europe (Geyer & Kelber, 1987; T Wappler,

pers. obs., 2013), Cathaysia (Glasspool et al., 2003), and in the extensive glossopterid-

dominated floras across Gondwana (e.g., Cariglino & Gutiérrez, 2011; McLoughlin,

2011; Prevec et al., 2009) is also a conspicuous component of the late Anisian to

Ladinian environments. This documents the persistence of the preferential targeting of

selected groups of seed plants, like the cycadopytes in Monte Agnello, particularly by

external foliage feeders. The pattern could be interpreted to support Feeny’s apparency

hypothesis (Feeny, 1976), as seed plants were the most abundant and conspicuous, and

therefore would have been the most apparent to herbivore consumption. However,

for the Monte Agnello data, a more likely explanation favors increased herbivory on

particular plants due to the anatomy of their leaves, suggesting that particular physical

traits, like the scleromorphic structures of conifer taxa, reduce the palatability and

digestibility of such plant material or act as a deterrent when more palatable plants are

available (Labandeira & Anderson, 2005).

(2) Increase of interactional diversity and rise of the leaf-mining habit. There is an increase

in plant–insect interactional diversity during the Early to Late Triassic in eastern

Euamerica and Gondwana regions (e.g., Kustatscher et al., 2014; Scott, Anderson &

Anderson, 2004), coupled with an increase in the diversity of FFGs, DTs, and associated

herbivore behaviors observed at Monte Agnello, compared to insect damage from

earlier known floras (e.g., Kustatscher et al., 2014). Of particular importance is the

presence of the leaf-mining habit in which holometabolous insect larvae consume the

inner parenchymal, epidermal, vascular, or other tissues of a plant, leaving the outer

wall of the epidermis undamaged (Hering, 1951). The earliest documented leaf-mining

fossil records have been reported from Kyrgyzstan, Austria, Australia and South Africa

in deposits of Middle to Late Triassic age (comp. Table 1).
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(3) Volcanic activity and site-specific habitat differences. The data presented here show

that volcanogenic deposits are valuable for the creation and preservation of in

situ sequential stages of biotic change not commonly represented in the fossil

record. These episodic volcanic activities directly influenced the evolution of the

environment, spatial structure and temporal dynamics of the plant community and

the herbivores associated with the plants, resulting in vegetational heterogeneity had

impact on both the likelihood and strength of interactions between plants and insect

herbivores (e.g., Agrawal, Lau & Hambäck, 2006; Currano et al., 2011). Therefore,

the heterogeneity among the sub-localities indicates that volcanic disturbance caused

compositional and structural changes in the ecosystem during the time it occupied

the site, which explain variations in plant physiognomy, plant and insect herbivore

composition, and the overall paleoecology (Table 4). This conclusion is supported by

(1) the spatial variability in the percentage of herbivorized plant host specimens, (2)

the elevated number of DTs on each host plant, and (3) the differences in evenness and

the relative abundance distributions of damage among the single sub-localities.

These conclusions warrant further verification from investigations of additional new

sites to clarify patterns of arthropod herbivory during this crucial period of time where

terrestrial ecosystems were beginning to become modern.

Institutional abbreviations

MGP Museo Geologico delle Dolomiti Predazzo Specimens occurring on the same

rock slab are identified by different capital letters following the catalogue

number.
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